Данное изобретение относится к солям бензодиазепина кратковременного действия и к применению данных солей, в частности, в качестве лекарственных средств для седативных или гипнотических, анксиолитических, мышечно-релаксантных или антиконвульсивных целей.
В европейском патенте №1183243 описываются кратковременно действующие бензодиазепины, которые включают в себя эфирный фрагмент карбоновой кислоты и инактивируются неспецифичными эстеразами ткани. Предсказывают, что независимый от органа механизм элиминирования является характерным признаком данных бензодиазепинов, обеспечивая более предсказуемый репродуцируемый фармакодинамический профиль. Данные соединения являются подходящими для терапевтических целей, включая седативно-гипнотические, анксиолитические, мышечно-релаксантные и антиконвульсивные цели. Соединения являются кратковременно действующими ЦНС депрессантами, которые полезны для внутривенного введения в следующих клинических обстоятельствах: предоперативное успокоение, анксиолизис и амнестическое применение в предоперативных случаях; сознательное успокоение во время кратковременных диагностических, оперативных или эндоскопических процедур; в качестве компонента для индуцирования и поддержания общей анестезии, перед и/или при сопутствующем введении других анестетических или анальгетических агентов; ICU успокоение.
Одним из соединений, описанных в ЕР 1183243 (в Примере Ic-8, стр.36), является метил 3-[(4S)-8-бром-1-метил-6-(2-пиридинил)-4Н-имидазол[1,2-a][1,4]бензодиазепин-4-ил]пропаноат, показанный в формуле (I) ниже:
В то время как основание формулы (I) является стабильным при хранении при 5°С, наблюдается, что образцы, хранившиеся при 40°С/75% относительной влажности (открытые), растворяются, становятся по цвету от желтых до оранжевых и показывают заметное снижение содержания относительно первоначального (см. Пример 1 ниже).
В настоящее время неожиданно было обнаружено, что соединение формулы (I) образует высококристаллические моно(бензолсульфоновая кислота)безилатные соли, которые легко выделяются из ряда фармацевтически приемлемых растворителей и показывают хорошую термическую стабильность, низкую гигроскопичность и высокую водорастворимость.
В соответствии с изобретением предоставляется безилатная соль соединения формулы (I). Предпочтительно соль является кристаллической солью. Предпочтительно кристаллическая соль имеет стехиометрию 1:1 соединение формулы (I):безилат. Получение и характеристики полиморфных форм безилатных солей описывается в примерах ниже.
Согласно изобретению предоставляется кристаллический полиморф безилатной соли соединения формулы (I) (обозначаемый здесь безилат Форма 1), который обнаруживает характер порошковой дифракции рентгеновских лучей (XRPD), который включает характерный пик примерно при 7,3, 7,8, 9,4, 12,1, 14,1, 14,4, 14,7 или 15,6 градусах два-тета.
Предпочтительно кристаллический полиморф безилата Формы 1 обнаруживает характер XRPD, который включает характерные пики примерно при 7,3, 7,8, 9,4, 12,1, 14,1, 14,4, 14,7 или 15,6 градусах два-тета.
Более предпочтительно кристаллический полиморф безилата Формы 1 обнаруживает характер XRPD, который включает характерные пики при 7,25 (10,60), 7,84 (72,60), 9,36 (12,10), 12,13 (32,50), 14,06 (48,50), 14,41 (74,30), 14,70 (50,70), 15,60 (26,90) [угол два-тета градусы (процентная относительная интенсивность)].
Предпочтительно кристаллический полиморф Формы 1 имеет начальную температуру плавления дифференциальной сканирующей калориметрии (DSC) в пределах 187-204°С, предпочтительно примерно 191-192°С.
Кристаллическая структура Формы 1 распадается при 190К (R фактор 6.3). Форма I имеет стехиометрию 1:1 соединение:безилат. Ее кристаллографическая асимметрическая единица содержит две независимые молекулы соединения и две безилатные молекулы. Две независимые молекулы соединения являются единственными протонируемыми в имидазольном кольце. Кристаллическая структура имеет размеры единичной ячейки a = 7,6868 Å, b = 29,2607 Å, с = 12,3756 Å, α = 90°, β = 97,7880°, γ = 90°, и пространственную группу Р21. Кристаллическая структура описывается более подробно в примере 9, а кристаллографические координаты даны в Таблице 17. Длины полос и углы для Формы 2 даны, соответственно, в Таблицах 19 и 20.
Согласно изобретению предоставляется безилатная соль соединения формулы (I), которая является кристаллическим полиморфом, включающим кристаллы с размерами единичного элемента a = 7,6868 Å, b = 29,2607 Å, c = 12,3756 Å, α = 90°, β = 97,7880°, γ = 90°.
Согласно изобретению предоставляется также безилатная соль соединения формулы (I), которая является кристаллическим полиморфом, имеющим кристаллическую структуру, определяемую структурными координатами, показанными в Таблице 17.
Далее, согласно изобретению предоставляется безилатная соль соединения формулы (I) с длинами полос и углами, показанными в Таблицах 19 и 20, соответственно.
Далее, согласно изобретению предоставляется кристаллический полиморф безилатной соли соединения формулы (I) (обозначаемая здесь Безилат Формы 2), которая проявляет характер (XRPD), который включает характерный пик примерно при 8,6, 10,5, 12,0, 13,1, 14,4 или 15,9 градусах два-тета.
Предпочтительно кристаллический полиморф безилата Формы 2 проявляет характер XRPD, который включает характерные пики примерно при 8,6, 10,5, 12,0, 13,1, 14,4 или 15,9 градусах два-тета.
Более предпочтительно кристаллический полиморф безилата Формы 2 проявляет характер XRPD, который включает характерные пики при 8,64 (17,60), 10,46 (21,00), 12,03 (22,80), 13,14 (27,70), 14,42 (11,20), 15,91 (100,00) [угол 2θ° (процентная относительная интенсивность)].
Предпочтительно кристаллический полиморф безилата Формы 2 имеет начальную температуру плавления дифференциальной сканирующей калориметрии (DSC) в пределах 170-200°С, предпочтительно примерно 180°С.
Кристаллическая структура Формы 2 распадается при 190К (R фактор 3.8). Форма 2 имеет стехиометрию 1:1 соединение:безилат. Ее кристаллографическая асимметрическая единица содержит одну молекулу соединения и одну молекулу безилата. Молекула соединения является единственно протонируемой в имидазольном кольце. Кристаллическая структура имеет размеры единичной ячейки a = 8,92130 Å, b = 11,1536 Å, с = 25,8345 Å, α = 90°, β = 90°, γ = 90°, и пространственную группу Р212121. Кристаллическая структура описывается более подробно в примере 10, а кристаллографические координаты даны в Таблице 18. Длины полос и углы для Формы 2 даны, соответственно, в Таблицах 21 и 22.
Согласно изобретению предоставляется безилатная соль соединения формулы (I), которая является кристаллическим полиморфом, включающим кристаллы с размерами единичного элемента a = 8,92130 Å, b = 11,1536 Å, с = 25,8345 Å, α = 90°, β = 90°, γ = 90°.
Согласно изобретению предоставляется также безилатная соль соединения формулы (I), которая является кристаллическим полиморфом, имеющим кристаллическую структуру, определяемую структурными координатами, показанными в Таблице 18.
Далее, согласно изобретению предоставляется безилатная соль соединения формулы (I) с длинами полос и углами, показанными в Таблицах 21 и 22, соответственно.
Далее, согласно изобретению предоставляется кристаллический полиморф безилатной соли соединения формулы (I) (обозначаемой Безилат Формы 3), который проявляет характер порошковой дифракции рентгеновских лучей (XRPD), который включает характерный пик примерно при 7,6, 11,2, 12,4, 14,6, 15,2, 16,4 или 17,7 градусах два-тета.
Предпочтительно кристаллический полиморф безилата Формы 3 проявляет характер XRPD, который включает характерные пики примерно при 7,6, 11,2, 12,4, 14,6, 15,2, 16,4 и 17,7 градусах два-тета.
Более предпочтительно кристаллический полиморф безилата Формы 3 проявляет характер XRPD, который включает характерные пики при 7,61 (65,70), 11,19 (33,20), 12,38 (48,70), 14,63 (30,60), 15,18 (33,20), 16,40 (29,60), 17,68 (51,30) [угол 2θ° (процентная относительная интенсивность)].
Предпочтительно кристаллический полиморф безилата Формы 3 имеет начальную температуру плавления дифференциальной сканирующей калориметрии (DSC) в пределах 195-205°С, предпочтительно примерно 200-201°С.
Далее, согласно изобретению предоставляется кристаллический полиморф безилатной соли соединения формулы (I) (обозначаемой здесь Безилат Формы 4), который проявляет характер XRPD, который включает характерный пик примерно при 7,6, 10,8, 15,2, 15,9 или 22,0 градусах два-тета.
Предпочтительно кристаллический полиморф безилата Формы 4 проявляет характер XRPD, который включает характерные пики примерно при 7,6, 10,8, 15,2, 15,9 и 22,0 градусах два-тета.
Предпочтительно кристаллический полиморф безилата Формы 4 проявляет характер XRPD, который включает характерные пики при 7,62 (83,50), 10,75 (14,70), 15,17 (37,80), 15,85 (28,70), 22,03 (100) [угол 2θ° (процентная относительная интенсивность)].
Предпочтительно кристаллический полиморф безилата Формы 4 имеет начальную температуру плавления дифференциальной сканирующей калориметрии (DSC) в пределах 180-185°С, предпочтительно примерно 182°С.
На основании ясности данных образования, выхода, чистоты и стабильности химической и твердой формы предпочтительной солью является безилат Формы 1.
Согласно изобретению предоставляется также способ получения безилатной соли соединения формулы (I), который включает взаимодействие свободного основания соединения формулы (I) с бензолсульфоновой кислотой.
