СПОСОБ ИЗМЕРЕНИЯ ЗАДЕРЖЕК РАСПРОСТРАНЕНИЯ УЛЬТРАЗВУКОВЫХ ВОЛН В АНИЗОТРОПНЫХ СРЕДАХ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ Российский патент 2013 года по МПК G01N29/00 

Описание патента на изобретение RU2480740C1

Изобретение относится к методам неразрушающего контроля и может быть использовано для измерения механических напряжений в одно- и двухосном напряженном состоянии конструкционных материалов эхо-импульсным методом на основе явления акустоупругости с помощью сдвиговых и продольных волн, распространяющихся по нормали к плоскости действия напряжений.

Известен ультразвуковой способ измерения толщины изделия с большим затуханием ультразвука, заключающийся в том, что в материал излучают зондирующий фазоманипулированный сигнал с узким главным лепестком его автокорреляционной функции, принимают донный эхо-сигнал, после приема эхо-сигнала получают его корреляционную функцию путем оптимальной фильтрации, фиксируют момент времени, при котором эта функция максимальна, а время распространения сигнала в материале определяют как интервал между моментом окончания фазоманипулированного зондирующего сигнала и зафиксированным моментом времени (патент РФ №20552769, G01B 17/02, опубликованный 20.01.1996) - прототип.

Он же может служить и прототипом устройства для реализации способа, включающего последовательно соединенные генератор широкополосных возбуждающих сигналов и широкополосный излучающий ультразвуковой преобразователь, последовательно соединенные широкополосный приемный ультразвуковой преобразователь, входной усилитель, оптимальный фильтр.

Недостаток этого решения - невысокая точность измерения задержки распространения ультразвуковой волны при наличии в материале двух сдвиговых волн, имеющих разную, но близкую скорость распространения (двух мод), что соответствует малому коэффициенту акустической анизотропии. Снижение точности происходит из-за взаимного влияния двух близкорасположенных пиков корреляционной функции, ширина главного лепестка которых определяется, главным образом, шириной частотной полосы тракта.

Недостатком данного способа также является использование только фазоманипулированных сигналов, т.к. существуют другие классы широкополосных сигналов, например ЛЧМ (линейно-частотно-модулированных) сигналов, имеющих более подходящий вид автокорреляционной функции.

Таким образом, из анализа уровня техники определения задержек распространения ультразвуковых волн видно, что в известных способах и устройствах не решена задача точного определения задержек распространения, одновременно присутствующих в материале сдвиговых и продольных ультразвуковых волн.

Эти недостатки устраняются предлагаемым решением.

Решается задача повышения точности определения задержек ультразвуковых волн.

Технический результат состоит в возможности различения нескольких сдвиговых и продольных волн, одновременно присутствующих в эхо-сигнале и измерения задержек их распространения независимо.

Этот технический результат достигается тем, что в способе измерения задержек распространения ультразвуковых волн в анизотропных средах, заключающемся в том, что в среду вводят зондирующий сигнал с узким главным лепестком его автокорреляционной функции и принимают эхо-сигнал, после приема эхо-сигнала получают его автокорреляционную функцию путем согласованной фильтрации, в качестве зондирующего сигнала используют произвольный широкополосный сигнал и осуществляют согласованную фильтрацию для многократно отраженного эхо-сигнала в диапазоне ожидаемых задержек, представляют отображение задержек распространения ультразвуковых волн как результат многоканальной согласованной фильтрации в виде поверхности, образованной отсчетами времени по оси ординат, номерами и выходными сигналами каналов многоканального согласованного фильтра соответственно по осям абсцисс и аппликат;

в устройстве для реализации способа, содержащем последовательно соединенные генератор широкополосных возбуждающих сигналов и широкополосный излучающий ультразвуковой преобразователь, последовательно соединенные широкополосный приемный ультразвуковой преобразователь, входной усилитель, фильтр использован многоканальный согласованный, соединенный с выходом входного усилителя, блок отображения сигналов с выхода многоканального фильтра, блок вычисления задержек, причем выходы многоканального согласованного фильтра соединены с входами блока отображения сигналов и блока вычисления задержек.

При данном способе измерения принятый сигнал представляет собой совокупность отраженных ультразвуковых сигналов. При наличии нескольких волн (мод), одновременно присутствующих в эхо-сигнале, принятый сигнал может быть представлен в виде суммы откликов, имеющих разный интервал повторения.

