Предлагаемый измеритель относится к радиолокационной метеорологии и может быть использован в гидрометеорологических прогностических или оперативных системах для обнаружения зон сдвига ветра и связанных с ним опасных явлений погоды.
В настоящее время известно, что причиной многих чрезвычайных ситуаций, связанных с штормовыми атмосферными процессами и приводящих к происшествиям в различных сферах производственной деятельности на суше, на море и в воздушном пространстве, и особенно связанных с проведением воздушными судами (ВС) взлета/посадки как на сухопутных аэродромах, так и на посадочных площадках кораблей и морских платформ, является сдвиг ветра (СВ) - это атмосферное явление, при котором вектор скорости ветра претерпевает существенные изменения по величине и направлению в малых и средних пространственных масштабах. Пространственный масштаб СВ составляет примерно 1-4 км, временная длительность 5-15 мин.
Наиболее опасным для авиации считается разновидность СВ, получившая в научно-технической литературе название микровзрыв (англ. microburst).
Микровзрыв - это мощный вертикальный порыв влажного холодного воздуха, направленный к поверхности Земли, который порождает значительные флюктуации вектора скорости ветра при своем взаимодействии с поверхностью. Чрезвычайная опасность этого явления для ВС, совершающих взлет или посадку, заключается в том, что при попадании в зону микровзрыва экипаж вынужден изменять силу тяги двигателей и угол атаки крыльев ВС вблизи земной поверхности в условиях быстрого изменения ветрового поля. В силу значительной инерционности системы управления ВС это может привести к столкновению с Землей.
Опасность СВ оценивается в настоящее время с помощью F-фактора, который представляет собой безразмерный параметр, связанный со скоростью изменения высоты полета ВС в условиях сдвига ветра:
где wh, - горизонтальная составляющая вектора скорости ветра и ее скорость изменения соответственно;
wv - вертикальная составляющая вектора скорости ветра;
g - ускорение свободного падения;
v - скорость ВС.
Отрицательные значения F-фактора соответствуют улучшению условий полета, положительные - их ухудшению. Значение F≥0,13 сигнализирует о потенциально опасной ситуации СВ.
Как следует из (1), оценка F-фактора требует знания полного вектора скорости ветра.
Существующие в настоящее время когерентные метеорологические радиолокаторы (MPЛ) способны измерять проекцию полного вектора скорости ветра в наблюдаемом разрешаемом объеме на направление визирования (линию, соединяющую фазовый центр антенны МРЛ и центр разрешаемого объема). Это связано с тем, что для измерения скорости ветра используется оценка доплеровского смещения частоты принимаемого сигнала:
где vR - скорость сближения МРЛ (доплеровская скорость) и метеочастиц (гидрометеоров) в разрешаемом объеме;
λ - рабочая длина волны МРЛ.
В силу того что вертикальная составляющая скорости ветра wv направлена практически перпендикулярно линии визирования для МРЛ, находящегося на значительном удалении от наблюдаемого разрешаемого объема, в обычном МРЛ невозможно ее измерить. Сказанное относится (правда, в меньшей степени) и к измерениям горизонтальной составляющей скорости ветра wH, поскольку направление движения воздуха в разрешаемом объеме может быть любым, и в общем случае wH≠vR.
Для того чтобы иметь возможность вычислить F-фактор при отсутствии информации о вертикальной скорости ветра, в настоящее время используются различные теоретические модели СВ и микровзрыва, которые позволяют по измерениям скорости сближения vR рассчитать wV и wH. Устройства, основанные на подобных моделях, не могут считаться достаточно точными, поскольку СВ представляет собой чрезвычайно сложное физическое явление, которому присуща большая степень априорной неопределенности.
Разработанные математические модели являются либо очень сложными для их реализации в МРЛ в условиях ограничений на доступные вычислительные и временные ресурсы, либо основаны на упрощенных предположениях о характере движения воздушных масс и их взаимодействии с поверхностью Земли (например, на гипотезе о несжимаемости воздуха, пространственной симметричности растекания воздуха по поверхности и т.п.).