Согласно изобретению предоставляется также способ получения соли изобретения, который включает контактирование свободного основания соединения формулы (I) с бензолсульфоновой кислотой в растворе, вызывая образование осадка безилатной соли. Предпочтительно способ дополнительно включает стадию отделения осадка.
Свободное основание предпочтительно растворяется в толуоле, этаноле, этилацетате, MtBE, дихлорметане (DCM), изопропилацетате, этилформиате, метаноле или ацетоне. Более предпочтительно свободное основание растворяется в толуоле или этилацетате. Бензолсульфоновая кислота предпочтительно растворяется в этаноле.
Безилат Формы 1 может быть получен с помощью контактирования раствора свободного основания соединения формулы (I) в толуоле, этилацетате, ацетоне, изопропилацетате или этилформиате с раствором бензолсульфоновой кислоты в этаноле с образованием осадка соли.
Согласно изобретению предоставляется также безилатная соль соединения формулы (I), которая способна получаться с помощью указанного выше способа.
Безилат Формы 2 может быть получен с помощью контактирования раствора свободного основания соединения формулы (I) в метаноле с раствором бензолсульфоновой кислоты в этаноле с образованием осадка соли. Предпочтительно смесь охлаждается ниже температуры окружающей среды (например, 4°С).
Согласно изобретению предоставляется также безилатная соль соединения формулы (I), получаемая описанным выше способом.
Безилат Формы 3 может получаться с помощью затравливания жидкости, получающейся в результате кристаллизации Формы 1 из смеси этилацетат/этанол Формой 1. Предпочтительно жидкость охлаждается ниже температуры окружающей среды (например, 4°С).
В одном из воплощений безилат Формы 3 может быть получен с помощью затравливания раствора фильтрата, отделенного от осадка, образуемого контактированием раствора соединения формулы (I) в этилацетате с раствором бензолсульфоновой кислоты в этаноле, кристаллической солью безилата Формы 1 соединения формулы (I) с получением кристаллического полиморфа безилата Формы 3.
Согласно изобретению предоставляется также безилатная соль соединения формулы (I), получаемая с помощью любого из описанных выше способов.
Безилат Формы 4 может быть получен перекристаллизацией безилата Формы 1 из смеси изопропилацетат/этанол, предпочтительно 40% изопропилацетат/этанол.
Согласно изобретению предоставляется также безилатная соль соединения формулы (I), которая может получаться описанным выше способом.
Соли согласно изобретению могут также получаться кристаллизацией безилата соединения формулы (I) из подходящего растворителя или из смеси подходящий растворитель/антирастворитель или растворитель/сорастворитель. Раствор или смесь в соответствующих случаях может охлаждаться и/или выпариваться для достижения кристаллизации.
Авторы обнаружили, что кристаллизация Формы 2 наблюдается в условиях крайних степеней или полярности (например, смесь ацетонитрил:вода), или липофильности (н-нонан), или и того и другого (диметилсульфоксид:1,2-дихлорбензол).
Примерами растворителей для кристаллизации Формы 2 являются: нонан, метанол.
Примерами смесей растворитель/антирастворитель для кристаллизации Формы 1 являются: диметилацетамид/метилизобутилкетон; диметилацетамид/тетрахлорэтилен; ацетонитрил/3-метилбутан-1-ол; ацетонитрил/1,2-дихлорбензол; ацетонитрил/пентилацетат; метанол/3-метилбутан-1-ол; метанол/метилизобутилкетон; 2,2,2-трифторэтанол/1,4-диметилбензол; этанол/метилизобутилкетон; этанол/1,4-диметилбензол; пропан-1-ол/1,2-дихлорбензол; пропан-1-ол/тетрахлорэтилен; пропан-2-ол/1,2-дихлорбензол; пропан-2-ол/н-нонан; 2-метоксиэтанол/вода; 2-метоксиэтанол/пентилацетат; 2-метоксиэтанол/1,4-диметилбензол; тетрагидрофуран/вода; тетрагидрофуран/3-метилбутан-1-ол; тетрагидрофуран/1,2-дихлорбензол; тетрагидрофуран/этилацетат; тетрагидрофуран/1,3-диметилбензол.
Примерами смесей растворитель/антирастворитель для кристаллизации Формы 2 являются: этанол/этилацетат; этанол/метилизобутилкетон; этанол/п-кумол; диметилсульфоксид/1,2-дихлорбензол; ацтонитрил/вода; этанол/1,2-дихлорбензол; этанол/тетрахлорэтилен; тетрагидрофуран/1,2-дихлорбензол; тетрагидрофуран/этилацетат.
Согласно предпочтительному воплощению форму 1 кристаллизуют из 2-метоксиэтанол/пентилацетата.
Согласно предпочтительному воплощению форму 2 кристаллизуют из этанол/этилацетата.
Согласно предпочтительному воплощению форму 2 кристаллизуют из смеси метанол/этанол (предпочтительно путем охлаждения раствора безилата соединения формулы (I) в смеси метанол/этанол при температуре ниже температуры окружающей среды, например, 4°С).
Согласно предпочтительному воплощению форму 3 кристаллизуют из смеси этанол/этилацетат (подходящим образом путем охлаждения смеси при температуре ниже температуры окружающей среды, например, 4°С).
Согласно предпочтительному воплощению форму 4 кристаллизуют из смеси изопропилацетат/этанол (предпочтительно путем охлаждения раствора безилата соединения формулы (I) в смеси изопропилацетат/этанол до температуры окружающей среды).
Согласно изобретению предоставляется также безилатная соль соединения формулы (I), получаемая любым из описанных выше способов.
Способы получения солей согласно изобретению описываются подробно ниже в примерах.
Соль согласно изобретению может использоваться в качестве лекарственного средства, в частности для седативных или гипнотических, анксиолитических целей, в качестве мышечного релаксанта или для антиконвульсивных целей.
Хотя соединение согласно изобретению можно вводить в виде массы активного химического вещества, предпочитается, чтобы оно было снабжено фармацевтически приемлемым носителем, эксципиентом или разбавителем в форме фармацевтической композиции. Носитель, эксципиент или разбавитель должен быть, конечно, приемлемым в смысле совместимости с другими ингредиентами композиции и не должен быть вредным для реципиента.
Соответственно, настоящее изобретение предоставляет фармацевтическую композицию, содержащую соль согласно изобретению и фармацевтически приемлемый носитель, эксципиент или разбавитель.
Фармацевтические композиции согласно изобретению включают в их число композиции, подходящие для орального, ректального, топического, щечного (например, подъязычного) и парентерального (например, подкожного, внутримышечного, внутридермального или внутривенного) введения.
Предпочтительно соль согласно изобретению предоставляется в форме фармацевтической композиции для парентерального введения, например, с помощью внутривенной или внутримышечной инъекции раствора. Когда фармацевтическая композиция является композицией для парентерального введения, композицией может быть водный или неводный раствор или смесь жидкостей, которая может включать в свой состав бактериостатические агенты, антиоксиданты, буферы или другие фармацевтически приемлемые добавки.
Предпочтительная рецептурная форма соли согласно изобретению находится в водной кислой среде с рН 2-4 или в водном растворе циклодекстрина (CD). Циклодекстрины, которые могут использоваться для этих рецептурных форм, представляют собой или анионно-заряженные сульфобутилэфирные (SBE) производные β-CD, особенно SBE7-β-CD, продаваемый под торговым наименованием Каптисол фирмой CyDex, Inc. (Critical Reviews in Therapeutic Drug Carrier Systems, 14(1), 1-104 (1997)), или гидроксипропил CD'ы.
Дополнительной предпочтительной рецептурной формой соли согласно изобретению является лиофилизованная форма, содержащая в дополнение к соли, по крайней мере, один из следующих агентов: аскорбиновая кислота, лимонная кислота, малеиновая, фосфорная кислота, глицин, гидрохлорид глицина, янтарная или винная кислота. Считается, что данные агенты являются полезными в качестве буферирующих, спекающих или визуализирующих агентов. В некоторых случаях может быть благоприятным включение в рецептурную форму хлорида натрия, маннита, поливинилпирролидона или других ингредиентов.
Предпочтительный способ создания рецептурной формы (например, кислотного буфера или на основе CD) может зависеть от физико-химических свойств (например, водорастворимости, рКа и др.) конкретной соли. Альтернативно соль может быть представлена в виде лиофилизованного твердого вещества для пересоставления с водой (для инъекции) или декстрозой или солевым раствором. Такие рецептурные формы обычно представлены в виде единичных дозированных форм, таких как ампулы или инъекционные устройства разового применения. Они могут также быть представлены в многодозовых формах, таких как пузырек, из которого может быть извлечена соответствующая доза. Все такие рецептурные формы должны быть стерильными.
Согласно изобретению предоставляется способ продуцирования седативного эффекта или гипноза у субъекта, который предусматривает введение субъекту эффективного седативного или гипнотического количества соли согласно изобретению.
Согласно изобретению предоставляется также способ индуцирования анксиолизиса у субъекта, который включает введение субъекту эффективного анксиолитического количества соли согласно изобретению.
Согласно изобретению дополнительно предоставляется способ индуцирования мышечной релаксации у субъекта, который включает введение субъекту эффективного мышечно-релаксантного количества соли согласно изобретению.
Согласно изобретению дополнительно предоставляется способ лечения конвульсий у субъекта, который включает введение субъекту эффективного антиконвульсивного количества соли согласно изобретению.
Согласно изобретению предоставляется также применение седативного или гипнотического количества соли согласно изобретению в производстве лекарственного средства для продуцирования у субъекта седативного действия или гипноза.
Согласно изобретению предоставляется также соль изобретения для продуцирования у субъекта седативного действия или гипноза.
Согласно изобретению предоставляется также применение анксиолитического количества соли в производстве лекарственного средства для продуцирования у субъекта анксиолизиса.
Согласно изобретению предоставляется также соль изобретения для продуцирования у субъекта анксиолизиса.