Предлагаемый способ реализуется устройством, блок-схема которого представлена на Фиг.1, на Фиг.2 приведена структура второго каскада многоканального согласованного фильтра. На Фиг.3 представлен пример осциллограммы эхо-сигнала, полученного при акустическом зондировании металлической заготовки с коэффициентом акустической анизотропии ≈7%. Вдоль оси абсцисс - номера отсчетов следующих с частотой 180 МГц, вдоль оси ординат - значения эхо-сигнала после аналого-цифрового преобразования. На Фиг.4 представлен результат согласованной фильтрации сигнала изображенного на Фиг.3, полученный с выхода первого каскада многоканального согласованного фильтра. На Фиг.5 представлен результат многоканальной согласованной фильтрации эхо-сигнала, изображенного на Фиг.4 вторым каскадом многоканального согласованного фильтра, отображенный в виде поверхности.

Устройство для реализации способа включает последовательно соединенные генератор 1 широкополосных возбуждающих сигналов и широкополосный излучающий ультразвуковой преобразователь 2, последовательно соединенные широкополосный приемный ультразвуковой преобразователь 4, входной усилитель 5, многоканальный согласованный фильтр 6 с последовательностью импульсов с ожидаемыми задержками распространения ультразвуковых волн, соединенный с выходом входного усилителя 5, блок 7 отображения сигналов с выхода многоканального согласованного фильтра 6, блок 8 вычисления задержек, причем выходы многоканального согласованного фильтра 6 соединены с входами блока 7 отображения сигналов и блока 8 вычисления задержек.

Способ измерения задержек распространения ультразвуковых волн в анизотропных средах заключается в следующем.

В среду (блок 3 на Фиг.1) вводят с помощью излучающего ультразвукового преобразователя 2 (Фиг.1) зондирующий сигнал с узким главным лепестком его автокорреляционной функции, с этой же стороны изделия с помощью приемного ультразвукового преобразователя 4 (Фиг.1) принимают многократно отраженный эхо-сигнал в диапазоне ожидаемых задержек, усиливают его во входном усилителе 5 (Фиг.1) и подают на вход многоканального согласованного фильтра 6 (Фиг.1). Многоканальный согласованный фильтр 6 является двухкаскадным фильтром. Первый каскад представляет собой фильтр, согласованный с зондирующим сигналом, и выполняет операцию арифметической свертки усиленного эхо-сигнала с выхода входного усилителя 5 с комплексно-сопряженным образцом зондирующего сигнала. Второй каскад представляет собой набор К межпериодных фильтров порядка NR, выполненных в соответствии с Фиг.2. Каждый из этих фильтров настроен на собственный интервал повторения Tj и выполняет операцию:

где S(t) - принятый эхо-сигнал,

Ci - отсчеты весового окна, которое может применяться для уменьшения взаимного влияния близко расположенных мод;

tn - момент времени, соответствующий n-му отсчету эхо-сигнала.

В качестве весового окна, например, может быть использовано единичное весовое окно (Ci=1, i=1÷NR).

Количество фильтров (К) в наборе определяется требуемым диапазоном измеряемых интервалов и дискретностью представления результата.

Степень селекции мод зависит от порядка межпериодных фильтров (NR) и реального количества откликов в эхо-сигнале, формы импульсов в эхо-сигнале, коэффициентов весового окна Ci и, например, для прямоугольного весового окна и эхо-сигнала, представляющего собой последовательность радиоимпульсов, определяется следующей формулой (2):

где ΔT - разность интервалов повторения различаемых мод, а τ - период высокочастотного заполнения отдельного отклика.

Дополнительно ослабить влияние боковых лепестков функции Q(ΔT) и, соответственно, уменьшить влияние мешающей моды (помехи) позволяет использование механизма оконного взвешивания коэффициентов C1÷CN в модуле синхронного накопителя пачки (CHj на Фиг.2), например, симметричным окном фон Ханна:

Данная операция является частичным отступлением от полностью оптимальной обработки и может применяться при наличии достаточного отношения сигнал-шум в тех случаях, когда доминирующей является методическая погрешность.

Далее, для достижения указанного технического результата предлагается при анализе и отображении сигналы с выходов многоканального согласованного фильтра 6 представлять в виде U(Tj,tn) - функции двух аргументов - интервала повторения (Tj, где j - номера канала многоканального согласованного фильтра 6) и отсчетов времени (tn - задержек распространения), далее, поверхность «интервал-задержка», что позволяет одновременно и при этом независимо анализировать с повышенной точностью несколько сдвиговых волн, имеющих разные, но близкие скорости распространения.