Известны устройства для измерения вертикальной составляющей скорости ветра (авт.свид. СССР №851.312, 1.296.947, 1.689.899, 1.789.931; патенты РФ №2.032.148, 2.400.769; патенты США №4.043.194, 5,130.712, 5.808.741; патент Великобритании 2.094.006 и другие).
Из известных устройств наиболее близким к предлагаемому является «Измеритель вертикальной составляющей скорости ветра для обнаружения сдвига ветра» (патент РФ №2.400.769, G01S 13/95, 2008), который и выбран в качестве прототипа.
Известный измеритель содержит передатчик, первый и второй приемники, циркулятор, первую и вторую антенны с общим приводом, цифровой сигнальный процессор, предназначенный для вычисления вертикальной составляющей скорости ветра, датчик углового положения антенн, вычислитель взаимной корреляционной функции, определитель положения максимума взаимной корреляционной функции, делитель мощности и дополнительный циркулятор, определенным образом соединенные между собой. Достигаемым техническим результатом известного измерителя является повышения точности измерения составляющих полного вектора скорости ветра в когерентном метеорологическом радиолокаторе и повышения качества обнаружения в атмосфере зон сдвига ветра.
В указанном измерителе на выходе каждого приемника образуются два квадратурных цифровых сигнала, которые объединяются в комплексные сигналы:
S1(t)=u1(t)+jν1(t),
S2(t)=u2(t)+jν2(t),
где u1(t), ν1(t) - квадратурные цифровые сигналы на выходе первого (3) приемника;
u2(t), ν2(t) - квадратурные цифровые сигналы на выходе второго (4) приемника.
С выходов приемников комплексные сигналы S1(t) и S2(t) поступают на первый и второй входы вычислителя 10 взаимной корреляционной функции (ВКФ) соответственно, где производится расчет ВКФ в соответствии с формулой
Результаты расчета поступают на вход определителя 11 положения максимума взаимной корреляционной функции, выходной сигнал которого соответствует значению аргумента ВКФ τmax, при котором ВКФ принимает наибольшее значение. Значение τmax поступает на второй вход сигнального процессора 8, на первый вход которого с датчика 9 углового положения поступает сигнал, пропорциональный углу наклона θ диаграммы направленности антенн. В сигнальном процессоре 8 в соответствии с формулой
происходит вычисление вертикальной составляющей скорости ветра wv.
Для точного вычисления вертикальной составляющей скорости ветра необходимо возможно точнее определить значение временного запаздывания τmax, соответствующее максимуму взаимной корреляционной функции B(τ).
Однако в области максимума взаимная корреляционная функция имеет очень малую крутизну и изменяется незначительно при изменении τ (фиг.2,а). Гораздо более благоприятной для поиска максимума является формула производной от взаимной корреляционной функции (фиг.2,б).
В точке τ=0 производная имеет значительную крутизну и, кроме того, меняет знак в зависимости от положения относительно точки τ=0.
Таким образом, отыскание максимума взаимной корреляционной функции В(τ) (максимальный принцип - экстремальная задача) заменяется минимальным принципом измерения - стабилизацией нулевого значения регулируемой величины τ.
Технической задачей изобретения является повышение точности вычисления вертикальной составляющей скорости ветра путем использования производной взаимной корреляционной функции.