Согласно изобретению дополнительно предоставляется применение мышечно-релаксивного количества соли изобретения в производстве лекарственного средства для продуцирования у субъекта мышечной релаксации.
Согласно изобретению далее предоставляется соль изобретения для продуцирования у субъекта мышечной релаксации.
Согласно изобретению далее предоставляется применение антиконвульсивного количества соли изобретения в производстве лекарственного средства для лечения конвульсий у субъекта.
Согласно изобретению предоставляется также соль изобретения для лечения у субъекта конвульсий.
Субъектом подходящим образом является млекопитающее, предпочтительно человек.
Подходящий фармацевтический парентеральный препарат для введения людям предпочтительно будет содержать 0,1-20 мг/мл соли согласно изобретению в растворе или множественные количества ее для многодозовых сосудов.
Внутривенное введение может принимать форму инъецирования болюсов или, более подходяще, непрерывной инфузии. Дозировка для каждого субъекта может варьировать, однако подходящее внутривенное количество или дозировка соли согласно изобретению для получения седативного эффекта или гипноза у млекопитающего составляет 0,01-5,0 мг/кг веса тела, и более конкретно 0,02-0,5 мг/кг веса тела, причем вышеуказанные дозы даны в расчете на вес соли, которой является активный ингредиент. Подходящее внутривенное количество или доза соли согласно изобретению для получения анксиолизиса у млекопитающего составляет 0,01-5,0 мг/кг веса тела, и более конкретно 0,02-0,5 мг/кг веса тела, причем вышеуказанные дозы даны в расчете на вес соли, которой является активный ингредиент. Подходящее внутривенное количество или доза соли согласно изобретению для получения мышечной релаксации у млекопитающего составляет 0,01-5,0 мг/кг веса тела, и более конкретно 0,02-0,5 мг/кг веса тела, причем вышеуказанные дозы даны в расчете на вес соли, которой является активный ингредиент. Подходящее внутривенное количество или доза соли согласно изобретению для лечения конвульсий у млекопитающего составляет 0,01-5,0 мг/кг веса тела, и более конкретно 0,02-0,5 мг/кг веса тела, причем вышеуказанные дозы даны в расчете на вес соли, которой является активный ингредиент.
Соли согласно изобретению являются депрессантами ЦНС кратковременного действия, которые полезны для внутривенного введения в следующих клинических ситуациях: предоперативное успокоение, анксиолизис и амнестическое применение для предоперативных случаев; сознательное успокоение во время кратковременных диагностических, оперативных или эндоскопических процедур; в качестве компонента для индуцирования и поддержания общей анестезии, перед и/или при сопутствующем введении других анестетических или анальгетических агентов; ICU успокоение.
Предпочтительные воплощения изобретения описываются в следующих ниже примерах со ссылкой на сопровождающие рисунки, в которых:
Фиг.1 показывает график содержания (% относительно первоначального) соединения формулы (I) против температуры хранения;
Фиг.2 показывает дифференциальную сканирующую калориметрию (DSC) LJC-039-081-1;
Фиг.3 показывает DSC (ДСК) LJC-039-081-1 (сплошная), покрываемую LJC-039-081-2 (пунктирная);
Фиг.4 показывает DSC безилатных форм (Форма 1 - сплошная, Форма 2 - пунктирная);
Фиг.5 показывает DSC безилатных форм (Форма 1 - сплошная, Форма 3 - пунктирная с точками);
Фиг.6 показывает хроматограммы LJC-039-037-1 при Т0 и Т4 (и относятся к результатам в Таблице 10);
Фиг.7 показывает XRPD в сравнении LJC-039-037-1 (безилатной соли) перед и после 4-недельного исследования стабильности;
Фиг.8А показывает сравнение XRPD безилата Формы 1 и 2;
Фиг.8В показывает дифференциальную сканирующую калориметрию (DSC) наложения Формы 1 и 2;
Фиг.9А показывает XRPD сравнение безилата формы 1 и 3, а Фиг.9В показывает наложения Формы 1 и 3;
Фиг.10 показывает DSC (ДСК) LJC-039-086-1 (безилат Формы 4);
Фиг.11 показывает результаты для безилата Формы 1: A) XRPD для 100 мг загрузки LJC-039-037-1; B) DSC для 100 мг загрузки LJC-039-037-1; C) TGA для 100 мг загрузки LJC-039-037-1; D) 1Н NMR (ЯМР) для 100 мг загрузки LJC-039-037-1; Е) GVS для 100 мг загрузки LJC-0390-037-1; F) XPRD после GVS для 100 мг загрузки LJC-039-037-1; G) XRPD после стабильности при 40°С/75%RH (относительная влажность) для 100 мг загрузки LJC-039-037-1; H) VT XRPD для 100 мг загрузки LJC-039-037-1; I) микроскопия в поляризованном свете для 100 мг загрузки LJC-039-037-1;
Фиг.12 показывает результаты для безилата Формы 2: А) XRPD для 100 мг загрузки LJC-039-067-8; B) DSC для 100 мг загрузки LJC-039-067-8; C) DSC со скоростью отслеживания графика нагрузки 2°С/мин; D) 1H NMR для LJC-039-067-8;
Фиг.13 показывает результаты для безилата Формы 3: А) XRPD для LJC-039-081-2 (2-ой сбор из жидкостей LJC-039-081-1); B) DSC для LJC-039-081-2; C) DSC для LJC-039-081-2 (скорость отслеживания графика нагрузки 2°С/мин); D) TGA (ТГА) для LJC-039-081-2; E) 1H NMR для LJC-039-081-2; F) GVS для LJC-039-081-2; G) XRPD после GVS для LJC-039-081-2;
Фиг.14 показывает результаты для безилата Формы 4: A) XRPD для LJC-039-086-1; B) DSC для LJC-039-086-1; C) 1H NMR для LJC-039-086-1;
Фиг.15 показывает HPLC хроматографию высвобождения загрузки безилатных солей с сопровождением подробными результатами по сообщениям Agilent ChemStation;
Фиг.16 показывает хиральную хроматографию для LJC-039-081-1 и LJC-039-083-1;
Фиг.17 показывает примерные изображения (поле зрения приблизительно 4-8 мм диаметра) твердых форм, наблюдаемые при кристаллизации безилата соединения формулы (I);
Фиг.18 показывает содержание асимметричных звеньев в Форме 1;
Фиг.19 показывает молекулярную структуру, определенную с помощью монокристаллической рентгеновской дифракции кристаллов безилата соединения формулы (I), формы 1, выращенных из раствора смеси 2-метоксиэтанол:пентилацетат с атомами, представленными термическими эллипсоидами. Изображены только атомы водорода, располагаемые в структуре кристаллов;
Фиг.20 показывает конформацию или структуру, присваиваемую двумя независимыми молекулами в Форме 1;
Фиг.21 показывает сравнение конформации, присваиваемой одной независимой молекулой в Форме 1 (вверху), и конформации в Форме 2 (внизу);
Фиг.22 показывает сравнение конформации, присваиваемой двумя независимыми безилатами в Форме 1, вид по двум различным направлениям;
Фиг.23 показывает сравнение конформации, присваиваемой одним независимым безилатом в Форме 1 (вверху), и конформации в Форме 2 (внизу);
Фиг.24 показывает структуру кристаллов, определенную с помощью монокристаллической рентгеновской дифракции кристаллов безилата соединения формулы (I), выращенных из раствора смеси 2-метоксиэтанол:пентилацетат, видимую вдоль кристаллографической оси a (a), оси b (b) и оси c (c);
Фиг.25 показывает близкое расположение C-O<3,6 Å, C-C<3,6 Å, N-O<3,5 Å для Формы 1;
Фиг.26 показывает вычисленную дифракцию порошкового образца по данным монокристаллической рентгеновской дифракции для Формы 1;
Фиг.27 показывает кристаллы пластинчатой формы, наблюдаемые для безилата Формы 2 соединения формулы (I);
Фиг.28 показывает содержание асимметричных звеньев в Форме 2;
Фиг.29 показывает молекулярную структуру, определенную с помощью монокристаллической рентгеновской дифракции кристаллов безилата Формы 2 соединения формулы (I) с атомами, представленными термическими эллипсоидами. Изображены только атомы водорода, специфично располагаемые в структуре кристаллов;
Фиг.30 показывает конформацию, присваиваемую независимой молекулой в Форме 2;
Фиг.31 показывает конформацию, присваиваемую независимым безилатом в Форме 2, вид по двум различным направлениям;
Фиг.32 показывает структуру кристаллов, определенную с помощью монокристаллической рентгеновской дифракции кристаллов безилата соединения формулы (I) Формы 2, видимую вдоль кристаллографической оси a (a), оси b (b) и оси c (c);
Фиг.33 показывает близкое расположение C-O<3,6 Å, C-C<3,6 Å и N-O<3,5 Å для Формы 2;
Фиг.34 показывает вычисленную дифракцию порошкового образца по данным монокристаллической рентгеновской дифракции для Формы 2;
Фиг.35 показывает мечение атомных центров для безилата соединения формулы (I) Формы 1; и
Фиг.36 показывает мечение атомных центров для безилата соединения формулы (I) Формы 2.
Пример 1
Исследование стабильности соединения формулы (I) в твердом состоянии
Способ/Технология. Точно отвешивали 2-мг образцы соединения формулы (I), помещали их в 4-мл прозрачные стеклянные пузырьки с винтовыми крышками. Образцы тестировали в начале и спустя 34 дня хранения при 5°С/Относительной Влажности Окружающей Среды (AMRH) Закрытыми, при 30°С/60% Относительной Влажности (RH) Закрытыми, при 40°С/75% RH Открытыми и при 60°С/AMRH Закрытыми.
Образцы проверяли визуально на внешний вид. Величины содержания соединения формулы (I) определялись с помощью метода HPLC в Таблице 1. Значения соотношения % вес./вес. (% в/в) измеряли относительно стандартных образцов соединения формулы (I) Batch U12438/79/1. Значения % площади получали путем деления площади пика соединения формулы (I) на общую площадь пика.
