СПЛАВ НА ОСНОВЕ СИСТЕМЫ НИКЕЛЬ-ХРОМ Российский патент 2015 года по МПК C22C19/05 

Описание патента на изобретение RU2561627C1

Изобретение относится к разработке прецизионных сплавов на основе системы никель-хром, работающих в широком диапазоне температур и предназначенных для реализации микрометаллургических процессов получения функциональных покрытий на основе порошковых материалов (методом гетерофазного переноса) и литых микропроводов (методом высокоскоростной закалки из жидкой фазы) с высокой микротвердостью.

Микротвердость одна из основных физико-механических характеристик, определяющая срок службы изделий при внешних механических воздействиях. Базовая система никель-хром является весьма перспективной как с точки зрения матричного материала, так и с точки зрения достижения высокого уровня эксплуатационных свойств, в т.ч. для работы при повышенных температурах.

Известны сплавы этой системы для получения микропроводов методом высокоскоростной закалки из жидкой фазы, а также функциональных покрытий, составы которых приведены в таблице 1.

Наиболее близким по технической сущности является сплав, выбранный в качестве прототипа, содержащий компоненты в следующем соотношении, мас. %:

Cr - (0,6-14,0); Si - (4,0-6,0); Се - (0,05-0,2); La - (0,05-0,2); Y - (0,2-0,6); Ni - остальное (патент РФ №2351672, С22С 19/05, опубл. 10.04.2009 г.).

Однако, как показали соответствующие измерения, проведенные экспертами, микротвердость известных сплавов, в том числе и сплава-прототипа, не превышает 0,5 ГПа и существенно уменьшается при нагревании и охлаждении, что исключает их практическое применение в широком интервале работающих температур.

Техника сегодняшнего дня требует повышения микротвердости материалов, используемых для изготовления изделий, работающих в жестких условиях эксплуатации, до значений 2-3 ГПа, в том числе при воздействии высоких и низких температур.

Техническим результатом изобретения является разработка сплава, позволяющего получать порошковые композиции, функциональные покрытия, микропровода с более высокой микротвердостью не ниже 3,0 ГПа.

Технический результат достигается за счет того, что сплав системы никель-хром, содержащий лантан, церий, кремний, иттрий, в соответствии с изобретением дополнительно содержит рений, вольфрам, марганец и олово при следующих соотношениях компонентов, мас. %:

Cr 12,0-18,0; Mn 7,0-10,5; Sn 2,0-3,0; Si 1,0-1,5; W 0,8-2,5; Re 0,9-1,8; Се 0,2-0,6; La 0,1-0,5; Y 0,3-0,7; Ni остальное.

Двойная система Ni - основа и (12-18)% Cr является оптимальной пластичной матрицей для введения технологических добавок марганца и кремния.

Сплав системы никель-хром имеет высокое межфазное натяжение (до 22 Дж/м2), что не позволяет устойчиво получать порошки, функциональные покрытия методами гетерофазного переноса или литье микропроводов методами закалки из расплава.

Следует особо отметить специфику легирования предлагаемого сплава, реализуемого в настоящем изобретении. Сущность этой специфики заключается во введении двух лигатур в виде устойчивых интерметаллических соединений: Mn2Si и Mn2Sn. Их введение в шихту проводится раздельно, а в конечном составе сплава производится суммирование количества Мn, входящего в каждый из интерметаллидов.

Практика показывает, что наиболее эффективное снижение межфазного натяжения до требуемых значений - менее 1,0 Дж/м2 (для получения качественного покрытия) обеспечивается за счет комплексного введения марганца и кремния в сумме 6-9% при соотношениях Mn:Si=5:1, что соответствует устойчивому соединению Mn2Si при соответствующих содержаниях Mn - (5,0-7,5)% и Si - (1,0-1,5)%. Микротвердость этого сплава низкая и не превышает 0,4 ГПа.

