СПОСОБ ОПРЕДЕЛЕНИЯ ПРОСТРАНСТВЕННОГО РАСПРЕДЕЛЕНИЯ И КОНЦЕНТРАЦИИ ГЛИНЫ В ОБРАЗЦЕ КЕРНА Российский патент 2012 года по МПК G01N23/83 

Описание патента на изобретение RU2467315C1

Изобретение относится к способам определения концентрации естественной глины в образце керна или глины, проникшей в керн в ходе закачки бурового раствора.

Проблема повреждения пласта под воздействием бурового раствора (или промывочной жидкости), особенно для длинных горизонтальных скважин, т.к. заканчивание большинства из них производится в необсаженном состоянии, т.е. без цементированной и перфорированной эксплуатационной колонны.

Буровые растворы представляют собой сложные смеси глины, мелких частиц (размером от нескольких миллиметров до менее одного микрона) и органических добавок (полимеры, поверхностно активные вещества и т.д.), содержащихся в "несущей" жидкости - "основе" бурового раствора, в качестве которой может выступать вода, нефть или какая-либо синтетическая жидкость.

В процессе бурения под воздействием избыточного давления фильтрат бурового раствора, а также содержащиеся в нем мелкие частицы и глина, проникают в околоскважиную зону пласта и вызывают значительное снижение ее проницаемости (для характеризации этого явления обычно используется термин "повреждение призабойной зоны пласта" или, просто, "повреждение пласта").

Во время технологической процедуры очистки скважины (путем постепенного вывода на добычу) эти компоненты частично вымываются из околоскважинной зоны, и ее проницаемость частично восстанавливается. Однако часть компонентов остается удержанной в поровом пространстве породы (абсорбируются на поверхности пор, захватываются поровыми сужениями и т.д.), что приводит к существенному различию между исходной проницаемостью и проницаемостью, восстановленной после проведения технологической процедуры очистки (обычно восстановленная проницаемость не превышает 50-70% от начальной).

Общепринятым лабораторным методом проверки качества бурового раствора является его прямая и обратная фильтрация через образец керна, в ходе которой замеряется динамика ухудшения/восстановления проницаемости как функция от количества закачанных поровых объемов бурового раствора или нефти (последнее - при обратной прокачке, моделирующей процесс очистки).

Однако распределение и концентрация глины и других компонентов бурового раствора, удерживаемых в поровом пространстве, по длине образца керна представляет собой важную информацию для понимания механизма повреждения пласта и выбора соответствующего метода повышения коэффициента продуктивности скважины (минимизации повреждения призабойной зоны пласта). Данные параметры не замеряются в рамках указанной выше традиционной процедуры проверки качества бурового раствора.

Одним из наиболее распространенных неразрушающих методов исследования структуры образца является рентгеновская компьютерная томография.

В патенте США №4540882 описывается метод определения глубины проникновения бурового раствора при помощи рентгеновской компьютерной томографии керна с добавлением контрастного агента. Первый материал добавляется к буровому раствору с целью обнаружения первого флюида, обладающего средним атомным номером, отличающимся от среднего атомного номера остаточных флюидов, содержащихся в околоскважинной зоне пласта. Сохраненный образец керна отбирается из скважины для сканирования компьютерным осевым рентгеновским томографом с целью определения коэффициентов поглощения рентгеновского излучения во множестве точек, лежащих в поперечном сечении образца керна. Образец керна сканируется при помощи рентгеновских лучей на первой и второй энергии. Полученные значения коэффициентов поглощения во множестве точек, лежащих на поперечном сечении при каждом значении энергии, используются для определения атомного номера элементов в изображении. Затем по атомному номеру элементов в изображении определяется глубина проникновения первого флюида, и полученное значение является индикатором глубины проникновения бурового раствора в образец керна.

Еще один метод раскрывается в патенте США №4722095, который основан на использовании высокого коэффициента поглощения рентгеновского излучения в барите, широко применяемом в качестве утяжеляющей добавки для бурового раствора. Сначала фильтрат бурового раствора удаляется из образца керна, после чего с помощью рентгеновской компьютерной томографии измеряется поровый и суммарный объемы образца керны, а также объем частиц барита, проникших в образец.