РЕЗУЛЬТАТЫ
Внешний вид. Таблица 2 представляет результаты оценки внешнего вида.
Содержание (% в/в) соединения формулы (I). Значения содержания % в/в (см. Таблицу 3) показывают весьма значительную изменчивость для того, чтобы определить различия между первоначальным значением и значениями, измеренными через 34 дня хранения при 5°С/AMRH Закрытыми, при 30°С/60% RH Закрытыми или при 40°С/75% RH Открытыми. Средний показатель % в/в, определенный для образцов, сохраняемых 34 дня при 60°С/AMRH Закрытыми, показывает 10% в/в снижение от первоначального значения.
Содержание соединения формулы (I) (% площади). Содержание соединения формулы (I) (% площади) (см. Таблицу 3 и Фиг.1) не показывает никакого значительного изменения после 34 дней хранения при 5°С/AMRH Закрытыми, но неуклонно снижается с повышением температуры для образцов, хранящихся при 30°С/60% RH Закрытыми, при 40°С/75% RH Открытыми или при 60°С/AMRH Закрытыми. Основные пики деградации наблюдаются при RRT 0,68, 0,87 и RRT 0,90, но хроматограммы, которые являются относительно комплексными даже при первоначальном состоянии (23 пика), также показывают множество новых небольших деградантных пиков (например, 7 пиков при хранении при 30°С/60% RH Закрытыми; 13-20 пиков при хранении при 60°С/AMRH Закрытыми). Данные наблюдения предлагают множественные пути деградации. Деградант при RRT 0,68 экспериментально определяется как продукт гидролиза сложного эфира (свободная кислота соединения формулы (I)). Это является наиболее преобладающим для продуктов, хранящихся при 40°С/75% RH Открытыми, как бы следовало ожидать для продуктов гидролиза.
Примечание
1. Из-за ошибки в устройстве задания последовательностей (секвенаторе) в автоматическом пробосборнике испытывали только один образец.
ВЫВОДЫ
Соединение формулы (I) стабильно, что касается внешнего вида и содержания при хранении, по крайней мере, в течение 34 дней при 5°С/AMRH Закрытыми. Никаких изменений внешнего вида не отмечено при хранении при 30°С/60% RH Закрытыми, но наблюдалось примерно 0,6% снижение содержания соединения формулы (I) относительно первоначального % площади. Образцы, хранящиеся при 40°С/75% RH Открытыми или 60°С/AMRH Закрытыми, разжижались, по цвету становились от желтых до оранжевых, и они показывали заметное уменьшение (1,5-8%) содержания соединения формулы (I) относительно первоначального. Основные пики деградации наблюдаются при RRT 0,68, 0,87 и RRT 0,90 наряду с многочисленными меньшими пиками, предполагающими множественные пути разрушения. Образец, разрушающийся при RRT 0,68, экспериментально идентифицируется как продукт сложноэфирного гидролиза. Данные результаты указывают на то, что соединение формулы (I) должно храниться охлажденным или замороженным для сохранения в течение длительного времени.
Пример 2
Растворимость соединений формулы (I) определяли в широком ряде органических растворителей. Данные растворимости показаны в Таблице 4 ниже.
Данные ясно показывают, что соединение формулы (I) имеет высокую растворимость в обычных органических растворителях. Предпочтительными растворителями являются этанол и толуол.
Что касается рКа, измерялись два основных центра свободного основания соединения. Однако основной центр пиридинового кольца имел показатель рКа 1,99. Измерения показали, что рКа основного центра имидазольного кольца составлял 4,53.
Для получения безилатной соли соединения формулы (I) использовали бензолсульфоновую кислоту. Эксперименты проводили в 20 мг масштабе с использованием 6 объемов растворителя. Все реакции осуществлялись при температуре окружающей среды с кислотами, загружаемыми в виде готовых растворов в этаноле (1М) или в виде твердых веществ в зависимости от растворимости.
Изолированные твердые вещества показали значительные сдвиги пиков в анализе 1Н ЯМР, подтверждая образование соли. Анализ с помощью Рентгеновской Порошковой Дифракции (XRPD) показал, что соль имеет кристаллический вид. В Таблице 5 подведен итог выделенной формы соли.
Соль впоследствии хранили при 40°С/75% RH в течение двух недель, затем повторно подвергали анализам XRDP и HPLC на химическую чистоту для оценки стабильности материалов. Соль сохраняла тот же самый порошковый характер после подвергания действию условий влажности и также сохраняла высокую химическую чистоту, подтверждая улучшенную стабильность.
Из результатов Т1 чистоты отдельной соли (Таблица 6, ниже) можно видеть, что безилатная соль толуола показала высокие показатели чистоты до и после исследования стабильности.
Результаты, представленные выше, показывают, что форма безилатной соли показала высокую чистоту и благоприятные результаты стабильности.
Пример 3
Увеличение масштаба безилатной соли до 100 мг выполнялось на основании данных Примера 2. Было обнаружено, что толуол является предпочтительным растворителем для выделения безилатных солей.
Безилатная соль соединения формулы (I)
Увеличение шкалы вплоть до 50 мг вводимого материала проводили для того, чтобы подтвердить, будет или не будет процесс повышаться, и для того, чтобы подтвердить, что выделенный материал имел ту же самую кристаллическую форму (Форма 1), замеченную по предыдущему эксперименту меньшего масштаба. Коль скоро анализ подтвердил, что соль является Формой 1 и что свойства соответствуют ожидаемым, проводили еще одно увеличение масштаба со 100 мг вводимого материала, для того чтобы провести полную характеристику и представить образец на анализ стабильности в течение 4 недель при 40°С/75% RH. Обе реакции в увеличенном масштабе осуществлялись в толуоле с бензолсульфоновой кислотой, добавляемой в виде раствора в этаноле (1М).
Безилат экспериментальная процедура
Свободное основание соединения формулы (I) (100 мг, загрузка 704-17) загружалось в пробирку и при температуре окружающей среды добавляли толуол (600 мкл). К раствору добавляли бензолсульфоновую кислоту (250 мкл, 1М в этаноле) и реакционную смесь перемешивали в течение 15 минут, после чего из раствора осаждалось твердое вещество, которое отфильтровывали, промывали толуолом и сушили в сушильном шкафу при 40°С в вакууме. Анализ с помощью XRPD показал, что твердое вещество имеет идентичную порошковую структуру, как и другие производимые безилаты, и анализ 1Н ЯМР подтвердил образование соли согласно выразительным пиковым осям.
Энантиомерный избыток для LJC-039-037-1 был только 94,4, поэтому результат сравнивали с еще одной загрузкой безилата (LJC-039-081-1), который был выделен в идентичных условиях. Энантиомерный избыток данной загрузки составил 99,1%.
Оптимизация процесса
Для улучшения дальнейших выходов безилатной соли (Форма 1) подвергали скринингу четыре растворителя (изопропилацетат, этилформиат, метанол и ацетон). В целом проводили восемь 100 мг масштабных реакций в данных растворителях с соответствующей кислотой, добавленной в качестве готового раствора в этаноле для сравнения с предыдущими экспериментами.
Соединение формулы (I) (загрузка 704-38, 100 мг) растворяли в растворителе (600 мкл) при температуре окружающей среды. Добавляли кислоту (250 мкл, 1М готовый раствор в этаноле) и все реакционные смеси оставляли стоять в течение 48 часов в условиях окружающей среды. Результаты представлены в Таблице 8.
Все реакции, за исключением образования безилата в метаноле, показали Форму 1. Реакция в метаноле осуществлялась при 4°С. Полученные данные подтвердили безводный безилат 1:1, а порошковая структура материала подтвердила присутствие новой формы (Форма 2).
Из исследования был сделан вывод, что растворители, такие как изопропилацетат, повышают чистоту соли, однако понижают ее выделение. Ввиду того что предыдущий выбор растворителя (этилацетат) давал высокий выход соли с высоким показателем чистоты, было решено использовать этилацетат для конечных экспериментов в увеличенном масштабе.
Безилат (Форма 1) 1 г увеличенный масштаб
Осуществляли образование 1 г безилатной соли. При этом успешно получали 950 мг (70% выход) вещества Формы 1. Жидкости были интенсивно окрашены (желтые) и поэтому затравливались кристаллами, небольшим количеством Формы 1, для содействия выделению. Жидкости хранили при 4°С в течение 16 часов. Полученное твердое вещество показывало новый образец порошка (Форма 3). Твердое вещество анализировали с помощью термического анализа и XRPD с переменной температурой для подтверждения, было оно или нет действительным полиморфом или сольватом. Толкование результатов анализа позволило сделать вывод, что оно не является сольватом, по свидетельству анализа 1Н ЯМР, и анализ DSC показал два эндотермических случая, подтвержденных исследованием на микроскопе с нагревательным столиком (Фиг.3). Было истолковано, что затравка кристаллов Формы 1 плавится при 187°С, а с Формой 3 плавится при 200°С. Причиной, по которой Форма 1 не идентифицировалась с помощью XRPD, является то, что эта техника менее чувствительна, чем микроскопия.
Форма 3 осаждается в осадок при более низкой температуре, чем Форма 1.
Характеризацию осуществляли на полиморфах для предположения взаимосвязи между ними.
Более низкая точка плавления небольшого количества Формы 1, представленная в виде LJC-039-081-2, может потенциально быть приписана к более низкой чистоте (97,2% по сравнению с 97,9% у LJC-039-081-1).
Фиг.4 показывает данные DSC безилатных форм 1 (сплошная линия) и 2 (пунктирная линия).
Фиг.5 показывает данные DSC безилатных форм 1 (сплошная линия) и 2 (пунктирная с точкой линия).