В четырехкомпонентный сплав на основе Ni и Cr - (12,0-18,0)%; Mn - (5,0-7,5)%; Si - (1,0-1,5)% для сохранения интервала температурной стабильности в области положительных температур (до 400°C) и отрицательных температур (до -196°C) дополнительно вводится вольфрам в количестве 0,8-2,5%.

При меньшем чем 0,8% содержании вольфрама требуемого эффекта не наблюдается, при содержании вольфрама более 2,5% температура плавления сплава нежелательно скачкообразно возрастает на 120-160°C, что затрудняет реализацию жидкофазных процессов при получении покрытий и литье микропроводов.

Для стабилизации процесса получения покрытий необходимо, чтобы температура ликвидуса составляла не более 1400-1500°C. Сплав, указанный в прототипе, имеет температуру ликвидуса порядка 1600°C. Для понижения температуры ликвидуса и обеспечения качественного получения функциональных покрытий и литья микропроводов необходимо в сплав дополнительно ввести интерметаллид Mr2Sn, который, во-первых, понижает температуру ликвидуса до требуемых температур и, во-вторых, будучи когерентно связан с матрицей сплава, обеспечивает повышение технологического процесса напыления и литья микропроводов. Оптимальное количество интерметаллида, как показали эксперименты, должно быть 4,0-6,0%. При меньшем чем 4% количестве интерметаллида требуемого эффекта понижения температуры ликвидуса не наблюдается. При большем чем 6% количестве интерметаллида имеет место охрупчивание сплава. Введение интерметаллида Mn2Sn в указанных количествах соответствует дополнительному содержанию в сплаве 2,0-3,0 мас.% Mn и 2,0-3,0 мас.% Sn.

Обеспечивая высокие технологические свойства при получении покрытий методом гетерофазного переноса и литье микропроводов методом высокоскоростной закалки из жидкой фазы, сплав системы: основа Ni; (12,0-18,0)Cr; (7,0-10,5)Mn; (1,0-1,5)Si; (0,8-2,5)W; (2,0-3,0%)Sn не обеспечивает требуемой микротвердости. Для повышения микротвердости, как показала практика, необходимо дополнительно ввести упрочняющий компонент. Оптимальным является введение рения в количестве (0,9-1,8)%. Эффект упрочнения наблюдается с 0,9% Re, при этом микротвердость достигает 3,0 ГПа. При 1,8% Re микротвердость возрастает до 4,6 ГПа, но при содержании рения более 1,8% наблюдается образование трещин в функциональных покрытиях и обрывы при литье микропроводов.

Прецизионность любого микрометаллургического процесса эффективно обеспечивается за счет комплексного введения эффективных модификаторов в виде малых добавок редкоземельных элементов, имеющих наибольшее сродство к кислороду, водороду и азоту - соответственно церия, лантана и иттрия.

Введение указанных добавок очищает сплав от неметаллических включений и обеспечивает устойчивость протекания процессов нанесения функциональных покрытий и литья микропроводов. Это возможно, если при комплексном введении указанных редкоземельных элементов (РЗЭ) в количестве, не превышающем в сумме 1,8%. Экспериментально установлено, что поэлементное содержание церия должно быть (0,2-0,6)%, лантана (0,1-0,5)%, иттрия (0,3-0,7)%, при большем количестве каждого из указанных РЗЭ и их суммарном содержании более 1,8% образуются фазы, негативно влияющие на стабильность протекания микрометаллургических процессов.

Таким образом, оптимальный состав предлагаемого сплава, мас. %:

Cr 12,0-18,0; Mn 7,0-10,5; Sn 2,0-3,0; Si 1,0-1,5; W 0,8-2,5; Re 0,9-1,8; Се 0,2-0,6; La 0,1-0,5; Y 0,3-0,7; Ni остальное.

Из сплава указанных составов получены функциональные покрытия и литые микропровода.