Пример осуществления

В среду (металлическую заготовку с коэффициентом акустической анизотропии ≈7%) был введен зондирующий сигнал, представляющий собой прямоугольный импульс длительностью 144 не и принят эхо-сигнал. На Фиг.3 представлен эхо-сигнал, полученный с выхода входного усилителя 5. Вдоль оси абсцисс - номера временных отсчетов, следующих с частотой 180 МГц, вдоль оси ординат - значения эхо-сигнала после аналого-цифрового преобразования. Далее, путем согласованной фильтрации была получена автокорреляционная функция принятого эхо-сигнала в диапазоне ожидаемых задержек. Результат согласованной фильтрации - выход первого каскада многоканального согласованного фильтра 6 представлен на Фиг.4 (вдоль оси абсцисс - номера временных отсчетов, следующих с частотой 180 МГц). На Фиг.4 хорошо различимы две периодические последовательности откликов, имеющие различный интервал повторения, приблизительно равный 1135 и 1230 отсчетов. Сигналы с выхода второго каскада многоканального согласованного фильтра 6, полученные в соответствии с формулой (1) и представленные в виде поверхности «интервал-задержка», изображены на Фиг.5. Вдоль оси абсцисс (Х - горизонтальная ось на Фиг.5) изменяется интервал повторения (Tj, где j - номера канала многоканального согласованного фильтра 6), вдоль оси ординат (Y - вертикальная ось на Фиг.5) изменяются номера отсчетов времени (tn - задержки распространения), вдоль оси аппликат (значения вдоль оси аппликат отображаются посредством изменения цвета) изменяются значения функции U(Tj,tn).

Способ и устройство проходят промышленные испытания. Технический результат полностью подтвердился.

Похожие патенты RU2480740C1

название год авторы номер документа
СПОСОБ УЛЬТРАЗВУКОВОГО КОНТРОЛЯ 2010
  • Соколов Игорь Вячеславович
  • Качанов Владимир Климентьевич
  • Карташев Владимир Герасимович
  • Шалимова Елена Владимировна
  • Синицын Алексей Алексеевич
RU2444009C1
РАДИОЛОКАТОР СО СЖАТИЕМ СИГНАЛОВ 1984
  • Литвин Михаил Владимирович
SU1840559A1
УЛЬТРАЗВУКОВОЙ СПОСОБ ИЗМЕРЕНИЯ ТОЛЩИНЫ ИЗДЕЛИЯ 2009
  • Алехин Сергей Геннадиевич
  • Бобров Владимир Тимофеевич
  • Дурейко Андрей Владимирович
  • Козлов Владимир Николаевич
  • Самокрутов Андрей Анатольевич
  • Шевалдыкин Виктор Гавриилович
RU2442106C2
СПОСОБ ПЕРВИЧНОЙ ИМПУЛЬСНО-ДОПЛЕРОВСКОЙ ДАЛЬНОМЕТРИИ ЦЕЛЕЙ НА ФОНЕ УЗКОПОЛОСНЫХ ПАССИВНЫХ ПОМЕХ 2016
  • Кириченко Александр Андреевич
  • Колбаско Иван Васильевич
  • Колобов Андрей Евгеньевич
  • Шевелев Станислав Викторович
RU2641727C1
Способ обработки радиолокационных сигналов в импульсно-доплеровской радиолокационной станции с активной фазированной антенной решеткой 2021
  • Ларин Александр Юрьевич
  • Литвинов Алексей Вадимович
  • Мищенко Сергей Евгеньевич
  • Помысов Андрей Сергеевич
  • Шацкий Виталий Валентинович
RU2760409C1
СПОСОБ УЛЬТРАЗВУКОВОЙ ЭХО-ИМПУЛЬСНОЙ ТОЛЩИНОМЕТРИИ 2014
  • Соколов Игорь Вячеславович
  • Качанов Владимир Климентьевич
  • Концов Роман Валерьевич
  • Караваев Михаил Алексеевич
  • Синицын Алексей Алексеевич
RU2570097C1
Способ повышения разрешающей способности радиолокационного сверхширокополосного зондирования 2019
  • Захаров Михаил Васильевич
RU2710837C1
Акустический способ и устройство измерения параметров морского волнения 2019
  • Волощенко Вадим Юрьевич
  • Тарасов Сергей Павлович
  • Пивнев Петр Петрович
  • Воронин Василий Алексеевич
  • Волощенко Елизавета Вадимовна
  • Плешков Антон Юрьевич
RU2721307C1
СПОСОБ УСКОРЕНИЯ РЕГИСТРАЦИИ ЭХО-СИГНАЛОВ С ПОМОЩЬЮ УЛЬТРАЗВУКОВОЙ АНТЕННОЙ РЕШЕТКИ 2014
  • Базулин Евгений Геннадиевич
  • Вопилкин Алексей Харитонович
  • Тихонов Дмитрий Сергеевич
RU2560756C1
УСТРОЙСТВО И СПОСОБ ПРИЕМА ОПТИЧЕСКОГО СИГНАЛА, ОТРАЖЕННОГО ОТ ЗОНДИРУЕМОГО ОБЪЕКТА 2021
  • Имшенецкий Владимир Владиславович
RU2778546C1

