Способ экстракции меди из водных растворов относится к области извлечения веществ органическими экстрагентами из водных растворов и может быть использован в цветной и черной металлургии, а также для очистки промышленных и бытовых стоков.
Известны способы извлечения меди экстракцией смесью непредельных карбоновых кислот состава, мас.%: 20-30 олеиновой, 20-40 линолевой, 40 эруковой и 2-9 пальмитиновой в интервале рН=4-8 [Бубнов В.К. и другие. Теория и практика добычи полезных ископаемых для комбинированных способов выщелачивания. Алма-Ата, 1992, стр.522].
Недостатком способа является относительная дороговизна используемых экстрагентов.
Наиболее близким техническим решением является экстракция меди из водных растворов с концентрацией 500 мг/дм3 растительными маслами при рН≥4, отношении органической и водной фаз О:В=1:19 и регулировании величины рН в течение не более 4,5 [Патент РФ №2155815 от 2000 г., МПК 7 С22В 3/26 // С22В 3/26 // С22 В 3/26 // С22В 15:00, БИ №25].
Недостатком способа является недостаточная точность условий экстракции. Известно, что при рН>5,5 из водного раствора выделяется гидроксид меди. Кроме того, не исследована экстракция из более концентрированных водных растворов >500 мг/дм3, других соотношениях О:В и времени экстракции, для экстракции исследованы лишь 4 вида растительных масел.
Задачей изобретения является уточнение оптимальных параметров экстракции ионов меди из водных растворов растительными маслами (исходной концентрации, величины рН, отношением органической и водной фаз О:В, времени и температуры) с использованием большего количества видов растительных масел.
Технический результат, который может быть достигнут при осуществлении изобретения, заключается в высокой степени эффективности извлечения меди из водных растворов с одновременной экономичностью и безопасностью процесса.
Этот технический результат достигается тем, что в известном способе экстракции меди из водного раствора растительными маслами, включающем контакт экстрагента и раствора, перемешивание смеси, отстаивание и разделение фаз, экстракцию осуществляют из водного раствора с концентрацией ≤5 г/дм3 по меди при В:О≤8, рН 5,5-6,5 и 8,5-10,5 и регулировании величины рН в течение не более 30 мин.
Сущность способа поясняется данными фиг.1-6, в которых указаны концентрация меди в исходных растворах, время экстракции при заданной величине рН, концентрация меди и величина рН в осветленной водной фазе, коэффициент распределения, рассчитываемый как отношение равновесных концентраций меди в органической и водной фазах.
Перемешивание и поддержание заданного значения рН осуществляли до тех пор, пока в дальнейшем кислотно-основные характеристики системы изменялись незначительно. Однако для большей гарантии достижения равновесия контакт органической и водной фаз осуществляли не менее суток. По достижении равновесия между органической и осветленной водной фазами органическую фазу отделяли от водной, в последней определяли величину рН и остаточную концентрацию меди. Для поддержания заданного значения рН раствора в процессе экстракции в качестве нейтрализаторов использовали растворы щелочи или кислоты.
Используя значения концентраций меди в водном растворе - исходном и после экстракции, рассчитывали коэффициент распределения меди между органической и водной фазами.
Примеры конкретного выполнения способа.
Пример 1 (фиг.1)
На фиг.1 дана зависимость остаточной концентрации ионов меди от величины рН раствора. Экстрагент - оливковое масло, С0=1,2 г/дм3, время экстракции 1 час, О:В=1:3, t=24°С. Лучшие результаты экстракции получены при рН 5,5-6,5 и 8,5-10,5. Вероятно, экстрагируются различные по составу комплексы меди с составляющими экстрагента: один - при рН 6, другой - при рН 10. При рН≥11 образуются осадки.
Пример 2 (фиг.2)
На фиг.2 дана зависимость остаточной концентрации ионов меди от времени экстракции. Экстрагент - оливковое масло. С0=3,21 г/дм3, рН 10, О:В=1:3, t=24°С. Видно, что время экстракции не превышает 30 мин.
Пример 3 (фиг.3)
На фиг.3 дана зависимость остаточной концентрации ионов меди от отношения В:О и рН экстракции: графики 1 - рН 6 и 2 - рН 10. Экстрагент - оливковое масло, С0=1,1 г/дм3, время экстракции - сутки, t=24°С. Экстракция осуществляется при В:О≤8. При В:О>8 образуются осадки.