Пример 1

Выплавка сплава осуществляется с помощью высококачественной установки типа УИП16-10-003 в алундовых тиглях N4. Последовательность введения компонентов следующая: Ni→Cr→(Mn2Si)→>(Mr2Sn)→W→Re→(Ce-La-Y). Состав сплава, мас. %:

Cr - 12,0; Mn - 7,0; Sn - 2,0; Si - 1,0; W - 0,8; Re - 0,9; Се - 0,2; La - 0,1; Y - 0,3; Ni - остальное.

После получения слитка производилось его дробление до фракции 5-7 мм с помощью щековой дробилки типа ДЩ-4. Из полученных гранул на установке типа ELIRI по типовой технологии литья с боросиликатным стеклом типа ТУ (термоустойчивый) получены микропровода диаметром 40±3 мкм и длиной более 3000 м (против 500 м по прототипу). Микротвердость жилы микропровода, измеренная на установке типа Nanoscan, составила: 4,2 ГПа - при комнатной температуре; 3,6 ГПа - при температуре -196°C и 4,0 ГПа - при температуре +400°C.

После получения слитка, для изготовления порошкового материала, производилось дробление слитка до фракции 40-60 мкм на дезинтеграторе типа Дези-15 при скоростях вращения роторов 12000 об/мин.

Из полученного порошка с помощью метода сверхзвукового холодного газодинамического напыления на установке типа ДИМЕТ-3 на подложку ленты из стали Х15Ю5 ГОСТ 12766.1-90 шириной 100 мм и толщиной 0,3 мм было нанесено функциональное покрытие толщиной 100±10 мкм.

Микротвердость покрытия, измеренная на установке типа Nanoscan, составляет 4,2 ГПа при комнатной температуре.

Пример 2

Выплавка сплава производилась так же, как в примере 1. Состав сплава, мас. %:

Cr - 18,0; Mn - 10,5; Sn - 3,0; Si - 1,5; W - 2,5; Re -1,8; Се - 0,6; La - 0,5; Y - 0,7; Ni - остальное.

После получения слитка производилось дробление слитка до фракции 40-60 мкм на дезинтеграторе типа Дези-15 при скоростях вращения роторов 12000 об/мин.

Из полученного порошка с помощью метода сверхзвукового холодного газодинамического напыления на установке типа ДИМЕТ-3 на подложку ленты из стали Х15Ю5 ГОСТ 12766.1-90 шириной 100 мм и толщиной 0,3 мм было нанесено функциональное покрытие толщиной 100±10 мкм.

Микротвердость покрытия, измеренная на установке типа Nanoscan, составляет 4,6 ГПа при комнатной температуре.

После получения слитка, для литья микропроводов, производилось его дробление до фракции 5-7 мм с помощью щековой дробилки типа ДЩ-4. Из полученных гранул на установке типа ELIRI по типовой технологии литья с боросиликатным стеклом типа ТУ получены микропровода диаметром 40±3 мкм и длиной более 3000 м. Микротвердость жилы микропровода, измеренная на установке типа Nanoscan, составила: 4,0 ГПа - при комнатной температуре; 3,3 ГПа - при температуре -196°C и 3,7 ГПа - при температуре +400°C.

Технико-экономическая эффективность от применения разработанного сплава по сравнению с прототипом выразится в повышении надежности работы изделия, в которой используются микропровода и функциональные покрытия.

