СПОСОБ ВИХРЕТОКОВОГО КОНТРОЛЯ Российский патент 2013 года по МПК G01N27/90 

Описание патента на изобретение RU2482471C1

Изобретение относится к контрольно-измерительной технике и может быть использовано в промышленности для контроля осевого смещения и поперечного биения валов турбин, электродвигателей и других агрегатов, в которых используются подшипники скольжения. Известен способ вихретокового контроля [1, 2], в котором используется вихретоковый датчик, включающий в себя вихретоковый пробник, удлинительный кабель и драйвер. В составе вихретокового пробника используется металлический зонд с диэлектрическим наконечником, в котором заключена катушка индуктивности. Сигнал возбуждения от драйвера подается на катушку индуктивности вихретокового пробника, которая под действием этого сигнала излучает электромагнитное поле. Электромагнитное поле катушки индуктивности взаимодействует с металлической поверхностью объекта контроля, наводя в ней вихревые токи. Электромагнитное поле этих токов действует навстречу электромагнитному полю катушки индуктивности, изменяя ее комплексное сопротивление. При перемещении металлической поверхности объекта контроля, приводящем к изменению величины зазора между этой поверхностью и вихретоковым пробником с катушкой индуктивности, возникает эквивалентное этому изменение комплексного сопротивления катушки индуктивности, которое преобразуется драйвером в электрический сигнал. Формируемый драйвером электрический сигнал прямо пропорционален величине зазора между металлической поверхностью объекта контроля и вихретоковым датчиком, что позволяет вычислить величину перемещения металлической поверхности объекта контроля относительно ее исходного положения вдоль направления на вихретоковый пробник с катушкой индуктивности.

Недостатками способа являются:

1. Зависимость чувствительности и точности определения величины перемещения металлической поверхности объекта контроля относительно ее исходного положения вдоль направления на вихретоковый пробник с катушкой индуктивности от величины зазора между металлической поверхностью объекта контроля и вихретоковым пробником с катушкой индуктивности и их снижение при возрастании величины этого зазора.

2. Увеличение влияния на точность измерений посторонних металлических масс при возрастании величины зазора между металлической поверхностью объекта контроля и вихретоковым пробником с катушкой индуктивности.

3. Необходимость линеаризации передаточной функции вихретокового датчика при его калибровке в диапазоне изменений величины зазора между металлической поверхностью объекта контроля и вихретоковым пробником с катушкой индуктивности, численно равном диапазону определяемых величин перемещений этой поверхности вдоль направления на вихретоковый пробник с катушкой индуктивности.

Целью изобретения является снижение зависимости чувствительности и точности определения вихретоковым датчиком значения величины перемещения металлической поверхности объекта контроля вдоль направления на вихретоковый пробник с катушкой индуктивности от значения величины зазора между металлической поверхностью объекта контроля и вихретоковым пробником с катушкой индуктивности, снижение влияния посторонних металлических масс на точность измерений вихретокового датчика при возрастании значения величины перемещения металлической поверхности объекта контроля вдоль направления на вихретоковый пробник с катушкой индуктивности, а также уменьшение диапазона значений величины зазора между металлической поверхностью объекта контроля и вихретоковым пробником с катушкой индуктивности, необходимых для линеаризации передаточной функции вихретокового датчика при его калибровке.

Сущность изобретения заключается в том, что в вихретоковом датчике задают и поддерживают диапазон разрешенных значений величины зазора между металлической поверхностью объекта контроля и вихретоковым пробником с катушкой индуктивности. Вихретоковым датчиком измеряют величину зазора между металлической поверхностью объекта контроля и вихретоковым пробником с катушкой индуктивности и на основе результатов этих измерений определяют и запоминают величину перемещения металлической поверхности объекта контроля вдоль направления на вихретоковый пробник с катушкой индуктивности относительно ее исходного положения. При этом на основе результатов измерений вихретоковый пробник с катушкой индуктивности перемещают, в случае необходимости, на такое расстояние, чтобы обеспечить поддержание значения величины зазора между металлической поверхностью объекта контроля и вихретоковым пробником с катушкой индуктивности в пределах заданного диапазона разрешенных значений величины этого зазора. При отклонении измеренного значения величины зазора между металлической поверхностью объекта контроля и вихретоковым пробником с катушкой индуктивности за пределы поддерживаемого вихретоковым датчиком диапазона значений величины этого зазора определяют и запоминают величину перемещения металлической поверхности объекта контроля вдоль направления на вихретоковый пробник с катушкой индуктивности относительно ее исходного положения. После этого вихретоковый пробник с катушкой индуктивности перемещают на такое расстояние, чтобы устанавливаемое при этом значение величины зазора между металлической поверхностью объекта контроля и вихретоковым пробником с катушкой индуктивности попадало в середину заданного диапазона его разрешенных значений.