Поставленная задача решается тем, что измеритель вертикальной составляющей скорости ветра для обнаружения сдвига ветра, содержащий, в соответствии с ближайшим аналогом, последовательно включенные передатчик, делитель мощности и первый циркулятор, первое плечо которого соединено с первой антенной, а второе плечо соединено с входом первого приемника, последовательно включенные датчик углового положения антенн, цифровой сигнальный процессор и обнаружитель сдвига ветра, при этом к второму выходу делителя мощности подключен второй циркулятор, первое плечо которого соединено с второй антенной, а второе плечо соединено с входом второго приемника, датчик углового положения антенн механически связан с общим приводом антенн, отличается от ближайшего аналога тем, что он снабжен вычислителем производной взаимной корреляционной функции, определителем положения максимума производной взаимной корреляционной функции и дифференциатором, причем вычислитель производной взаимной корреляционной функции выполнен в виде последовательно подключенных к выходу второго приемника блока регулируемой задержки, перемножителя, второй вход которого через дифференциатор соединен с выходом первого приемника, фильтра нижних частот и усилителя низкой частоты, выход которого соединен с вторым входом блока регулируемой задержки, второй выход которого через определитель положения минимума производной взаимной корреляционной функции подключен к второму входу цифрового сигнального процессора, который предназначен для вычисления вертикальной составляющей скорости ветра wV в соответствии с формулой:
где θ - угол наклона диаграммы направленности первой и второй антенн;
τз - значение аргумента производной взаимной корреляционной функции, при котором производная взаимной корреляционной функции принимает наименьшее значение;
d - расстояние, на которое разнесены фазовые центры первой и второй антенн по вертикали.
Структурная схема измерителя представлена на фиг.1. Взаимная корреляционная функция B(τ) и ее производная dB(τ)/dτ показаны на фиг.2.
Измеритель вертикальной составляющей скорости ветра для обнаружения сдвига ветра содержит последовательно включенные передатчик 2, делитель 12 мощности и первый циркулятор 5, первое плечо которого соединено с первой антенной 6, а второе плечо соединено с входом первого приемника 3, последовательно включенные датчик 9 углового положения антенн, цифровой сигнальный процессор 8 и обнаружитель 1 сдвига ветра. К второму выходу делителя 12 мощности подключен второй циркулятор 13, первое плечо которого соединено с второй антенной 7, а второе плечо соединено с входом второго приемника 4. Датчик 9 углового положения антенн механически связан с общим приводом антенн (на схеме не показан). К выходу второго приемника 4 последовательно подключены блок 15 регулируемой задержки, перемножитель 16, второй вход которого через дифференциатор 14 соединен с выходом первого приемника 3, фильтр 17 нижних частот и усилитель 18 низкой частоты, выход которого соединен с вторым входом блока 15 регулируемой задержки, к второму выходу которого через определитель 11 положения минимума производной взаимной корреляционной функции подключен второй вход цифрового сигнального процессора 8.
Устройство работает следующим образом.
Высокочастотные импульсные зондирующие сигналы, генерируемые передатчиком 2, поступают на делитель 12 мощности, а затем на первый 5 и второй 13 циркуляторы. Пройдя в первое плечо циркуляторов 5 и 13, эти сигналы подаются в фидеры первой 6 и второй 7 антенн, которые имеют одинаковые диаграммы направленности, а их фазовые центры разнесены по вертикали на расстоянии d. Обе антенны имеют один и тот же привод. Их угловое положение фиксируется датчиком 9 углового положения, который механически связан с приводом. Антенны 6 и 7 излучают радиолокационные импульсы в обследуемую зону атмосферы (разрешаемый объем). Отраженные от метеочастиц этой зоны сигналы принимаются первой 6 и второй 7 антеннами и поступают в первое плечо циркуляторов 5 и 13 соответственно. Пройдя во второе плечо, эти сигналы подаются на входы первого 3 и второго 4 приемников. Принятые радиосигналы в приемниках подвергаются фильтрации, преобразованию по частоте, усилению, квадратурному преобразованию и оцифровке (преобразованию в цифровой код). В результате на выходе каждого приемника образуются два квадратурных цифровых сигнала, которые объединяются в комплексные сигналы:
S1(t)=u1(t)+jν1(t),
S2(t)=u2(t)+jν2(t),
где u1(t), ν1(t) - квадратурные цифровые сигналы на выходе первого (3) приемника;
u2(t), ν2(t) - квадратурные цифровые сигналы на выходе второго (4) приемника.