Пример 4
Исследования стабильности соли
Кристаллические образцы безилата хранились при 40°С/75% RH в целом в течение четырех недель, и через каждые семь дней брали образцы на анализ HPLC. HPLC чистота безилата оставалась стойкой вплоть до Т3, когда она достигала 96,7%. Данная величина, однако, оставалась постоянной до Т4.
Хроматограммы HPLC для формы безилатной соли представлены на Фиг.6 в моменты времени от ноля и до четырех недель.
Подозревается, что доминантный пик перед пиком исходного соединения является результатом загрязнения, так как λмакс. не соответствует λмакс. пика исходного. Он отсутствует также в профиле загрязнений Т1, Т2, Т3 и Т4.
Из порошковых структур солей до и после исследования на влажность можно видеть, что никаких изменений в форме нет.
Фиг.7 показывает XRPD сравнение LJC-039-037-1 (безилатной соли) до и после 4 недель исследования стабильности.
Пример 5
Исследование полиморфизма
Для того чтобы определить склонность безилатных солей демонстрировать полиморфизм, осуществляли эксперимент вызревания с использованием тридцати растворителей (пятнадцать неразбавленных плюс их параллельные 2,5% водные растворы). Твердое вещество суспендировали в различных растворителях (см. Таблицу 11) в течение одной недели с циклом нагревания/охлаждения от температуры окружающей среды до 60°С. Через одну неделю суспензии выпаривали и твердые вещества анализировали с помощью XRPD и HPLC.
• исходная HPLC чистота 97,7%
Исследование созревания с использованием безилатной соли не обнаружило никаких новых форм. Результаты показателя чистоты после вызревания показывают, что те вещества, которые суспендировали в ацетонитриле, водном THF, водном IPA, водном MEK, водном диоксане и водном растворе ацетонитрила, разлагались. Это предполагает то, что безилатная соль (Форма 1) имеет хорошую стабильность раствора в неразбавленных органических растворителях при высокой температуре.
Исследование новых форм безилата
Хотя по результатам исследования созревания не было видно никаких новых форм безилатной соли, новая форма была замечена, когда кристаллы выращивались в метаноле. Одиночные кристаллы, полученные из метанола, выращивали для того, чтобы получить порошковую структуру. Оказалось, что данная структура отличается от Формы 1. Повторный эксперимент проводили для того, чтобы получить дополнительный запас Формы 2. В противоположность обеспечению возможности выпаривания растворителя, что давало, таким образом, Форму 1, выделить Форму 2 можно было из жидкостей только при осаждении в течение 16 часов. Интересно, что присутствовали две особенности: игольчатые кристаллы и блоки. Обе показали ту же самую порошковую структуру, что и иглы, которые использовали для определения структуры одиночных кристаллов.
Полный анализ осуществлялся на Форме 2. Был сделан вывод, что она представляет действительно полиморф, так как данные одиночных кристаллов подтвердили безводный безилат 1:1.
На Фиг.8А показано сравнение XRPD безилата Формы 1 и 2. Имеется очевидная разница между Формой 1 (следы 1) и Формой 2 (следы 2). Как можно видеть по двум характерам или структурам порошка, обе формы весьма различны. Термический анализ осуществлялся для сравнения точек плавления двух форм и регистрировались также измерения термодинамической растворимости.
На Фиг.8В показаны перекрытия Формы 1 и 2. Формы 1 и 2 показывают один эндотермический результат (плавление).
Форма 3 идентифицировалась, когда из жидкостей LGC-039-081-1 (1 г реакция в увеличенном масштабе) выделялся второй сбор. Анализ осуществлялся для определения того, является ли она сольватом, и как формы взаимопревращаются.
На Фиг.9А показано сравнение XRPD безилата Формы 1 и 3. Фиг.9В показывает перекрытия Формы 1 и 3.
Форма 1 показывает один эндотермический результат (плавление), тогда как Форма 3 показывает два результата. Микроскопия в горячей стадии Формы 3 ясно показывает два плавления в пределах 20°С друг с другом. Принимается без доказательств, что присутствует небольшое количество более низко плавящегося полиморфа, так как он не подбирается при XRPD при изменчивой температуре, которая является менее чувствительным приемом. Вполне возможно, что первый эндотермический результат представляет Форму 1, которая использовалась для затравки жидкостей, из которых выделялась Форма 3.
Данные растворимости показывают, что все три формы имеют очень похожие растворимости в воде при рН 3 порядка 7,8-8,3 мг/мл.
Безилатная соль Формы 4
Высвобождаемая партия безилатной соли Формы 1 (LJC-039-083-1) была высокой чистоты (97,6%), но содержала небольшое количество примеси, переносимой из свободного основания (0,78%, 11,9 мин при комн. темп.). Данная примесь наблюдалась в DSC эксперименте, показывающем эндотермический переход (начало при 130°С). Подтверждался пик, имеющий показатель λмакс., не связанный с показателем основного пика.
Брали 100 мг образец для попытки перекристаллизации из смеси 40% изопропилацетат/этанол. Перекристаллизация осуществлялась традиционно путем растворения соли в минимальном количестве горячего растворителя, затем медленным охлаждением до температуры окружающей среды, с получением осадка. Высушенное твердое вещество анализировалось с помощью XRPD, которая указывала на новую форму, и с помощью термического анализа и 1Н ЯМР подтверждалось, что она является полиморфом, а не сольватом. На Фиг.10 показана DSC LJC-039-086-1.
Скрининговые исследования соли показали, что соединение формулы (I) образует многие соли в соответствующем интервале рКа, и что они легко выделяются из ряда растворителей. По данным полной характеристики солей было определено, что безилатные соли имеют хорошую стабильность, что касается влажности. В результате пришли к выводу, что имеются две полиморфные формы безилата. Форма 3 получена из второго сбора LJC-039-081-1 жидкостей после затравки Формой 1. Форма 4 наблюдалась после того, как осуществлялась перекристаллизация Формы 1 из смеси 40% изопропилацетат/этанол.
Данные полного анализа показаны ниже на Фиг.11-14.
Экспериментальные методики для Примеров 2-5
Пример 2
Соединение формулы (I) (5 мг/лунку) растворялось в растворителе1 (1 Этанол, толуол и ацетонитрил) (30 мкл) в HPLC сосудах. К растворам добавлялась бензолсульфоновая кислота (11,4 мкл, 1М в этаноле), и реакционные смеси стояли на протяжении ночи в условиях окружающей среды. Те сосуды, которые содержали твердое вещество, подвергались сушке при 40°С под вакуумом, а те, которые оставались с веществами в виде растворов, подвергались концентрированию с помощью выпаривания, а затем обрабатывались гептаном. Вещества, которые выпадали в осадок, сушились, как упоминалось, а те, которые замасливались, хранились при 4°С.
Безилат Формы 1 увеличенный масштаб
Соединение формулы (I) (100 мг) растворялось в этилацетате (600 мкл) и добавлялась бензолсульфоновая кислота (250 мкл, 1М в этаноле). Мгновенно происходило осаждение, и реакционная смесь перемешивалась в течение 24 часов в условиях окружающей среды. Твердое вещество отфильтровывалось, промывалось этилацетатом и сушилось в печи при 40°С под вакуумом в течение 16 часов.
Методы анализа
Дифференциальная сканирующая калориметрия (DSC)
Данные DSC собирались на ТА инструменте Q1000, оборудованном 50-позиционным автопробосборником. Калибровочным стандартом энергии и температуры был индий. Пробы нагревались со скоростью 10°С/мин при температуре между 25 и 350°С. Над пробами поддерживалась продувка азотом при 30 мл/мин.
Если не указано иное, использовались пробы между 0,5 и 3 мг, и все пробы проходили в продырявленный булавками алюминиевый поддон.
Термогравиметрический анализ (TGA)
Данные TGA собирались на ТА инструменте Q500 TGA, откалиброванном Алюмелем, и проходили при скоростях сканирования 10°С/минуту. Над пробами поддерживалась продувка азотом при 60 мл/мин.
Если не указано иное, обычно в предварительно тарированный платиновый тигель загружалось 5-10 мг пробы.
ЯМР
Все спектры собирались на Bruker 400 МГц, оборудованном пробосборником. Пробы или образцы приготавливались в d 6-ДМСО, если не указано иное.
XRPD (Порошковая дифракция рентгеновских лучей)
Bruker AXS С2 GADDS Дифрактометр
Характеры порошковой дифракции рентгеновских лучей для образцов определялись на Bruker AXS C2 GADDS диффрактометре с использованием Cu Kα излучения (40 кВ, 40 мА), автоматизированной XYZ стадии, лазерного видеомикроскопа для автопробного позиционирования и HiStar детектора 2-размерной площади. Рентгеновская оптика состоит из одного Gobel многослойного зеркала в сочетании с коллиматором с булавочными отверстиями 0,3 мм.
Дивергенция пучка, т.е. эффективный размер пучка рентгеновских лучей на образец, составляла приблизительно 4 мм. Применялся θ-θ непрерывный способ развертки с расстоянием от образца до детектора 20 см, что дает эффективный 2θ интервал 3,2-29,8°. Типичное время экспонирования образца составляло 120 сек.
Образцы для работы в условиях окружающей среды приготавливались в виде плоских пластинчатых образцов с использованием порошка без измельчения. Для получения плоской поверхности приблизительно 1-2 мг образца слегка прессовалось на предметное стекло. Образцы, подвергнутые прогону в условиях не окружающей среды, помещались на силиконовую вафлю с теплопроводящим соединением. Образец затем нагревался до соответствующей температуры со скоростью приблизительно 20°С/минуту и впоследствии перед тем, как начинали сбор данных, выдерживали в изотермических условиях в течение приблизительно 1 минуты.
