Изобретение относится к электротехнике и может быть использовано в электронной промышленности при изготовлении герметизированных магнитоуправляемых контактов (герконов).
Технический результат - повышение выхода и качества годных герконов при снижении их себестоимости.
Предлагаемый способ изготовления геркона позволяет сформировать износостойкие микро-наноструктуры из нитридов железа и никеля с контролируемыми параметрами азотируемого слоя, что позволяет повысить выход годных изделий и тем самым снизить производственные затраты.
Известен способ, используемый при изготовлении серийного геркона МКА-14103 с длиной стеклянного баллона 14 мм согласно СЯ 4.830.031-01 МК, изложенный в [1], который включает следующие операции.
Пермаллоевую проволоку подвергают очистке от консервирующей смазки, в результате обезжиривания в ванне с горячим трихлорэтиленом и последующей ультразвуковой (УЗВ) очистки, после чего она поступает на автомат штамповки контакт-деталей геркона. После обезжиривания в ванне с перхлорэтиленом, сортировки и укладки в технологическую тару контакт-детали подвергают УЗВ промывке в ванне с деионизованной водой и после осушки отжигают в печи с поддувом азота или водорода с формированием заданных магнитных параметров.
Технологический процесс нанесения на контакт-детали гальванического покрытия включает 17 переходов между различными операциями, в том числе экологически опасные обезжиривание, декапирование в кислотном растворе, предзолочение, золочение, рутенирование. После УЗВ промывки и осушки в центрифуге контакт-детали поступают на заварку в стеклянный баллон, заполненный азотом. Заваренные герконы после отжига стеклянного баллона и магнитострикционной тренировки поступают на химическое полирование выводов с последующим лужением и контролем электрических параметров.
Однако существующий способ изготовления серийно выпускаемых герконов имеет следующие недостатки:
- высокая трудоемкость, сложность и нестабильность процесса гальванического нанесения контактного покрытия;
- высокая стоимость используемых драгоценных металлов;
- большой расход и невозвратные потери драгоценных металлов;
- большая длительность осаждения покрытия;
- сложность осаждения сплава заданного химического и фазового состава и заданной структуры;
- сложность получения тонких беспористых пленок с низким внутренним напряжением и с высокой адгезией к материалу контакт-детали;
- сложность и дороговизна оборудования;
- большие энергетические затраты;
- наличие экологически опасных технологических операций;
- недостаточно хорошие санитарно-гигиенические условия труда.
Наиболее близким способом является технологический процесс, описанный в патенте РФ №2393570, кл. МПК H01H 1/66, H01H 11/04 (2006.01.) опубл. 27.06.2010 г., Бюл. №18.
Способ изготовления геркона с азотированными контакт-деталями включает очистку пермаллоевой проволоки, штамповку контакт-деталей, обезжиривание и промывку, магнитный отжиг, заварку геркона, азотирование контакт-деталей импульсными разрядами, покрытие выводов и контроль электрических параметров.
Недостатком способа является отсутствие возможности неразрушающего контроля толщины азотируемого слоя, формируемого в приповерхностной области контакт-деталей геркона, от величины которой зависят эксплуатационные технические характеристики герконов (сопротивление контакта, количество срабатываний, максимальный коммутируемый ток и напряжение, мощность, наработка на отказ) и процент выхода годных изделий.
Задачей предлагаемого изобретения является улучшение способа изготовления геркона за счет введения неразрушающего контроля толщины азотируемого слоя на основе измерения напряжения пробоя до и после проведения операции азотирования приповерхностной области контакт-деталей геркона.
Поставленная задача решается тем, что предлагается способ изготовления геркона с контролируемыми параметрами азотируемого слоя контакт-деталей, включающий очистку пермаллоевой проволоки, штамповку контакт-деталей, обезжиривание и промывку, магнитный отжиг, заварку геркона, покрытие выводов, контроль электрических параметров и ионно-импульсное азотирование контакт-деталей, отличается тем, что до начала азотирования и после азотирования контакт-деталей производят измерение напряжения пробоя геркона и контролируют толщину азотированного слоя, определяемую по формуле:
t=C(Uo-Ua)/Uo,
где С=NaVгPoToa3/VaPa Тк S - константа для данного типа герконов,
Na - число Авогадро,
Vг - объем газа в герконе (внутренний объем баллона геркона),
Va=22,4 л - молярный объем газа,
Ро - давление газа в герконе после заварки,
Ра=760 мм рт.ст. - атмосферное давление,
а - постоянная решетки сплава внедрения,
S - площадь азотируемой поверхности контакт-детали (площадь перекрытия),
Uo - напряжение пробоя до обработки,
Ua - напряжение пробоя после обработки,
То=273 K, (0°C),
Тк=293 K, (20°C), температура геркона при измерении напряжения пробоя.