Похожие патенты RU2561627C1

название год авторы номер документа
КОМПОЗИЦИОННЫЙ СПЛАВ НА ОСНОВЕ Co-TiB-BN 2013
  • Васильев Алексей Филиппович
  • Фармаковский Борис Владимирович
  • Кузнецов Павел Алексеевич
  • Юрков Максим Анатольевич
  • Фармаковская Алина Яновна
  • Низкая Анастасия Вячеславовна
  • Ковалева Анастасия Андреевна
  • Деев Артем Андреевич
  • Черныш Алексей Алексадрович
  • Елисеев Александр Андреевич
  • Бобкова Татьяна Игоревна
RU2539553C1
ИЗНОСО-КОРРОЗИОННОСТОЙКИЙ МЕДНО-НИКЕЛЕВЫЙ СПЛАВ 2013
  • Шолкина Марина Николаевна
  • Федорченко Валерия Борисовна
  • Крылов Павел Сергеевич
  • Егорова Екатерина Эдуардовна
  • Васильев Алексей Филиппович
  • Фармаковский Борис Владимирович
  • Шуба Иван Михайлович
  • Юрков Максим Анатольевич
RU2553799C2
ИЗНОСОСТОЙКИЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ ДЛЯ НАНЕСЕНИЯ ИЗНОСО- И КОРРОЗИОННО-СТОЙКИХ ПОКРЫТИЙ НА КОНСТРУКЦИОННЫЕ ЭЛЕМЕНТЫ МИКРОПЛАЗМЕННЫМ ИЛИ СВЕРХЗВУКОВЫМ ГАЗОДИНАМИЧЕСКИМ НАПЫЛЕНИЕМ 2011
  • Бобкова Татьяна Игоревна
  • Васильев Алексей Филиппович
  • Фармаковский Борис Владимирович
  • Шолкин Сергей Евгеньевич
  • Сомкова Екатерина Александровна
RU2476616C1
СПЛАВ НА ОСНОВЕ КОБАЛЬТА ДЛЯ НАНЕСЕНИЯ ПОКРЫТИЙ 2013
  • Фармаковский Борис Владимирович
  • Васильев Алексей Филиппович
  • Петраускене Янина Валерьевна
  • Бобкова Татьяна Игоревна
  • Кузнецов Павел Алексеевич
  • Юрков Максим Анатольевич
  • Деев Артём Андреевич
RU2543579C2
НАНОКОМПОЗИТ НА ОСНОВЕ НИКЕЛЬ-ХРОМ-МОЛИБДЕН 2013
  • Деев Артем Андреевич
  • Фармаковская Алина Яновна
  • Бобкова Татьяна Игоревна
  • Юрков Максим Анатольевич
  • Мазеева Алина Константиновна
  • Колдаев Антон Викторович
RU2525878C1
Износостойкий сплав на основе меди 2023
  • Каширина Анастасия Анверовна
  • Быстров Руслан Юрьевич
  • Васильев Алексей Филиппович
  • Кубанцев Виктор Иванович
  • Петров Сергей Николаевич
  • Самоделкин Евгений Александрович
  • Старицын Михаил Владимирович
  • Фармаковский Борис Владимирович
  • Шакиров Иван Викторович
RU2812936C1
СПЛАВ НА ОСНОВЕ ИНТЕРМЕТАЛЛИДА NiAl С МОНОКРИСТАЛЛИЧЕСКОЙ СТРУКТУРОЙ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО 2012
  • Каблов Евгений Николаевич
  • Базылева Ольга Анатольевна
  • Бондаренко Юрий Александрович
  • Горюнов Александр Валерьевич
RU2516215C1
СПЛАВ НА ОСНОВЕ НИОБИЯ ДЛЯ ФОРМИРОВАНИЯ 3D-ИЗДЕЛИЙ СЛОЖНОЙ ФОРМЫ И ПОКРЫТИЙ 2016
  • Бобкова Татьяна Игоревна
  • Линова Юлия Владимировна
  • Грибанова Валерия Борисовна
  • Святышева Екатерина Вадимовна
  • Новоскольцев Никита Станиславович
  • Фармаковский Борис Владимирович
RU2614230C1
СПЛАВ НА ОСНОВЕ СЕРЕБРА ДЛЯ НАНОСТРУКТУРИРОВАННЫХ ПОКРЫТИЙ 2007
  • Фармаковский Борис Владимирович
  • Сомкова Екатерина Александровна
  • Сергеева Оксана Сергеевна
  • Юрков Максим Анатольевич
  • Точенюк Дарья Александровна
  • Быстров Руслан Юрьевич
  • Семенов Александр Сергеевич
  • Песков Тимофей Владимирович
  • Геращенков Дмитрий Анатольевич
RU2350673C1
Износостойкий резистивный сплав на основе меди с отрицательным температурным коэффициентом сопротивления 2022
  • Фармаковский Борис Владимирович
  • Васильев Алексей Филиппович
  • Бобкова Татьяна Игоревна
  • Гошкодеря Михаил Евгениевич
RU2796582C1