Анализ на чистоту:
Химический метод
240 (ширина полосы 80 нм),
254 (ширина полосы 8 нм)
Хиральный метод:
Исследования гравиметрической паровой сорбции (GVS)
Все образцы пропускались в сорбционный анализатор влаги Hiden IGASorp, работающий с CFRSorp программным обеспечением. Размеры образцов составляли обычно 10 мг. Адсорбционно-десорбционная изотерма влаги выполнялась, как показано ниже (2 развертки, дающие 1 полный цикл). Все образцы загружались/разгружались при обычной комнатной влажности и температуре (40% относительной влажности, 25°С). Все образцы анализировались с помощью XRPD после GVS анализа. Стандартная изотерма выполнялась при 25°С при 10% относительной влажности в пределах 0-90% относительной важности интервале, если не указано иное.
Растворимость
Растворимость измерялась с помощью суспендирования достаточного количества соединения в 0,25 мл растворителя (вода), с получением максимальной конечной концентрации 10 мг/мл исходной свободной формы соединения. Суспензия уравновешивалась при 25°С в течение 24 часов с последующей проверкой рН и фильтрацией через стекловолоконную С 96-луночную пластину. Фильтрат затем разбавлялся до 101х. Количественный анализ проводился с помощью HPLC со ссылкой на стандарт, растворенный в ДМСО при приблизительно 0,1 мг/мл. Инжектировались различные объемы стандарта, в опытах с разбавленным и неразбавленным. Растворимость вычислялась с помощью интегрирования пиковой площади, обнаруженной в то же самое время удерживания, что и пиковый максимум в инжектировании стандарта. Если на фильтровальной пластине имеется достаточно твердого вещества, XRPD обычно проверяется на фазовые изменения, образование гидрата, аморфизацию, кристаллизацию и прочее.
Определение рКа
Определение рКа проводилось на инструменте Sirius GlpKa с приложением D-PAS. Измерения проводили с помощью потенциометрического титрования в смесях MeOH:H2O при 25°С. Титровальная среда была ионной крепости, доведенной с помощью 0,15М KCl. Величины, обнаруженные в смесях MeOH:H2O, экстраполировались на 0% сорастворителя через экстраполяцию Yasuda-Shediovsky.
Микроскопия с нагревательным столиком
Микроскопия с нагревательным столиком исследовалась с использованием Leica LM/DM поляризованного микроскопа, комбинированного с Mettler-Toledo MTFP82HT нагревательным столиком в температурном интервале 25-350°С с типичными скоростями нагревания в интервале 10-20°С/мин. Небольшое количество образца диспергировалось на предметное стекло с индивидуальными частицами, как можно более разделенными. Образцы рассматривались в условиях нормального поперечно-поляризованного света (в сочетании с λ ложно-цветовым фильтром) с ×20 линзами объектива.
Условия образца
Приблизительно 0,2 мг образца растворялось в соответствующем объеме смеси гексан:этанол 1:1 об/об (v/v), давая 0,2 мг/мл раствора. Данный раствор закрывался крышкой и помещался в вихревой смеситель с высокой скоростью на период продолжительностью ~15 секунд. Если в этот момент оставалось твердое вещество, тогда сосуд с образцом подвергался обработке ультразвуком в течение приблизительно 10 секунд с последующей дополнительной обработкой в вихревом смесителе в течение 10-15 секунд. 10 мкл инжектировалось на HPLC систему. Образцы инжектировались двукратно после первоначальной двукратной инжекции смеси гексан:этанол 1:1 об/об в качестве слепого опыта.
Пример 5
Пример фармакологического испытания
Оценивались анестетический и седативный эффекты безилатной соли Формы 1 настоящего изобретения. Безилатная (бензолсульфоновой кислоты) соль растворялась в физиологическом растворе для введения испытуемой композиции животному. Испытуемую композицию вводили мышам, помещенным в индивидуальные плексигласовые клетки (20×10×10 см). Мышам инъецировали внутривенно или носитель, или испытуемое вещество. Регистрировали латентный период до засыпания и длительность анестезии (максимум: 90 минут после введения испытуемого вещества). На анестезию указывает потеря установочного рефлекса (приведение тела в нормальное положение) (LRR). Испытание на установочный рефлекс выполнялось сразу же, как только животные казались подверженными действию седативного средства, приблизительно каждые 20-30 секунд. Когда установочный рефлекс отсутствовал, измеряли длительность потери установочного рефлекса испытанием возврата установочного рефлекса приблизительно через каждые 20-30 секунд после этого. Исследовали восемь мышей на группу и выполняли слепой опыт. Результаты изучения даны ниже в таблице.
с LRR
Fisher's точный опыт (число мышей с LRR); отсутствие указания = незначительный; + = p<0,05; ++ = p<0,01
(#): не вычислялось, если n<3
(##): максимум = 90 минут после инъекции
Результаты в приведенной выше таблице показывают, что безилатная соль Формы 1 имеет на животных короткую латентность до потери установочного рефлекса и, следовательно, короткое время индукции до анестезии. В дополнение к сказанному, мыши быстро восстанавливаются от анестезии, на что указывает короткая длительность потери установочного рефлекса. Таким образом, данное соединение может обеспечивать быструю индукцию и восстановление от анестезии.
Пример 6
Дополнительные условия для кристаллизации Форм 2, 3 и 4
Дополнительные условия испытывались в попытке воспроизвести сообщаемые ранее кристаллизации Форм 2, 3 и 4. Однако масштабы, о которых сообщалось, были значительно уменьшены и методология соответственно видоизменена, как описано ниже.
Форма 2
5 мг твердого вещества растворялось в 25 мкл метанола и добавлялось 10 мкл этанола; раствор затем охлаждался при 4°С в течение 3 дней.
Форма 3
Предпринимались попытки в трех вариантах:
1. 5 мг твердого вещества растворялось в 25 мкл этанола и добавлялось 120 мкл этилацетата; раствор затем охлаждался при 4°С в течение 3 дней.
2. 10,1 мг твердого вещества растворялось в 300 мкл этанола и добавлялось 120 мкл этилацетата; раствор затем охлаждался при 4°С в течение 3 дней.
3. 2,5 мг твердого вещества растворялось в 50 мкл этанола в силанизированном сосуде и добавлялось 100 мкл этилацетата; раствор затем охлаждался при 4°С в течение 3 дней.
Форма 4
Предпринимались попытки в трех вариантах:
1. Подогретая (70°С) смесь изопропилацетат:этанол (40%:60% об/об) добавлялась к 5 мг подогретого твердого вещества в 20 мкл аликвотах до тех пор, пока твердое вещество не растворялось (в общем 60 мкл смеси растворителя); раствор затем оставляли медленно охлаждаться до температуры окружающей среды в термостатированной водяной ванне первоначально при 70°С на протяжении периода часов.
2. 5 мг твердого вещества растворялось в 180 мкл подогретой (50°С) смеси растворителя изопропилацетат:этанол (40%:60% об/об), и раствору давали возможность медленно охлаждаться до температуры окружающей среды в термостатированной водяной ванне (первоначально при 50°С) на протяжении периода часов.
3. 5 мг твердого вещества растворялось в 100 мкл подогретой (50°С) смеси растворителя изопропилацетат:этанол (40%:60% об/об) в силанизированном сосуде, и раствору давали возможность медленно охлаждаться до температуры окружающей среды в термостатированной водяной ванне (первоначально при 50°С) на протяжении периода часов.
Каждый из этапов кристаллизации давал твердый материал листо- и пластинообразного характера, при этом Форма 4 давала также иглообразный материал.
Пример 7
Характеристика безилата соединения формулы (I)
Безилат соединения формулы (I) является хиральным, и полагают, что он имеет одну энантиомерную форму, представленную ниже, т.е. является S-энантиомером (согласующимся с определяемыми впоследствии структурами кристаллов):
Гетероциклическая структура содержит в имидазольном кольце основный азот (рКа приблизительно 5), и в пиридильном кольце более слабо основный азот (рКа приблизительно 2). Имидазольный азот обычно протонируется в присутствии сильно кислотного безилата (рКа приблизительно -0,6) в водном растворе, причем пиридильный азот потенциально также протонируется в условиях избытка безилата.
Ожидается, что нейтральная форма свободного основания (т.е. непротонированная) соединения является несколько липофильной (logPоктанол/вода приблизительно 4,0), и, таким образом, очевидно предпочитает несколько липофильные условия окружающей среды по сравнению с водными. Кроме того, она, вероятно, сохраняет степень липофильности, даже когда монопротонируется (logDоктанол/вода приблизительно 2 при рН 3), хотя эффект безилатного противоиона, вероятно, улучшает данную тенденцию благодаря присущей ему гидрофильности. Степень липофильности дополнительно уменьшается в случае дипротонированной формы (logDоктанол/вода приблизительно 0,6 при рН 0).
Данное соединение имеет также избыток акцепторов водородной связи и, следовательно, будет подходящим образом партнерствовать с дающими водородную связь растворителями. Так, ожидается, что данное соединение будет предпочитать солюбилизацию в ряде полярных органических растворителей, таких как спирты, особенно те, которые обеспечивают частично липофильную, дающую водородную связь окружающую среду. Это подтверждено экспериментальными свидетельствами (подробности об используемых растворителях даны в Примере 8):
Указанные величины являются приблизительными, но экспериментально подтвержденными.
Данные результаты ярко свидетельствуют о хорошей растворимости соединения в широком ряде полярных органических растворителей. В частности, 2,2,2-трифторэтанол и гексафторпропан-2-ол оба определены как очень хорошие растворители для данного соединения. Это согласуется с обсуждаемыми выше суждениями, причем оба растворителя являются сильными донорами водородной связи. Аналогичным образом, более существенно липофильные растворители определены как плохие растворители и отсюда как потенциальные антирастворители для кристаллизации.