К сожалению, использование барита в качестве контрастного агента для оценки глубины проникновения бурового раствора не всегда обосновано, поскольку размер данных частиц сопоставим с размером поровых сужений и, следовательно, большая их часть будет захвачена в малых порах вблизи от входа в образец.

Другие компоненты бурового раствора (глина, полимеры, вода и т.д.) имеют, как правило, слабый контраст к рентгеновскому излучению и не могут быть пространственно разрешены с требуемой точностью.

Использование контрастного агента, растворимого в "несущей жидкости", как это предлагалось в патенте США №5027379, не позволяет оценить глубину проникновения и концентрацию глины и иных слабоконтрастных добавок, содержащихся в буровом растворе, поскольку глубина проникновения фильтрата бурового раствора и указанных добавок в общем случае различна.

Технический результат, достигаемый при реализации изобретения, заключается в повышении пространственного разрешения и точности определения концентрации и пространственного распределения глины в образце за счет повышения рентгеновской контрастности глины при проведении компьютерной томографии образцов керна и предлагаемого анализа формы гистограмм отдельных изображений компьютерной томографии.

Указанный технический результат обеспечивается тем, что в образец керна закачивают контрастное рентгеновское вещество, в качестве которого используют водорастворимую соль металла с высоким атомным весом, вступающую в селективную ионно-обменную реакцию с глиной. В общем виде формула для водорастворимой соли металла может быть записана в виде: R+M-, где R+ выбирают из группы {Ва2+; Sr2+; Tl+; Rb+; …}, а M- выбирают из группы {Cln; NOn; OHn; СН3СОО; SO4; …}. Вещества R+ и M- выбираются в соответствии с таблицей растворимости неорганических веществ в воде.

По окончании реакции селективного ионного в образец закачивают неконтрастный вытесняющий агент и сканируют образец посредством рентгеновской томографии. На полученном компьютерном томографическом изображении выделяют область интереса и опорное сечение. Получают гистограммы градации серого в поперечных сечениях образца. Определяют пространственное распределение и концентрацию глины в образце путем анализа гистограмм, начиная с гистограммы опорного сечения.

В одном из вариантов реализации изобретения анализ гистограмм осуществляют следующим образом. Определяют количество различных материалов, представленных в области интереса на опорном сечении томографического изображения, как число пиков на гистограмме опорного сечения.

Зная коэффициент поглощения рентгеновского излучения металла, используемого в контрастном агенте, определяется пик на гистограмме опорного сечения, соответствующей глине, модифицированной после взаимодействия с контрастным веществом.

Аппроксимируют гистограмму Ii(z) опорного сечения для каждого отдельного материала с помощью нормального распределения (функция Гаусса)

где i - индекс материала;

I - общее количество пикселей с значением серого z;

Аi, Bi, Сi -подгоночные параметры Гауссиана;

и грубо оценивают значения подгоночных параметров для всех материалов, представленных на гистограмме опорного сечения в области интереса. Точную оценку значений подгоночных параметров Гауссиана осуществляют посредством минимизации модуля разницы между реальной гистограмой в области интереса на опорном сечении и суммой нормальных распределений, соответствующих отдельным материалам

где j - индекс диапазона серости в гистограмме;

М - общее число диапазонов серости;

N - общее количество материалов, представленных на сечении томограммы.

Полученные подгоночные параметры Гауссиана , , используют в качестве начальных параметров для минимизации модуля разницы между реальной гистограммой в области интереса и суммой нормальных распределений, соответствующих отдельным материалам, для следующего поперечного сечения томографического изображения. Для каждого следующего поперечного сечения томографического изображения в качестве начальных параметров используют подгоночные параметры Гауссиана, полученные для предыдущего поперечного сечения. Относительное количество отдельного материала для каждого поперечного сечения определяют интегрированием Гауссиана:

,

где k=1…K - номер поперечного сечения томографического изображения.

Применяя данную процедуру к каждому поперечному сечению томографического изображения (k=1…K), получаем профили концентрации всех контрастных компонент вдоль оси образца.