Для этого вихретоковый пробник с катушкой индуктивности размещают на подвижном штоке привода шагового двигателя. На катушку индуктивности вихретокового пробника, входящего в состав вихретокового датчика, подают переменный электрический сигнал, по величине амплитуды которого на катушке индуктивности измеряют величину зазора между металлической поверхностью объекта контроля и вихретоковым пробником с катушкой индуктивности. На основе измеренного значения величины этого зазора вычисляют и запоминают величину перемещения металлической поверхности объекта контроля вдоль направления на вихретоковый пробник с катушкой индуктивности относительно ее исходного положения. Измеренное значение величины зазора между металлической поверхностью объекта контроля и вихретоковым пробником с катушкой индуктивности сравнивают с диапазоном его разрешенных значений. Если измеренное значение величины зазора между металлической поверхностью объекта контроля и вихретоковым пробником с катушкой индуктивности попадает в диапазон его разрешенных значений, то выполняют очередное измерение значения величины зазора между металлической поверхностью объекта контроля и вихретоковым пробником с катушкой индуктивности. При отклонении измеренного значения величины зазора между металлической поверхностью объекта контроля и вихретоковым пробником с катушкой индуктивности за пределы диапазона его разрешенных значений выдается управляющий сигнал на шаговый двигатель для перемещения подвижного штока привода этого двигателя на такое расстояние, чтобы устанавливаемое при этом значение величины этого зазора попадало в середину диапазона его разрешенных значений. После отработки шаговым двигателем этого управляющего сигнала выполняют очередное измерение значения величины зазора между металлической поверхностью объекта контроля и вихретоковым пробником с катушкой индуктивности. Проведенный сравнительный анализ выявил следующие отличия заявленного способа от способа-прототипа:

1. Способ характеризуется наличием дополнительных действий над материальным объектом:

- поддержанием значения величины зазора между металлической поверхностью объекта контроля и вихретоковым пробником с катушкой индуктивности в процессе измерений в пределах заданного диапазона его разрешенных значений;

- определением и запоминанием при каждом измерении результирующего перемещения металлической поверхности объекта контроля относительно ее исходного положения с учетом запомненного ранее значения величины этого перемещения.

2. Изменена совокупность действий над материальным объектом:

- в заявленном способе отсутствуют действия по линеаризации передаточной функции вихретокового датчика при его калибровке во всем диапазоне значений величины зазора между металлической поверхностью объекта контроля и вихретоковым пробником с катушкой индуктивности, численно равном диапазону определяемых значений величины перемещений этой поверхности вдоль направления на вихретоковый пробник с катушкой индуктивности относительно ее исходного положения. Линеаризация передаточной функции вихретокового датчика в заявленном способе проводится только в ограниченном диапазоне разрешенных значений величины зазора между металлической поверхностью объекта контроля и вихретоковым пробником с катушкой индуктивности;

- определенное по результатам измерений и запомненное значение величины перемещения металлической поверхности объекта контроля вдоль направления на вихретоковый пробник с катушкой индуктивности относительно исходного положения этой металлической поверхности используется при определении очередного значения величины ее перемещения на основе результатов очередного измерения значения величины зазора между металлической поверхностью объекта контроля и вихретоковым пробником с катушкой индуктивности.