Пример 8
Кристаллизация безилата соединения формулы (I)
Описываются различные условия, способные приводить к получению кристаллического материала безилата соединения формулы (I) Форм 1 и 2. Считается, что условия кристаллизации, которые включают в качестве компонентов растворителя спирты или ацетонитрил, с их соответственно совместимыми антирастворителями или сорастворителями, обеспечивают наиболее обещающие условия для получения полезного кристаллического материала. В первую очередь используют кристаллизацию с применением бинарных смесей растворитель/антирастворитель. Кристаллизацию проводили с помощью замедленного выпаривания из недостаточно насыщенных растворов соединения в смесях растворитель/антирастворитель, при окружающей и пониженной (4°С) температуре. Кристаллизация обычно наблюдалась в пределах 3-5 дней проведения.
Когда позволяло количество образца, все условия кристаллизации выполнялись двукратно на стеклянной планшете 96-луночного формата; причем использовалась одна половина каждой планшеты для дублирования условий на другой половине планшеты. Перекрестное загрязнение между лунками снижается до минимума в зависимости от конструкции. Все из испытываемых условий были воспроизводимыми в, по крайней мере, двукратном повторении, при этом большинство, дающих твердый материал, были подходящими для дальнейшего анализа.
Во всех случаях оборудование, которое контактировало с образцами и средами для кристаллизации, тщательно очищалось разнообразными растворителями и реагентами, перед тем как промываться в этаноле и подвергаться сушке продувкой с использованием обильного выпаривающегося азота.
Применялись растворители высокого качества от промышленных поставщиков, как описано в Таблице 12.
Визуальный анализ получающихся в результате кристаллических морфологических материалов достигался с использованием бинокулярного микроскопа (приблизительно 10×-40× увеличение) с присоединенной цифровой камерой, с применением как пропускаемого, так и отражаемого освещения, в зависимости от того, что подходит.
Визуальная характеристика твердого материала суммируется ниже в Таблице 14. Наблюдалось преобладание листовых или слоисто/пластинчатых морфологических форм, или в виде уникальных кристаллов, или в виде сферических образований. Среди них почти не было морфологических различий между кристаллизациями, проводимыми при окружающей температуре и при 4°С, за исключением случаев с этанолом в качестве растворителя, когда тенденция к росту сферических образований и интерфейсного типа уменьшалась с пониженной температурой. Заметно, что использование антирастворителя может существенно улучшать качество кристаллического материала.
Примеры наблюдаемых изображений кристаллического материала представлены на Фиг.17. Как иллюстрируется данной фигурой, ацетонитрил имеет тенденцию давать рост сфер, обычно видимых как следствие плохого образования центров кристаллизации, а отсюда роста от поверхностей кристаллов плохого качества. В противоположность ему, 2-метоксиэтанол имеет тенденцию давать необычные кристаллы листо/иглообразной морфологии.
Похоже, что для Формы 1 обычно предпочтительно кристаллизовать ее при многих условиях. Однако замечено, что Форма 2 наблюдалась также при нескольких условиях кристаллизации, включающих маломасштабные аналогичные методы получения Форм 3 и 4 (описано в Примере 6). Форма 2 наблюдается в условиях, когда имеются крайние значения или полярности (ацетонитрил:вода), или липофильности (н-нонан), или обеих (димтилсульфоксид:1,2-дихлорбензол). Обычно кристаллы Формы 2 были заметными по их превосходному качеству и явно хорошо сформированной пластинчатой/слоистой особенности.
Определения на клетке дифракции рентгеновских лучей в одиночном кристалле
Для предоставления подтверждающего свидетельства генерируемых кристаллических форм определялись элементарные параметры ряда кристаллов подходящего качества с использованием дифракции рентгеновских лучей одиночного кристалла. Элементарные параметры единичного кристалла определялись с использованием дифрактометра Карра CCD с Мо излучением, кристаллы устанавливались на стекловолокно с маслом и содержались при 260 К. Параметры для Формы 1 и Формы 2 определены, как показано в Таблице 13.
Сорастворитель
Результаты кристаллизации в условиях из смесей растворитель/сорастворитель и растворитель/антирастворитель для безилата соединения формулы (I) с результатами единичного элемента методом рентгеновской дифракции одиночного кристалла приведены в Таблице 14.
из смесей растворитель/сорастворитель и растворитель/антирастворитель для соединения формулы (I) с результатами единичного элемента рентгеновской дифракцией одиночного кристалла (результаты рентгеновского излучения
для кристаллизации в условиях окружающей среды,
если не указано иное).
(и условия)
особенность кристаллов)
(при 4°С, 3 дня, силанизированная ампула)
и фрагменты
и лезвия
пластины)
Удалось определить полную кристаллическую структуру дифракции рентгеновских лучей на одиночном кристалле для различных кристаллов подходящего качества и получить полную структуру для Форм 1 и 2. Структуры данных кристаллов сообщаются в Примерах 9 и 10.
Пример 9
Структура кристаллов Формы 1
Кристаллы безилата соединения формулы (I), выращенные из раствора смеси 2-метоксиэтанол:пентилацетат, которые имеют форму игл, изображены на Фиг.17.
Выбирался одиночный кристалл игольчатой формы (размером приблизительно 0,8×0,04×0,02 мм) и определялись его элементарные параметры при 260 К, а затем при 190 К. При понижении температуры между 260-190 К не наблюдалось никакого перехода. Анализируемая здесь структура представлена для данных при 190 К; параметры кристалла и рентгеновская дифракционная очистка даны в Таблице 15.
Содержимое асимметрического звена показано на Фиг.18. Оно состоит из двух независимых молекул соединения и двух независимых противоионов безилата. Каждое соединение имеет протонированный имидазольный азот.
Flack “Enantiopole” параметр определялся как 0,03(1), и, таким образом, изображаемая здесь стереохимия структур вполне установлена и согласуется с подразумеваемой для соединения стереохимией:
Кристаллографические координаты и другие, относящиеся к делу данные приведены в форме SHELX файла в Таблице 17.
Конформационный беспорядок может быть представлен (в первом приближении) «термическими эллипсоидами» атомарных положений, как представлено на Фиг.19. Можно видеть, что основные области беспорядка лежат в метильных группах и в безилате.
Разница между двумя независимыми молекулами является результатом главным образом сложноэфирных цепей, как это видно на Фиг.20. Одна молекула имеет сложноэфирную цепь, являющуюся копланарной с имидазольным кольцом, тогда как другая молекула имеет сложноэфирную цепь, являющуюся ортогональной.
Конформация сложноэфирных цепей отличается от конформации, принятой в Форме 2 (Фиг.21). Ортогональная конформация, наблюдаемая в Форме 1, имеет наибольшее сходство с конформацией, обнаруживаемой в Форме 2.
Два независимых безилата имеют скрещенную конформацию (Фиг.22). В длинах связей не видно никаких существенных различий.
Один безилат принимает конформацию, наблюдаемую для безилата в форме 2 (Фиг.23).
Расщепленная структура кристалла, видимая вдоль кристаллографических осей а, b и с, иллюстрируется на Фиг.24а, b и с, соответственно. Фиг.25 суммирует наиболее короткие контакты, наблюдаемые в кристаллической упаковке.
Каждое соединение взаимодействует с двумя независимыми безилатами. В частности, короткое расстояние (тип водородной связи) устанавливается между одним атомом кислорода одного безилата и протонированным азотом имидазольного кольца соединения. Второе независимое соединение взаимодействует аналогично, но со вторым независимым безилатом.
Другие близкие контакты (C-O, H-O) наблюдаются между соединениями и безилатами главным образом поблизости от имидазольного и пиридильного кольца. Некоторые близкие контакты наблюдаются также между самими двумя соединениями (Br-N, C-C, O-H) и самими двумя безилатами (О-Н контакты), но для последних в меньшей степени.
С использованием определенной экспериментальной структуры кристаллов вычислен характер порошковой дифракции для Формы 1 с использованием CrystalDiffract® (CrysralDiffract - зарегистрированная торговая марка фирмы CrystalMaker Ltd) и изображается на Фиг.26. Данный характер порошка соответствует экспериментальному характеру порошка, сообщаемому для Формы 1.
Пример 10
Структура кристаллов Формы 2
Кристалл Формы 2 безилата соединения формулы (I), который имеет форму пластин, изображен на Фиг.27.
Выбирался одиночный кристалл пластинчатой формы (размером приблизительно 0,7×0,30×0,25 мм) и определялись его элементарные параметры при 260 К, а затем при 190 К. При понижении температуры между 260-190 К не наблюдалось никакого перехода. Анализируемая здесь структура представлена для данных при 190 К; параметры кристалла и рентгеновская дифракционная очистка даны в Таблице 16.
Содержимое асимметрического звена показано на Фиг.28. Оно состоит из одной независимой молекулы соединения и одного независимого безилата. Соединение имеет протонированный имидазольный азот.
Flack “Enantiopole” параметр определялся как 0,011(9), и, таким образом, изображаемая здесь стереохимия структур вполне установлена и согласуется с подразумеваемой для соединения стереохимией. Кристаллографические координаты и другие относящиеся к делу данные приведены в форме SHELX файла в Таблице 18.
Конформационный беспорядок может быть представлен (в первом приближении) “термическими эллипсоидами” атомарных положений, как представлено на Фиг.29. Можно видеть, что основные области беспорядка лежат в безилате.
Как обсуждается выше, конформация сложноэфирной цепи в Форме 2, изображаемая на Фиг.30, отличается от конформации, принятой в Форме 1.
Однако конформация безилата сходна с конформацией, наблюдаемой для одного из безилатов в Форме 1 (Фиг.31).
Структура расщепленного кристалла, видимая вдоль кристаллографических осей а, b и с, иллюстрируется на Фиг.32а, b и с, соответственно, причем Фиг.33 суммирует наиболее короткие контакты, наблюдаемые в кристаллической упаковке. Соединение устанавливает короткий контакт (тип водородной связи) с одним атомом кислорода безилата через его протонированный азот имидазольного кольца. Другие короткие контакты (С-С, C-O, H-O) наблюдаются между соединением и безилатом по имидазольному кольцу.