Пример 4 (фиг.4)
На фиг.4 дана зависимость остаточной концентрации ионов меди от времени и начальной концентрации С0, г/дм3: 1,1; 2,2; 3,2; 4,5. Экстрагент - оливковое масло, рН 10, О:В=1:3, t=24°С. Экстракция осуществляется за время не более 30 мин.
Установлено, что экстракция описывается уравнением первого порядка вида
где K - константа скорости процесса.
По данным фиг.4 рассчитаны значения К в уравнении (I):
В интервале исходных концентраций С0=1-3 г/дм3 с увеличением концентрации скорость процесса возрастает.
Пример 5 (фиг.5)
На фиг.5 дана зависимость остаточной концентрации ионов меди от времени экстракции и температуры t=18, 24, 30, 35°С. Экстрагент - оливковое масло, рН 10, С0=4,5 г/дм3, О:В=1:3. Экстракция осуществляется за время не более 30 мин.
Установлено, что экстракция описывается уравнением первого порядка (1). По данным фиг.5 рассчитаны значения К в уравнении (1):
В интервале температур t=18-35°С скорость процесса уменьшается.
Исходя из кинетического анализа реакции можно предположить, что первый порядок процесса - увеличение скорости процесса с ростом исходной концентрации - может свидетельствовать о том, что процесс лимитируется скоростью внешней диффузии. Уменьшение скорости экстракции с ростом температуры может быть связано с коалесценцией (слиянием капель растительного масла) внутри подвижного раствора при перемешивании. С увеличением температуры скорость коалесценции растет, а следовательно, уменьшается межфазная поверхность между органической и водной фазой, что согласно первому закону Фика снижает скорость диффузии. Кроме того, положение двойной связи в олеиновой кислоте может меняться при нагревании и при различных химических воздействиях. Например, термообработка в щелочной среде способствует миграции двойной связи в положение, смежное с карбоксильной группой.
Пример 6 (фиг.6)
На фиг.6 дана зависимость коэффициента распределения D от вида растительного масла: 1 - абрикосовое, 2 - тыквенное, 3 - кедровое, 4 - соевое, 5 - виноградное, 6 - кукурузное, 7 - грецкого ореха, 8 - подсолнечное, 9 - льняное, 10 - оливковое. О:В=1:6. t=24°С.
Условия экстракции:
а - С0=1,1 г/дм3; рН=6 б - С0=1,1 г/дм3; рН=10
в - С0=5 г/дм3; рН=6 г - С0=5 г/дм3; рН=10
Для абрикосового кедрового, соевого и кукурузного масел в условиях экстракции «г» в случае, когда при нейтрализации до рН 10 выпадали осадки гидроксидов, проводили нейтрализацию серной кислотой, которую добавляли порционно до растворения гидроксидов (практически до рН 6,5).
Высокие показатели экстракции получены для абрикосового, тыквенного, соевого, грецкого ореха, подсолнечного, оливкового масел, плохо экстрагируют ионы меди виноградное и льняное масла.
Высокие показатели экстракции получены, вероятно, потому, что в составе растительных масел содержатся олеиновая кислота и другие компоненты, способные экстрагировать ионы тяжелых металлов. Растительные масла - это насыщенные и ненасыщенные (с одной, двумя и тремя двойными связями) одноосновные жирные кислоты с неразветвленной углеродной цепью и четным числом углеродных атомов (преимущественно C16 и C18). Так, содержание олеиновой кислоты, мас.%: в подсолнечном масле 24-40, в кукурузном масле - 30-49, в оливковом масле - около 80, в соевом масле - 23-29. Кроме того, в растительных маслах обнаружены в небольших количествах жирные кислоты с нечетным числом углеродных атомов (от С15 до С23).