С выходов приемников комплексные сигналы S1(t) и S2(t) через дифференциатор 14 и непосредственно поступают на выходы вычислителя 10 производной взаимной корреляционной функции, состоящего из блока 15 регулируемой задержки, перемножителя 16, фильтра 17 нижних частот и усилителя 18 низкой частоты. Полученное на выходе перемножителя 16 напряжение пропускается через фильтр 17 нижних частот, на выходе которого формируется производная взаимной корреляционной функции dB(τ)/dτ (фиг.2,б). Если указанная производная не равна нулю, то на выходе фильтра 17 нижних частот формируется напряжение, амплитуда которого пропорциональна степени отклонения производной взаимной корреляционной функции от нулевого значения, а полярность - направлению отклонения. Это напряжение через усилитель 18 низкой частоты воздействует на управляющий вход блока 15 регулируемой задержки, изменяя временную задержку τ так, чтобы производная взаимной корреляционной функции была равна нулю.
Результаты расчета поступают на вход определителя 11 положения минимума производной взаимной корреляционной функции, выходной сигнал которого соответствует значению аргумента τз производной взаимной корреляционной функции dB(τ)/dτ, при котором dB(τ)/dτ принимают наименьшее значение. Значение τз поступает на второй вход сигнального процессора 8, на первый вход которого с датчика 9 углового положения антенн поступает сигнал, пропорциональный углу наклона θ диаграмм направленности антенн. В сигнальном процессоре 8 в соответствии с формулой
происходит вычисление вертикальной составляющей скорости ветра WV.
Это значение подается в обнаружитель 1 сдвига ветра, где выносится решение о наличии в обследуемой зоне атмосферы (разрешаемом объеме) сдвига ветра.
Таким образом, предлагаемый измеритель по сравнению с прототипом обеспечивает повышение точности вычисление вертикальной составляющей скорости ветра. Это достигается использованием производной взаимной корреляционной функции, которая позволяет значительно повысить точность и чувствительность измерителя.
На выходе коррелятора формируется знакопеременный сигнал с большой крутизной в области максимума взаимной корреляционной функции (минимума ее производной), который используется для автоматического изменения блока регулируемой задержки. Преимуществом такой схемы является относительная простота получения каждого сигнала рассогласования.
Метод измерения вертикальной составляющей скорости ветра по минимуму производной взаимной корреляционной функции (прохождению через нуль), наряду с высокой точностью и чувствительностью, обладает еще одним весьма существенным преимуществом нулевого метода, а именно: амплитуда входных сигналов и ее флуктуация не оказывают влияния на результат измерений.
название | год | авторы | номер документа |
---|---|---|---|
ИЗМЕРИТЕЛЬ ВЕРТИКАЛЬНОЙ СОСТАВЛЯЮЩЕЙ СКОРОСТИ ВЕТРА ДЛЯ ОБНАРУЖИТЕЛЯ СДВИГА ВЕТРА | 2008 |
|
RU2400769C2 |
УСТРОЙСТВО ИЗМЕРЕНИЯ ПАРАМЕТРОВ ВОЛНЕНИЯ | 2008 |
|
RU2384861C1 |
СПОСОБ ИЗМЕРЕНИЯ СКОРОСТИ ВЕТРА | 2015 |
|
RU2604169C1 |
Способ определения цикловой подачи топлива и устройство для его осуществления | 2015 |
|
RU2665566C2 |
Способ обнаружения и идентификации взрывчатых и наркотических веществ и устройство для его осуществления | 2019 |
|
RU2723987C1 |
ИМПУЛЬСНО-ДОПЛЕРОВСКАЯ РАДИОВЫСОТОМЕРНАЯ СИСТЕМА | 2012 |
|
RU2515524C2 |
РАДИОЛОКАЦИОННО-ТОМОГРАФИЧЕСКАЯ СИСТЕМА ИЗМЕРЕНИЯ ПАРАМЕТРОВ ВЕТРОВЫХ ПОТОКОВ | 2023 |
|
RU2805031C1 |
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ СОСТОЯНИЯ АТМОСФЕРЫ | 2005 |
|