Из полученного набора профилей выбирается профиль, соответствующий глине, модифицированной после взаимодействия с контрастным веществом.

В другом варианте реализации изобретения анализ гистограмм осуществляют следующим образом.

Внутри области интереса на опорном поперечном сечении выбирают подобласти, каждая из которых содержит только один конкретный материал, и получают гистограммы отдельных материалов. Нормализуют все гистограммы по их областям. Приводят гистограммы отдельных материалов к общему масштабу.

Зная коэффициент поглощения рентгеновского излучения металла, используемого в контрастном агенте, определяется градация серого, соответствующая глине, модифицированной после взаимодействия с контрастным веществом. На основе этой градации идентифицируется, какой именно материал на поперечном сечении соответствует глине.

Аппроксимируют гистограмму всей области интереса на опорном поперечном сечении суммой нормализованных гистограмм отдельных материалов с весовыми коэффициентами, соответствующими областям, занимаемым отдельными веществами на этом поперечном сечении томографического изображения. Определяют весовые коэффициенты минимизации модуля разницы между реальной гистограммой в области интереса на опорном сечении и суммой гистограмм отдельных материалов

где Аj, Вj, Cj, … - столбцы с численными данными гистограмм;

b, с, d - весовые коэффициенты для гистограмм;

j - индекс диапазона серости в гистограмме;

M - общее число диапазонов серости.

Применяя предыдущий шаг в отношении всех поперечных сечений томографического изображения, получаем профили концентрации всех контрастных компонент вдоль оси образца.

Из полученного набора профилей выбирается профиль, соответствующий глине, модифицированной после взаимодействия с контрастным веществом.

Изобретение поясняется чертежами, где на фиг.1 приведены данные компьютерной рентгеновской микротомографии водного раствора исходной глины (до смешивания с контрастным агентом) и водного раствора контрастной глины, а на фиг.2 - пример компьютерной рентгеновской микротомографии образца после применения контрастного агента. Фиг.3 показывает профиль распределения глины по длине образца, полученный с помощью описанного метода анализа гистограмм.

При использовании в качестве контрастного рентгеновского вещества водорастворимой соли металла с высоким атомным весом, обладающей способностью вступать в селективную ионно-обменную реакцию с глиной, ионы тяжелых металлов аккумулируются на глине, увеличивая тем самым ее контраст к рентгеновскому излучению. В результате закачки в образец неконтрастного вытесняющего агента по окончании реакции селективного ионного закачивают остатки соли тяжелого металла и продукты реакции вымываются из образца.

В качестве примера реализации изобретения рассмотрим использование заявленного метода для определения увеличения контрастности к рентгеновскому излучению глины, удерживаемой в поровом пространстве после цикла прямая - обратная фильтрация модельного бурового раствора - 2% водного раствора бентонитовой глины - через образец керна.

Выполняют фильтрационный эксперимент по закачке 2% водного раствора бентонитовой глины и последующей отмывке проникшей глины из пористой среды (обратная прокачка). После окончания эксперимента в поровом пространстве образца сохраняется только глина, прочно удерживаемая в сужениях пор (поровых ловушках).

Выбирают растворимую в воде соль металла с высоким атомным весом, вступающую в селективную ионно-обменную реакцию с исследуемой глиной.

Принимая во внимание состав бентонитовой глины Al2[Si4O10](OH)2·nH2O и следуя стандартной таблице растворимости неорганических веществ в воде, в качестве соли металла выбирают BaCl2.

Для иллюстрации, на фиг.1 приведены данные компьютерной рентгеновской микротомографии водного раствора исходной глины (до смешивания с контрастным агентом) и водного раствора контрастной глины (т.е. глины, подвергшейся ионно-обменной реакции с солью BaCl2).

Образец насыщают водным раствором контрастного агента (ВаСl2) и выдерживают некоторое время, зависящее от скорости реакции.

После окончания реакции через образец прокачивается 3-4 поровых объема модельного неконтрастного флюида (солевой раствор) для удаления продуктов реакции.