Ионно-плазменное азотирование поверхности контакт-деталей геркона происходит непосредственно внутри герметизированного баллона геркона, заполненного азотом, парциальное давление которого согласно закону сохранения материи должно уменьшиться, так как часть атомов газообразного азота при такой обработке будет диффундировать в приповерхностную область контакт-деталей с образованием нитридов железа и никеля. При этом согласно закону Пашена [3, 4] должно измениться напряжение пробоя. Не сложно показать, что в этом случае толщина азотируемого слоя может быть оценена по формуле:
Выражение (1) может быть легко получено в приближении
где Uпр - напряжение пробоя газа, Р - давление газа, d - межэлектродный зазор, κ - коэффициент пропорциональности. Это приближение с высокой долей вероятности выполняется на линейном участке правой ветви кривой Пашена [3, 4]. Экспериментально установлено, что напряжения пробоя герконов до и после обработки не выходят за пределы линейного участка правой ветви кривой Пашена (Таблица 1).
Согласно закону Авогадро: один моль любого газа при одинаковых условиях занимает одинаковый объем. В частности, при нормальных условиях, т.е. при 0°C (273 K) и 101,3 кПа, объем 1 моля газа равен 22,4 л. Этот объем называют молярным объемом газа Va. Пересчитать эту величину на другие температуру Тк и давление Ро можно с помощью уравнения Менделеева-Клапейрона:
Тогда, с учетом (2), количество молекул азота в объеме геркона при Р=Ро, Т=Тк
При ионно-плазменной обработке контакт-деталей геркона происходит диффузионное насыщение приповерхностных слоев контакт-деталей в области их перекрытия ионами азота с образование нитридных зон [2, 5-7]. При этом согласно закону сохранения материи количество молекул азота, находящегося в газообразном состоянии в герконе, с учетом (2) уменьшится пропорционально уменьшению напряжению пробоя и тогда доля молекул азота (от общего их числа в герконе), расходуемых на азотирование 1-й контакт-детали, будет равна
Тогда количество атомов азота в азотируемом слое контакт детали будет
или
Количество слоев атомов азота в приповерхностной области контакт-детали будет соответственно
Тогда толщина азотированного слоя
или
где
Совокупность отличительных признаков, заключающихся в проведении неразрушающего контроля толщины азотируемого слоя контактирующих поверхностей контакт-деталей каждого изготовляемого геркона, приводит к достижению нового технического результата - повышению процента выхода годных изделий и уровня качества герконов при снижении их себестоимости.
Способ осуществляется следующим образом.
Контакт-детали от серийно выпускаемого геркона, например МКА-14103, после магнитного отжига заваривают в стеклянном баллоне в атмосфере азота. После нанесения покрытия на выводы измеряют напряжение пробоя, проводят ионно-плазменную обработку, после которой повторно измеряют напряжение пробоя (Таблица 1) и определяют толщину азотируемого слоя по формуле (1), Таблица 1. Измерения напряжений пробоя проводят в соответствии с ГОСТ 25810-83 (СТСЭВ 3189-81).
Значение толщины азотированного слоя, полученное расчетным путем (для времени обработки τ=30с - t=86.9 нм) по формуле (1), согласуется со значением толщины азотированного слоя, измеренного методом послойного Оже-спектрального анализа контакт-деталей геркона после проведения ионно-плазменной обработки [6-7].
Предлагаемая совокупность отличительных признаков позволяет добиться нового положительного эффекта. Контроль толщины азотированного слоя согласно предлагаемому способу обеспечивает повышение выхода годных изделий, повышение уровня качества герконов при снижении их себестоимости.
Источники информации
1. Р.М.Майзельс. Герконы. Перспективы применения. Новые разработки «ОАО РЗМКП» «Магнитоуправляемые контакты (герконы) и изделия на их основе». Сборник трудов первой международной научно-практической конференции. Рязань, Россия, 11-14 октября 2005 г., стр.3-14.
2. Патент РФ №2393570. Способ изготовления герконов с азотированными контакт-деталями. / Карабанов С.М., Майзельс P.M., Арушанов К.А., Зельцер И.А., Провоторов B.C., опубл. 27.06.2010 г., Бюл. №18.
3. Мик Дж. и Крэкс Дж. Электрический пробой в газах. - М.: Иностранная литература, 1960. - 605 с.
4. Д.Р.Актон, Д.Д.Свифт. Газоразрядные приборы с холодным катодом. - М.: Энергия, 1965. - 480 с.
5. Зельцер И.А., Карабанов С.М., Майзельс P.M., Саблин В.А. Исследование и разработка методов модификации поверхности герметизированных магнитоуправляемых контактов // Сборник трудов второй международной научно-практической конференции «Магнитоуправляемые контакты (герконы) и изделия на их основе», под ред. С.М.Карабанова. - Рязань: Полиграф, 2009. - С.184-207.