Иллюстрации к изобретению RU 2 480 740 C1

Реферат патента 2013 года СПОСОБ ИЗМЕРЕНИЯ ЗАДЕРЖЕК РАСПРОСТРАНЕНИЯ УЛЬТРАЗВУКОВЫХ ВОЛН В АНИЗОТРОПНЫХ СРЕДАХ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Использование: для измерения механических напряжений в одно- и двухосном напряженном состоянии конструкционных материалов эхо-импульсным методом. Сущность заключается в том, что в среду вводят зондирующий сигнал с узким главным лепестком его автокорреляционной функции и принимают эхо-сигнал, после приема эхо-сигнала получают его автокорреляционную функцию путем согласованной фильтрации, при этом в качестве зондирующего сигнала используют произвольный широкополосный сигнал и осуществляют согласованную фильтрацию для многократно отраженного эхо-сигнала в диапазоне ожидаемых задержек, представляют отображение задержек распространения ультразвуковых волн как результат многоканальной согласованной фильтрации в виде поверхности, образованной отсчетами времени по оси ординат, номерами и выходными сигналами каналов многоканального согласованного фильтра соответственно по осям абсцисс и аппликат. Технический результат: обеспечение возможности различения нескольких сдвиговых и продольных волн, одновременно присутствующих в эхо-сигнале, и измерения задержек их распространения независимо. 2 н.п. ф-лы, 5 ил.

Формула изобретения RU 2 480 740 C1

1. Способ измерения задержек распространения ультразвуковых волн в анизотропных средах, заключающийся в том, что в среду вводят зондирующий сигнал с узким главным лепестком его автокорреляционной функции и принимают эхо-сигнал, после приема эхо-сигнала получают его автокорреляционную функцию путем согласованной фильтрации, отличающийся тем, что в качестве зондирующего сигнала используют произвольный широкополосный сигнал и осуществляют согласованную фильтрацию для многократно отраженного эхо-сигнала в диапазоне ожидаемых задержек, представляют отображение задержек распространения ультразвуковых волн, как результат многоканальной согласованной фильтрации в виде поверхности, образованной отсчетами времени по оси ординат, номерами и выходными сигналами каналов многоканального согласованного фильтра соответственно по осям абсцисс и аппликат.

2. Устройство для измерения задержек распространения ультразвуковых волн в анизотропных средах, содержащее последовательно соединенные генератор широкополосных возбуждающих сигналов и широкополосный излучающий ультразвуковой преобразователь, последовательно соединенные широкополосный приемный ультразвуковой преобразователь, входной усилитель, фильтр, отличающееся тем, что использован многоканальный согласованный фильтр, соединенный с выходом входного усилителя, блок отображения сигналов с выхода многоканального согласованного фильтра, блок вычисления задержек, причем выходы многоканального согласованного фильтра соединены с входами блока отображения сигналов и блока вычисления задержек.

Документы, цитированные в отчете о поиске Патент 2013 года RU2480740C1

RU 2052769 C1, 20.01.1996
СПОСОБ ОБНАРУЖЕНИЯ ШИРОКОПОЛОСНЫХ ФАЗОМАНИПУЛИРОВАННЫХ СИГНАЛОВ И ОПРЕДЕЛЕНИЯ ВИДА ИХ МОДУЛЯЦИИ ПРИ АКУСТООПТИЧЕСКОЙ ОБРАБОТКЕ 2006
  • Нахмансон Геннадий Симонович
  • Малышев Иван Иосифович
  • Оганджанян Юрий Александрович
  • Маньков Павел Леонидович
RU2310206C1
СПОСОБ УЛЬТРАЗВУКОВОЙ ДИАГНОСТИКИ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2004
  • Свет Виктор Дарьевич
  • Галыбин Николай Николаевич
  • Маев Роман Григорьевич
RU2308228C2
ВОЛНОВОЙ ОБНАРУЖИТЕЛЬ НЕОДНОРОДНОСТЕЙ 2006
  • Неволин Владимир Иванович
RU2313110C1
JP 10019857 A, 23.01.1998
JP 61051563 A, 14.03.1986.

RU 2 480 740 C1

Авторы

Букварёв Евгений Александрович

Мартынюк Михаил Владимирович

Пасманик Лев Абрамович

Смирнов Владимир Алексеевич

Даты

2013-04-27Публикация

2011-11-25Подача