Скорости закачки не должны превышать скорость обратной прокачки в фильтрационном эксперименте.

Сканируют образец посредством рентгеновской томографии. На полученном компьютерном томографическом изображении выделяют область интереса и опорное сечение.

Область интереса соответствует подобласти трехмерного компьютерного томографического изображения, которая выбирается для последующего анализа. Данная подобласть выбирается, например, поскольку она включает некоторые специфические особенности (микротрещины, микровключения, дефекты и т.п.) или просто как типичный представительный объем полного компьютерного томографического изображения объекта в случае, когда анализ полного изображения требует слишком больших затрат времени и вычислительных (компьютерных) мощностей.

Под опорным сечением компьютерного томографического изображения понимается некоторое типичное сечение, содержащее область интереса, с которого для данной конкретной задачи удобно начинать анализ (например, первое сечение).

Получают гистограммы распределения серого в поперечных сечениях образца, например, при помощи программы ImageJ (см. http://rsbweb.nih.gov/ij/).

Определяют количество различных материалов, представленных в области интереса на опорном сечении томографического изображения, как число пиков на гистограмме опорного сечения.

Зная коэффициент поглощения рентгеновского излучения металла, используемого в контрастном агенте, определяется пик на гистограмме опорного сечения, соответствующий глине, модифицированной после взаимодействия с контрастным веществом. Обозначим индекс глины как iгл.

Аппроксимируют гистограмму Ii(z) опорного сечения для каждого отдельного материала с помощью нормального распределения (функция Гаусса)

где i - индекс материала;

I - общее количество пикселей с значением серого z;

Ai, Bi, Ci - подгоночные параметры Гауссиана;

и грубо оценивают значения подгоночных параметров для всех материалов, представленных на гистограмме опорного сечения в области интереса. Точную оценку значений подгоночных параметров Гауссиана осуществляют посредством минимизации модуля разницы между реальной гистограммой в области интереса на опорном сечении и суммой нормальных распределений, соответствующих отдельным материалам

где j - индекс диапазона серости в гистограмме;

М - общее число диапазонов серости;

N - общее количество материалов, представленных на сечении томограммы. Полученные подгоночные параметры Гауссиана , , используют в качестве начальных параметров для минимизации модуля разницы между реальной гистограммой в области интереса и суммой нормальных распределений, соответствующих отдельным материалам, для следующего поперечного сечения томографического изображения. Для каждого следующего поперечного сечения томографического изображения в качестве начальных параметров используют подгоночные параметры Гауссиана, полученные для предыдущего поперечного сечения. Относительное количество (концентрацию) отдельного материала для каждого поперечного сечения определяют интегрированием Гауссиана:

,

где k=1…K - номер поперечного сечения томографического изображения.

Применяя данную процедуру к каждому поперечному сечению томографического изображения (k=1…К), получаем профили концентрации всех контрастных компонент вдоль оси образца.

Из полученного набора профилей выбирается профиль, соответствующий материалу с индексом iгл, т.е. глине, модифицированной после взаимодействия с контрастным веществом.

Для иллюстрации на фиг.3 показан профиль распределения глины по длине образца, полученный с помощью описанного метода анализа гистограмм.

В другом варианте реализации изобретения внутри области интереса на опорном поперечном сечении выбирают подобласти, каждая из которых содержит только один конкретный материал, и получают гистограммы отдельных материалов. Нормализуют все гистограммы по их областям. Приводят гистограммы отдельных материалов к общему масштабу.

Зная коэффициент поглощения рентгеновского излучения металла, используемого в контрастном агенте, определяется градация серого, соответствующая глине, модифицированной после взаимодействия с контрастным веществом. На основе этой градации идентифицируется, какой именно материал на поперечном сечении соответствует глине. Обозначим индекс глины как iгл.

Аппроксимируют гистограмму всей области интереса на опорном поперечном сечении суммой нормализованных гистограмм отдельных материалов с весовыми коэффициентами, соответствующими областям, занимаемым отдельными веществами на этом поперечном сечении томографического изображения. Определяют весовые коэффициенты минимизации модуля разницы между реальной гистограммой в области интереса на опорном сечении и суммой гистограмм отдельных материалов

где Aj, Вj, Cj, … - столбцы с численными данными гистограмм;

b, с, d - весовые коэффициенты для гистограмм;

j - индекс диапазона серости в гистограмме;

М - общее число диапазонов серости.