6. Зельцер И.А., С.М. Карабанов, Кузнецов А.А., Майзельс P.M., Саблин В.А., Черняк Е.Я. Исследование ионно-плазменной модификации железо-никелевых герметизированных магнитоуправляемых контактов методом электронной оже-спектроскопии // Сборник трудов второй международной научно-практической конференции «Магнитоуправляемые контакты (герконы) и изделия на их основе», под ред. С.М.Карабанова. - Рязань: Полиграф, 2009. - С.178-183.
7. Карабанов С.М. Наноструктурированные контактные покрытия // Альманах «Деловая слава России», 2010, №4, С.25-27.
8. Гольдшмидт X.Дж. Сплавы внедрения. - М.: Мир, 1971, вып.1. - 424 с.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ИЗГОТОВЛЕНИЯ ГЕРКОНА С АЗОТИРОВАННЫМИ КОНТАКТНЫМИ ПЛОЩАДКАМИ | 2018 |
|
RU2665689C1 |
Способ изготовления герконов | 2022 |
|
RU2805999C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ГЕРКОНА С КАРБОНИТРИРОВАННЫМИ КОНТАКТНЫМИ ПОВЕРХНОСТЯМИ | 2010 |
|
RU2457567C1 |
СПОСОБ ГРУППОВОГО ИЗГОТОВЛЕНИЯ ГЕРКОНОВ С АЗОТИРОВАННЫМИ КОНТАКТНЫМИ ПЛОЩАДКАМИ | 2020 |
|
RU2739583C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ГЕРКОНА С АЗОТИРОВАННЫМИ И НАНОСТРУКТУРИРОВАННЫМИ КОНТАКТНЫМИ ПОВЕРХНОСТЯМИ | 2018 |
|
RU2664506C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ГЕРКОНА С АЗОТИРОВАННЫМИ КОНТАКТ-ДЕТАЛЯМИ | 2009 |
|
RU2393570C1 |
УСТРОЙСТВО ДЛЯ ГРУППОВОГО ИЗГОТОВЛЕНИЯ ГЕРКОНОВ С АЗОТИРОВАННЫМИ КОНТАКТНЫМИ ПЛОЩАДКАМИ | 2020 |
|
RU2742556C1 |
МАГНИТОУПРАВЛЯЕМЫЙ ГЕРМЕТИЗИРОВАННЫЙ КОНТАКТ | 2013 |
|
RU2546650C2 |
МАГНИТОУПРАВЛЯЕМЫЙ КОНТАКТ | 2011 |
|
RU2470401C1 |
Устройство для массового изготовления герконов с азотированными контактными площадками | 2022 |
|
RU2795947C1 |
Изобретение относится к электротехнике и может быть использовано в электронной промышленности при изготовлении герметизированных магнитоуправляемых контактов. Особенностью предлагаемого способа изготовления является то, что до и после азотирования контакт-деталей геркона производят измерение напряжения пробоя геркона и контролируют толщину азотируемого слоя, определяемую по формуле: t=C(Uo-Ua)/Uo. Технический результат - повышение процента выхода годных изделий и уровня качества герконов при снижении их себестоимости. 1 табл.
Способ изготовления геркона с контролируемыми параметрами азотируемого слоя, включающий очистку пермаллоевой проволоки, штамповку контакт-деталей, обезжиривание и промывку, магнитный отжиг, заварку геркона, покрытие выводов, контроль электрических параметров и ионно-импульсное азотирование контакт-деталей, отличающийся тем, что до и после азотирования контакт-деталей производят измерение напряжения пробоя геркона и контролируют толщину азотируемого слоя, определяемую по формуле:
где C=NaVгPoToa3/VaPa Тк S - константа для данного типа герконов,
Na - число Авогадро,
Vг - объем газа в герконе (внутренний объем баллона геркона),
Va=22,4 л - молярный объем газа,
Ро - давление газа в герконе после заварки,
Ра=760 мм рт.ст. - атмосферное давление,
а - постоянная решетки сплава внедрения,
S - площадь азотируемой поверхности контакт-детали (площадь перекрытия),
Uo - напряжение пробоя до обработки,
Ua - напряжение пробоя после обработки,
То=273 K, (0°C),
Тк=293 K, (20°C).
СПОСОБ ИЗГОТОВЛЕНИЯ ГЕРКОНА С АЗОТИРОВАННЫМИ КОНТАКТ-ДЕТАЛЯМИ | 2009 |
|
RU2393570C1 |
Способ изготовления контакт-детелей геркона | 1989 |
|
SU1734128A1 |
JP 2010140859 A, 24.06.2010 | |||
US 5909163 A, 01.06.1999. |
Авторы
Даты
2012-11-20—Публикация
2011-05-24—Подача