название | год | авторы | номер документа |
---|---|---|---|
ЭКСТРАКЦИЯ ИОНОВ ЖЕЛЕЗА ИЗ ВОДНЫХ РАСТВОРОВ РАСТИТЕЛЬНЫМИ МАСЛАМИ | 2012 |
|
RU2491977C1 |
ЭКСТРАКЦИЯ ИОНОВ СВИНЦА ИЗ ВОДНЫХ РАСТВОРОВ РАСТИТЕЛЬНЫМИ МАСЛАМИ | 2012 |
|
RU2501868C2 |
СПОСОБ ИЗВЛЕЧЕНИЯ ИОНОВ ТЯЖЕЛЫХ МЕТАЛЛОВ ИЗ ВОДНЫХ РАСТВОРОВ | 2014 |
|
RU2576569C2 |
ЭКСТРАКЦИЯ ИОНОВ ЦИНКА ИЗ ВОДНЫХ РАСТВОРОВ РАСТИТЕЛЬНЫМИ МАСЛАМИ | 2012 |
|
RU2499063C2 |
СПОСОБ ОЧИСТКИ НИКЕЛЕВОГО ЭЛЕКТРОЛИТА ОТ ПРИМЕСЕЙ ЖЕЛЕЗА (III) И МЕДИ (II) ЭКСТРАКЦИЕЙ СМЕСЬЮ ОЛЕИНОВОЙ КИСЛОТЫ И ТРИЭТАНОЛАМИНА | 2015 |
|
RU2604286C1 |
ИЗВЛЕЧЕНИЕ МОЛИБДЕНА ИЗ ВОДНЫХ РАСТВОРОВ ВОЛЬФРАМАТОВ | 2000 |
|
RU2181782C1 |
СПОСОБ ОЧИСТКИ НИКЕЛЕВОГО ЭЛЕКТРОЛИТА ОТ ПРИМЕСЕЙ ЖЕЛЕЗА (III), КОБАЛЬТА (III) И МЕДИ (II) ЭКСТРАКЦИЕЙ | 2015 |
|
RU2604289C1 |
СПОСОБ ЭКСТРАКЦИИ ЖЕЛЕЗА (III) И МЕДИ (II) ИЗ ВОДНЫХ РАСТВОРОВ СМЕСЬЮ ОЛЕИНОВОЙ КИСЛОТЫ И ТРИЭТАНОЛАМИНА В КЕРОСИНЕ | 2015 |
|
RU2591915C1 |
СПОСОБ ЭКСТРАКЦИИ МЕДИ ИЗ ВОДНЫХ РАСТВОРОВ | 1999 |
|
RU2155818C1 |
СПОСОБ ОЧИСТКИ БЛАГОРОДНЫХ МЕТАЛЛОВ ОТ ПРИМЕСЕЙ | 1998 |
|
RU2147618C1 |
Изобретение относится к экстракции меди из водных растворов и может быть использовано в цветной и черной металлургии, а также для очистки промышленных и бытовых стоков. Способ экстракции меди из водного раствора включает контактирование экстрагента, в качестве которого используют растительные масла, и раствора. Затем ведут перемешивание смеси, отстаивание и разделение фаз. При этом экстракцию осуществляют из водного раствора с концентрацией меди ≤5 г/дм3 при отношении водной и органической фаз В:O≤8, рН 5,5-6,5 и 8,5-10,5. Причем регулирование величины рН проводят в течение не более 30 мин. Технический результат заключается в высокой степени эффективности извлечения меди из водных растворов с одновременной экономичностью и безопасностью процесса. 6 ил., 6 пр.
Способ экстракции меди из водного раствора растительными маслами, включающий контактирование экстрагента и раствора, перемешивание смеси, отстаивание и разделение фаз, отличающийся тем, что экстракцию осуществляют из водного раствора с концентрацией меди ≤5 г/дм3 при отношении водной и органической фаз В:O≤8, рН 5,5-6,5 и 8,5-10,5 и регулировании величины рН в течение не более 30 мин.
СПОСОБ ЭКСТРАКЦИИ МЕДИ ИЗ ВОДНЫХ РАСТВОРОВ | 1999 |
|
RU2155818C1 |
СПОСОБ ЭКСТРАКЦИИ МЕДИ ИЗ ВОДНЫХ РАСТВОРОВ | 2002 |
|
RU2219258C2 |
RU 2005135644 А, 10.04.2006 | |||
RU 2005109425 А, 10.09.2005 | |||
Устройство для испытания однородности парамагнитных изделий электромагнитным способом | 1929 |
|
SU15857A1 |
СА 1083828 А1, 19.08.1980 | |||
Грохот | 1988 |
|
SU1549615A1 |
US 5281336 А, 25.01.1994. |
Авторы
Даты
2013-05-10—Публикация
2011-12-08—Подача