Применяя предыдущий шаг в отношении всех поперечных сечений томографического изображения, получаем профили концентрации всех контрастных компонент вдоль оси образца.

Из полученного набора профилей выбирается профиль, соответствующий материалу с индексом iгл, т.е. глине, модифицированной после взаимодействия с контрастным веществом.

Похожие патенты RU2467315C1

название год авторы номер документа
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОСТРАНСТВЕННОГО РАСПРЕДЕЛЕНИЯ В КЕРНОВОМ МАТЕРИАЛЕ ЭФФЕКТИВНОГО ПОРОВОГО ПРОСТРАНСТВА 2014
  • Рощин Павел Валерьевич
  • Петраков Дмитрий Геннадьевич
  • Стручков Иван Александрович
  • Литвин Владимир Тарасович
  • Васкес Карденас Луис Карлос
RU2548605C1
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОСТРАНСТВЕННОГО РАСПРЕДЕЛЕНИЯ И КОНЦЕНТРАЦИИ КОМПОНЕНТА В ПОРОВОМ ПРОСТРАНСТВЕ ПОРИСТОГО МАТЕРИАЛА 2011
  • Михайлов Дмитрий Николаевич
  • Надеев Александр Николаевич
  • Хлебников Вадим Николаевич
  • Зобов Павел Михайлович
RU2467316C1
СПОСОБ ИССЛЕДОВАНИЯ ОБРАЗЦОВ МЕРЗЛЫХ ПОРОД 2011
  • Надеев Александр Николаевич
  • Чувилин Евгений Михайлович
  • Попова Ольга Владимировна
RU2482465C1
СПОСОБ ИЗМЕРЕНИЯ ВЕСОВОЙ КОНЦЕНТРАЦИИ ГЛИНЫ В ОБРАЗЦЕ ПОРИСТОГО МАТЕРИАЛА 2012
  • Михайлов Дмитрий Николаевич
  • Шако Валерий Васильевич
  • Чувилин Евгений Михайлович
  • Самарин Евгений Николаевич
RU2507510C1
СПОСОБ ИЗМЕРЕНИЯ ВЕСОВОЙ КОНЦЕНТРАЦИИ ГЛИНИСТОГО МАТЕРИАЛА В ОБРАЗЦЕ ПОРИСТОЙ СРЕДЫ 2012
  • Михайлов Дмитрий Николаевич
  • Шако Валерий Васильевич
  • Чувилин Евгений Михайлович
  • Крупская Виктория Валерьевна
RU2507501C1
СПОСОБ ПОЛУЧЕНИЯ ТРЕХМЕРНОЙ МОДЕЛИ КЕРНА ГОРНЫХ ПОРОД ПО ДАННЫМ КОМПЬЮТЕРНОЙ ТОМОГРАФИИ ДЛЯ ОПРЕДЕЛЕНИЯ МЕЖЗЕРНОВОЙ ЭФФЕКТИВНОЙ ПОРИСТОСТИ 2021
  • Савицкий Ян Владимирович
  • Галкин Сергей Владиславович
RU2777714C1
СПОСОБ ПРОГНОЗИРОВАНИЯ ИЗМЕНЕНИЯ СВОЙСТВ ПРИЗАБОЙНОЙ ЗОНЫ ПЛАСТА ПОД ВОЗДЕЙСТВИЕМ БУРОВОГО РАСТВОРА 2013
  • Михайлов Дмитрий Николаевич
  • Шако Валерий Васильевич
  • Рыжиков Никита Ильич
  • Надеев Александр Николаевич
  • Тевени Бертран
RU2525093C1
Способ оценки изменения характеристик пустотного пространства керновой или насыпной модели пласта при проведении физико-химического моделирования паротепловой обработки 2023
  • Болотов Александр Владимирович
  • Минханов Ильгиз Фаильевич
  • Кадыров Раиль Илгизарович
  • Чалин Владислав Валерьевич
  • Тазеев Айдар Ринатович
  • Варфоломеев Михаил Алексеевич
RU2810640C1
СПОСОБ ИЗМЕРЕНИЯ ВЕСОВОЙ КОНЦЕНТРАЦИИ ГЛИНИСТОГО МАТЕРИАЛА В ОБРАЗЦЕ ПОРИСТОЙ СРЕДЫ 2012
  • Михайлов Дмитрий Николаевич
  • Шако Валерий Васильевич
  • Чувилин Евгений Михайлович
  • Буйда Татьяна Александровна
RU2507500C1
СПОСОБ ПРИГОТОВЛЕНИЯ МОДЕЛИ ПЛАСТОВОЙ ВОДЫ 2022
  • Стукан Михаил Реональдович
  • Якимчук Иван Викторович
  • Иванов Евгений Николаевич
  • Белецкая Анна Вячеславовна
  • Варфоломеев Игорь Андреевич
  • Денисенко Александр Сергеевич
  • Ребрикова Анастасия Тихоновна
RU2808505C1