Некоторые близкие контакты наблюдаются также между самими двумя соединениями (Br-С, C-C, О-С, O-H), большинство из которых через сложноэфирную цепь. Между самими безилатами нет близких контактов.
С использованием определенной экспериментально структуры кристаллов вычислен характер порошковой дифракции для Формы 2 с использованием CrystalDiffract® (Фиг.34). Данный характер порошка соответствует экспериментальному характеру порошка, сообщаемому для Формы 2.
название | год | авторы | номер документа |
---|---|---|---|
СОЛИ ИНГИБИТОРА КИНАЗЫ РЕЦЕПТОРА ЭПИДЕРМАЛЬНОГО ФАКТОРА РОСТА | 2013 |
|
RU2711077C2 |
НОВАЯ ПОЛИМОРФНАЯ ФОРМА КАЛЬЦИМИМЕТИЧЕСКОГО СОЕДИНЕНИЯ | 2011 |
|
RU2599789C2 |
КРИСТАЛЛИЧЕСКИЕ ФОРМЫ 6-(1Н-ИМИДАЗОЛ-1-ИЛ)-2-ФЕНИЛХИНАЗОЛИНА И ЕГО СОЛЕЙ | 2010 |
|
RU2557547C2 |
КРИСТАЛЛИЧЕСКАЯ ФОРМА МАЛЕАТА АЗЕНАПИНА | 2006 |
|
RU2405786C2 |
КРИСТАЛЛИЧЕСКИЕ СОЕДИНЕНИЯ | 2016 |
|
RU2789672C2 |
2-(4,4-дифтор-1,3,5,7-тетраметил-2,6-дисульфо-4-боро-3а,4а-диаза-s-индацен-8-ил)-бензойная кислота и ее производные, способ их получения и их применение для флуоресцентного мечения белковых молекул | 2017 |
|
RU2680090C1 |
СОЛИ И ПОЛИМОРФЫ ЗАМЕЩЕННОГО ИМИДАЗОПИРИДИНИЛ-АМИНОПИРИДИНА | 2015 |
|
RU2732125C2 |
СТАБИЛЬНАЯ ПОЛИМОРФНАЯ ФОРМА 6-ФТОР-9-МЕТИЛ-9H-БЕТА-КАРБОЛИНА И ЕЕ ПРИМЕНЕНИЯ | 2020 |
|
RU2806322C2 |
КРИСТАЛЛИЧЕСКАЯ ТОЗИЛАТНАЯ СОЛЬ (8S,9R)-5-ФТОР-8-(4-ФТОРФЕНИЛ)-9-(1-МЕТИЛ-1Н-1,2,4-ТРИАЗОЛ-5-ИЛ)-8-9-ДИГИДРО-2Н-ПИРИДО[4,3,2-de]ФТАЛАЗИН-3(7Н)-ОНА | 2011 |
|
RU2598606C2 |
СПОСОБ ПОЛУЧЕНИЯ СУЛЬФАТА АТАЗАНАВИРА | 2005 |
|
RU2385325C2 |
Описываются новые высококристаллические моно(бензолсульфоновая кислота) безилатные соли и их полиморфные формы соединения формулы (I):
, фармацевтическая композиция, их содержащая, способы получения солей и их применение в качестве лекарственных средств, в частности для седативных или гипнотических, анксиолитических, мышечно-релаксантных или антиконвульсивных целей. 14 н. и 18 з.п. ф-лы, 36 ил., 22 табл., 10 пр.
1. Безилатная соль соединения формулы (I)
2. Соль по п.1, которая представляет собой кристаллическую соль.
3. Безилатная соль по п.2, которая представляет собой кристаллический полиморф Формы 1, который проявляет характер порошковой дифракции рентгеновских лучей (XRPD), включающий характерные пики примерно при 7,3, 7,8, 9,4, 12,1, 14,1, 14,4, 14,7 и 15,6 градусах два-тета.
4. Безилатная соль по п.2 или 3, которая представляет собой кристаллический полиморф Формы 1, включающий кристаллы с размерами единичной ячейки а=7,6868 Å, b=29,2607 Å, с=12,3756 Å, α=90°, β=97,7880°, γ=90°.
5. Безилатная соль по п.2 или 3, которая представляет собой кристаллический полиморф Формы 1, имеющий структуру кристалла, определяемую структурными координатами, показанными в приведенной ниже Таблице:
6. Безилатная соль по п.2 или 3, которая представляет собой кристаллический полиморф Формы 1, имеющий структуру кристалла с длинами полос и углами, показанными в приведенных ниже Таблицах:
Длины полос:
Углы:
7. Безилатная соль по п.2, которая представляет собой кристаллический полиморф Формы 2, который проявляет характер XRPD, включающий характерные пики примерно при 8,6, 10,5, 12,0, 13,1 и 15,9 градусах два-тета.
8. Безилатная соль по п.2, которая представляет собой кристаллический полиморф Формы 2, включающий кристаллы с размерами единичной ячейки а=8,92130 Å, b=11,1536 Å, с=25,8345 Å, α=90°, β=90°, γ=90°.
9. Безилатная соль по п.2, которая представляет собой кристаллический полиморф Формы 2, имеющий структуру кристалла, определяемую структурными координатами, показанными в приведенной ниже Таблице:
10. Безилатная соль по п.2, которая представляет собой кристаллический полиморф Формы 2, имеющий структуру кристалла с длинами полос и углами, показанными в приведенных ниже Таблицах:
Длины полос:
Углы
11. Безилатная соль по п.2, которая представляет собой кристаллический полиморф безилатной соли Формы 3 соединения формулы (I), который проявляет характер порошковой дифракции рентгеновских лучей (XRPD), включающий характерные пики при 7,6, 11,2, 12,4, 14,6, 15,2, 16,4 и 17,7 градусах два-тета.
12. Безилатная соль по п.2, которая представляет собой кристаллический полиморф безилатной соли Формы 4 соединения формулы (I), который проявляет характер XRPD, включающий характерные пики при 7,6, 10,8, 15,2, 15,9 и 22,0 градусах два-тета.
13. Фармацевтическая композиция для продуцирования у субъекта успокоения, гипноза, анксиолизиса, мышечной релаксации или лечения конвульсий, содержащая соль по любому из пп.1-12 и фармацевтически приемлемый носитель, эксципиент или разбавитель.
14. Соль по п.1 для применения в качестве лекарственного средства, для продуцирования у субъекта успокоения, гипноза, анксиолизиса, мышечной релаксации или лечения конвульсий.
15. Применение седативного или гипнотического количества соли по любому из пп.1-12 для получения лекарственного средства для продуцирования у субъекта успокоения или гипноза.
16. Применение анксиолитического количества соли по любому из пп.1-12 для получения лекарственного средства для продуцирования у субъекта анксиолизиса.
17. Применение мышечнорелаксантного количества соли по любому из пп.1-12 для получения лекарственного средства для продуцирования у субъекта мышечной релаксации.
18. Применение антиконвульсивного количества соли по любому из пп.1-12 для получения лекарственного средства для лечения у субъекта конвульсий.
19. Способ получения соли по п.1, включающий взаимодействие свободного основания соединения формулы (I) с бензолсульфоновой кислотой.
20. Способ по п.19, который включает контактирование свободного основания с бензолсульфоновой кислотой в растворе, вызывая образование осадка безилатной соли.
21. Способ по п.20, который дополнительно включает отделение осадка.
22. Способ по п.20 или 21 для получения кристаллической соли безилата Формы 1, в котором свободное основание растворяют в толуоле или этилацетате.
23. Способ по п.20, в котором бензолсульфоновую кислоту растворяют в этаноле.
24. Способ по п.20 для получения кристаллической соли безилата Формы 1 по любому из пп.3-6, который включает контактирование раствора свободного основания соединения формулы (I) в толуоле, этилацетате, ацетоне, изопропилацетате или этилформиате с раствором бензолсульфоновой кислоты в этаноле, вызывая образование осадка соли.
25. Способ по п.20 для получения кристаллической соли безилата Формы 2 по любому из пп.7-10, который включает контактирование раствора свободного основания соединения формулы (I) в метаноле с раствором бензолсульфоновой кислоты в этаноле, вызывая образование осадка соли.
26. Способ получения кристаллической соли безилата Формы 3 по п.11, который включает затравливание раствора фильтрата, отделенного от осадка, образуемого контактированием раствора соединения формулы (I) в этилацетате с раствором бензолсульфоновой кислоты в этаноле, кристаллической солью безилата Формы 1 соединения формулы (I).
27. Способ получения кристаллической соли безилата Формы 4 по п.12, который включает перекристаллизацию кристаллической соли безилата Формы 1 соединения формулы (I) из смеси 40% изопропилацетат/этанол.
28. Способ получения кристаллической соли безилата Формы 1 или Формы 2 по любому из пп.2-10, который включает кристаллизацию безилата соединения формулы (I) из растворителя или из смеси подходящий растворитель/антирастворитель или растворитель/сорастворитель.
29. Способ продуцирования седативного эффекта или гипноза у субъекта, включающий введение субъекту эффективного седативного или гипнотического количества соли по любому из пп.1-12.
30. Способ индуцирования анксиолизиса у субъекта, включающий введение субъекту эффективного анксиолитического количества соли по любому из пп.1-12.
31. Способ индуцирования мышечной релаксации у субъекта, включающий введение субъекту эффективного мышечнорелаксантного количества соли по любому из пп.1-12.
32. Способ лечения конвульсий у субъекта, включающий введение субъекту эффективного антиконвульсивного количества соли по любому из пп.1-12.
WO 00/69836 A, 23.11.2000 | |||
Пломбировальные щипцы | 1923 |
|
SU2006A1 |
Способ получения изображений на завуалированных фотобумагах | 1990 |
|
SU1781665A1 |
Механический пульверизатор | 1925 |
|
SU2623A1 |
RU 20044124370 A, 20.01.2006. |
Авторы
Даты
2012-12-27—Публикация
2007-07-10—Подача