Реферат патента 2015 года СПЛАВ НА ОСНОВЕ СИСТЕМЫ НИКЕЛЬ-ХРОМ

Изобретение относится к области металлургии, в частности к прецизионным сплавам на основе системы никель-хром, работающих в широком диапазоне температур и предназначенных для реализации микрометаллургических процессов получения функциональных покрытий на основе порошковых материалов и литых микропроводов с высокой микротвердостью. Сплав системы никель-хром содержит, мас. %: Cr 12,0-18,0, Mn 7,0-10,5, Sn 2,0-3,0, Si 1,0-1,5, W 0,8-2,5, Re 0,9-1,8, Се 0,2-0,6, La 0,1-0,5, Y 0,3-0,7, Ni остальное. Сплав получен при введении марганца, кремния и олова в виде интерметаллидов Mn2Si и Mn2Sn, причем соотношение марганца и кремния в интерметаллиде Mn2Si составляет 5:1. Изобретение позволяет получать порошковые композиции, функциональные покрытия, микропровода с более высокой микротвердостью. 1 табл., 2 пр.

Формула изобретения RU 2 561 627 C1

Сплав на основе системы никель-хром, содержащий кремний, церий, лантан и иттрий, отличающийся тем, что он дополнительно содержит марганец, олово, вольфрам и рений при следующем соотношении компонентов, мас. %:
Cr - 12,0-18,0
Mn - 7,0-10,5
Sn - 2,0-3,0
Si - 1,0-1,5
W - 0,8-2,5
Re - 0,9-1,8
Се - 0,2-0,6
La - 0,1-0,5
Y - 0,3-0,7
Ni - остальное,
причем сплав получен при введении марганца, кремния и олова в виде интерметаллидов Mn2Si и Mn2Sn, причем соотношение марганца и кремния в интерметаллиде Mn2Si составляет 5:1.

Документы, цитированные в отчете о поиске Патент 2015 года RU2561627C1

СПЛАВ НА ОСНОВЕ НИКЕЛЯ 0
  • Е. Я. Бадинтер, В. И. Вахрамеев, Н. Я. Караснк, В. Г. Красиньков, Г. А. Пон Тое, А. Н. Савенков, Б. В. Фармаковский В. Шуб
SU308083A1
СШ1АВ НА ОСНОВЕ НИКЕЛЯi.j i ! i tsf-«nis« г>&г;-.'г: •'•:T7'rirt 4-'Ju.H «.^,vSSi»s' l;.b! 1972
  • Б.В.Фармаковжш, Е.В.Шувалов В.З.Шуб
SU433232A1
СПЛАВ НА ОСНОВЕ НИКЕЛЯ 2007
  • Щепочкина Юлия Алексеевна
RU2333988C1
US 5154885 A, 13.10.1992
JP 6442544 A, 14.02.1989

RU 2 561 627 C1

Авторы

Васильев Алексей Филиппович

Фармаковский Борис Владимирович

Кузнецов Павел Алексеевич

Юрков Максим Анатольевич

Фармаковская Алина Яновна

Низкая Анастасия Вячеславовна

Бобкова Татьяна Игоревна

Ешмеметьева Екатерина Николаевна

Масайло Дмитрий Валерьевич

Даты

2015-08-27Публикация

2014-07-08Подача