RU2293352C2 |
КОРРЕЛЯЦИОННЫЙ ИЗМЕРИТЕЛЬ ВЫСОТЫ И СОСТАВЛЯЮЩИХ ВЕКТОРА ПУТЕВОЙ СКОРОСТИ | 2012 |
|
RU2498344C2 |
СПОСОБ ОБНАРУЖЕНИЯ АТМОСФЕРНЫХ ОБЛАСТЕЙ С ВЫСОКИМ УРОВНЕМ ТУРБУЛЕНТНОСТИ С ИСПОЛЬЗОВАНИЕМ НЕКОГЕРЕНТНОГО МЕТЕОРОЛОГИЧЕСКОГО РАДИОЛОКАТОРА | 2005 |
|
RU2293353C2 |
Предлагаемый измеритель относится к радиолокационной метеорологии и может быть использован в гидрометеорологических прогностических или оперативных системах для обнаружения зон сдвига ветра и связанных с ним опасных явлений погоды. Достигаемый технический результат изобретения - повышение точности определения вертикальной составляющей скорости ветра путем использования производной взаимной корреляционной функции. Измеритель вертикальной составляющей скорости ветра для обнаружения сдвига ветра содержит обнаружитель сдвига ветра, передатчик, два приемника, два циркулятора, две антенны, цифровой сигнальный процессор, датчик, углового положения антенн, вычислитель производной взаимной корреляционной функции, определитель положения минимума производной взаимной корреляционной функции, делитель мощности, дифференциатор, блок регулируемой задержки, перемножитель, фильтр нижних частот и усилитель низкой частоты. 2 ил.
Измеритель вертикальной составляющей скорости ветра для обнаружения сдвига ветра, содержащий последовательно включенные передатчик, делитель мощности и первый циркулятор, первое плечо которого соединено с первой антенной, а второе плечо соединено с входом первого приемника, последовательно включенные датчики углового положения антенн, цифровой сигнальный процессор и обнаружитель сдвига ветра, при этом к второму выходу делителя мощности подключен второй циркулятор, первое плечо которого соединено с второй антенной, а второе плечо соединено с входом второго приемника, датчик углового положения антенн механически связан с общим приводом антенн, отличающийся тем, что он снабжен вычислителем производной взаимной корреляционной функции, определителем положения минимума производной взаимной корреляционной функции и дифференциатором, причем вычислитель производной взаимной корреляционной функции выполнен в виде последовательно подключенных к выходу второго приемника блока регулируемой задержки, перемножителя, второй вход которого через дифференциатор соединен с выходом первого приемника, фильтра нижних частот и усилителя низкой частоты, выход которого соединен с вторым входом блока регулируемой задержки, второй выход которого через определитель положения минимума производной взаимной корреляционной функции подключен к второму входу цифрового сигнального процессора, который предназначен для вычисления вертикальной составляющей скорости ветра wv в соответствии с формулой:
где θ - угол наклона диаграммы направленности первой и второй антенн;
τз - значение аргумента производной взаимной корреляционной функции, при котором производная взаимной корреляционной функции принимает наименьшее значение;
d - расстояние, на которое разнесены фазовые центры первой и второй антенн по вертикали.
ИЗМЕРИТЕЛЬ ВЕРТИКАЛЬНОЙ СОСТАВЛЯЮЩЕЙ СКОРОСТИ ВЕТРА ДЛЯ ОБНАРУЖИТЕЛЯ СДВИГА ВЕТРА | 2008 |
|
RU2400769C2 |
ЗАПРОСНЫЙ СПОСОБ ИЗМЕРЕНИЯ РАДИАЛЬНОЙ СКОРОСТИ И СИСТЕМА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2008 |
|
RU2389040C1 |
RU 2010139898 А, 28.09.2010 | |||
RU 2008124388 А, 16.06.2008 | |||
Гонок из пластмассы или других эластичных материалов для ткацких станков | 1949 |
|
SU83620A1 |
US 5724125 А, 03.03.1998 | |||
US 7463341 В2, 09.12.2008. |
Авторы
Даты
2012-11-27—Публикация
2011-05-06—Подача