Иллюстрации к изобретению RU 2 467 315 C1

Реферат патента 2012 года СПОСОБ ОПРЕДЕЛЕНИЯ ПРОСТРАНСТВЕННОГО РАСПРЕДЕЛЕНИЯ И КОНЦЕНТРАЦИИ ГЛИНЫ В ОБРАЗЦЕ КЕРНА

Использование: для определения пространственного распределения и концентрации глины в образце керна. Сущность: заключается в том, что в образец керна закачивают контрастное рентгеновское вещество, в качестве которого используют водорастворимую соль металла с высоким атомным весом, вступающую в селективную ионно-обменную реакцию с глиной, с общей формулой: R+M-, где R+ выбирают из группы {Ва2+; Sr2+; Tl+; Рb+; …}, М- выбирают из группы {Cln; NOn; OHn; CH3COO; SO4; …} в соответствии с таблицей растворимости неорганических веществ в воде, по окончании реакции селективного ионного обмена в образец закачивают неконтрастный вытесняющий агент, сканируют образец посредством рентгеновской томографии, на полученном компьютерном томографическом изображении выделяют область интереса и опорное сечение, получают гистограммы градации серого в поперечных сечениях образца и определяют пространственное распределение и концентрацию глины в образце путем анализа гистограмм, начиная с гистограммы опорного сечения. Технический результат: повышение пространственного разрешения и точности определения концентрации и пространственного распределения глины в образце керна. 3 з.п. ф-лы, 3 ил.

Формула изобретения RU 2 467 315 C1

1. Способ определения пространственного распределения и концентрации глины в образце керна, в соответствии с которым
- в образец керна закачивают контрастное рентгеновское вещество, в качестве которого используют водорастворимую соль металла с высоким атомным весом, вступающую в селективную ионно-обменную реакцию с глиной, с общей формулой: R+M-, где R+ выбирают из группы {Ва2+; Sr2+; Т1+; Rb+…}, М- выбирают из группы {Cln; NOn; OHn; CH3COO, SO4; …} в соответствии с таблицей растворимости неорганических веществ в воде,
- по окончании реакции селективного ионного обмена в образец закачивают неконтрастный вытесняющий агент,
- сканируют образец посредством рентгеновской томографии,
- на полученном компьютерном томографическом изображении выделяют область интереса и опорное сечение,
- получают гистограммы градации серого в поперечных сечениях образца и
определяют пространственное распределение и концентрацию глины в образце путем анализа гистограмм, начиная с гистограммы опорного сечения.

2. Способ по п.1, в соответствии с которым в качестве вытесняющего агента используют водный солевой раствор.

3. Способ по п.1, в соответствии с которым анализ гистограмм осуществляют следующим образом:
- определяют количество различных материалов, представленных в области интереса на опорном сечении томографического изображения, как число пиков на гистограмме опорного сечения,
- определяют пик, соответствующий глине, модифицированной после взаимодействия с контрастным веществом,
- аппроксимируют гистограмму Ii(z) опорного сечения для каждого отдельного материала с помощью нормального распределения (функция Гаусса)

где i - индекс материала;
I - общее количество пикселей с значением серого z;
Аi, Вi, Сi - подгоночные параметры Гауссиана;
- грубо оценивают значения подгоночных параметров для всех материалов, представленных на гистограмме опорного сечения в области интереса,
- осуществляют точную оценку значений подгоночных параметров Гауссиана посредством минимизации модуля разницы между реальной гистограммой в области интереса на опорном сечении и суммой нормальных распределений, соответствующих отдельным материалам

где j - индекс диапазона серости в гистограмме;
М - общее число диапазонов серости;
N - общее количество материалов, представленных на сечении томограммы,
- полученные подгоночные параметры Гауссиана , , используют в качестве начальных параметров для минимизации модуля разницы между реальной гистограммой в области интереса и суммой нормальных распределений, соответствующих отдельным материалам, для следующего поперечного сечения томографического изображения,
- для каждого следующего поперечного сечения томографического изображения в качестве начальных параметров для минимизации модуля разницы между реальной гистограммой в области интереса и суммой нормальных распределений, соответствующих отдельным материалам, используют подгоночные параметры Гауссиана, полученные для предыдущего поперечного сечения,
- относительное количество отдельного материала для каждого поперечного сечения определяют интегрированием Гауссиана:

где k=1…K - номер поперечного сечения томографического изображения,
- из полученного набора профилей выбирают профиль, соответствующий глине, модифицированной после взаимодействия с контрастным веществом.

4. Способ по п.1, в соответствии с которым анализ гистограмм осуществляют следующим образом:
- внутри области интереса на опорном поперечном сечении выбирают подобласти, каждая из которых содержит только один конкретный материал, и получают гистограммы отдельных материалов,
- нормализуют все гистограммы по их областям,
- приводят гистограммы отдельных материалов к общему масштабу,
- определяют градацию серого, соответствующую глине,
- аппроксимируют гистограмму всей области интереса на опорном поперечном сечении суммой нормализованных гистограмм отдельных материлов с весовыми коэффициентами, соответствующими областям, занимаемым отдельными веществами на этом поперечном сечении томографического изображения,
- определяют весовые коэффициенты минимизации модуля разницы между реальной гистограммой в области интереса на опорном сечении и суммой гистограмм отдельных материалов

где Aj, Bj, Cj,… - столбцы с численными данными гистограмм;
b, с, d - весовые коэффициенты для гистограмм;
j - индекс диапазона серости в гистограмме;
М - общее число диапазонов серости,
- применяют предыдущий шаг в отношении всех поперечных сечений томографического изображения,
- из полученного набора профилей выбирается профиль, соответствующий глине, модифицированной после взаимодействия с контрастным веществом.

Документы, цитированные в отчете о поиске Патент 2012 года RU2467315C1

Способ рентгенографического исследования структуры пустотного пространства материалов 1983
  • Амосов Иван Степанович
  • Пименов Юрий Георгиевич
  • Борисова Людмила Сергеевна
  • Прошляков Борис Константинович
  • Гальянова Тамара Ивановна
SU1122951A1
Способ определения структуры пустотного пространства пористых твердых тел 1989
  • Киреев Феликс Андреевич
  • Бочко Регина Анатольевна
  • Буря Геннадий Федорович
  • Попов Вячеслав Андреевич
SU1679294A1
СПОСОБ ОПРЕДЕЛЕНИЯ НЕФТЕНАСЫЩЕННОСТИ ПОРОДЫ 2007
  • Скрипкин Антон Геннадьевич
RU2360233C1
RU 2207808 C1, 10.07.2003
US 4540882 A, 10.09.1985
US 4722095 A, 26.01.1988
US 4982086 A, 01.01.1991
US 5027379 A, 25.06.1991.

RU 2 467 315 C1

Авторы

Михайлов Дмитрий Николаевич

Надеев Александр Николаевич

Шако Валерий Васильевич

Рыжиков Никита Ильич

Даты

2012-11-20Публикация

2011-06-23Подача