На Фиг.1 представлен один из возможных вариантов структурной схемы устройства, реализующего заявляемый способ вихретокового контроля. На Фиг.1 использованы следующие обозначения:

1 - металлическая поверхность объекта контроля;

2 - катушка индуктивности;

3 - трубка из диэлектрика;

4 - отрезок металлической трубки;

5 - подвижный винт;

6 - привод шагового двигателя;

7 - упругая муфта;

8 - вал шагового двигателя;

9 - шаговый двигатель;

10 - устройство управления;

11 - вихретоковый датчик;

Δ - зазор.

Трубка из диэлектрика 3 выполнена из твердого, но пластичного диэлектрика на основе полимерных материалов. Внутри трубки из диэлектрика 3, в одном из ее концов, закреплена катушка индуктивности 2, которая электрически связана с устройством управления 10. В боковой грани трубки из диэлектрика 3 сделано отверстие, диаметр которого равен диаметру кабеля, электрически соединяющего катушку индуктивности 2 и устройство управления 10. В качестве кабеля, осуществляющего эту электрическую связь, используется гибкий экранированный коаксиальный кабель. Внутри другого конца трубки из диэлектрика 3 жестко закреплен в ней болтами отрезок металлической трубки 4. На внутренней поверхности отрезка металлической трубки 4 нарезана резьба. Внешний диаметр отрезка металлической трубки 4 выбран таким, чтобы этот отрезок заходил внутрь трубки из диэлектрика «внатяг», т.е. с усилием. На внешней стороне трубки из диэлектрика 3 параллельно ее продольной оси симметрии и друг другу сделаны пазы, благодаря которым трубка из диэлектрика 3 может перемещаться только в строго фиксированном продольном направлении при размещении в ее пазах специальных направляющих пластин. При этом вращательное движение трубки из диэлектрика 3 полностью исключается. Внешний вид трубки из диэлектрика 3 (Фиг.1) со стороны ее конца, в котором закреплен отрезок металлической трубки 4, представлен на Фиг.2, поясняющей конструкцию трубки из диэлектрика 3. На Фиг.2 использованы следующие обозначения:

1 - трубка из диэлектрика;

2, 3 - пазы;

4 - отрезок металлической трубки;

5 - резьба внутри отрезка металлической трубки;

6, 7 - шляпки болтов, которыми жестко скреплены трубка из диэлектрика 1 и отрезок металлической трубки 4.

Трубка из диэлектрика 3 (Фиг.1) с закрепленными внутри нее катушкой индуктивности 2 и отрезком металлической трубки 4 является вихретоковым пробником. Внутри отрезка металлической трубки 4 вкручен подвижный винт 5 (Фиг.1), внешние границы которого внутри этого отрезка металлической трубки показаны на Фиг.1 пунктирными линиями. Подвижный винт 5 (Фиг.1) механически соединен с приводом шагового двигателя 6, который упругой муфтой 7 механически соединен с валом шагового двигателя 8. Использование упругой муфты 7 для механической связи привода шагового двигателя 6 и вала шагового двигателя 8 позволяет исключить резонансные явления в этой механической связи. Шаговый двигатель 9 (Фиг.1) электрически связан с устройством управления 10. В качестве шагового двигателя 9 (Фиг.1) может быть использован прецизионный шаговый двигатель с постоянными магнитами и четырьмя обмотками, соединенными по схеме «звезда», работающий в униполярном режиме. Это, например, может быть один из шаговых двигателей серий FL20STH и FL28STH. За полный шаг такого шагового двигателя обеспечивается 200 фиксированных положений его вала на один оборот, а в режиме полушага - 400 фиксированных положений. Для получения более высокой точности работы вихретокового датчика 11 в схеме, представленной на Фиг.1, используется режим полушага, который обеспечивает продольное перемещение вихретокового пробника при переходе шагового двигателя 9 из одного фиксированного положения в другое на величину 2,5 мкм, причем это перемещение является достаточно медленным, например за 1 секунду. В устройстве управления 10 (Фиг.1) для управления работой вихретокового датчика 11 может использоваться шестнадцатибитный микроконтроллер MSP430F163 с тактовой частотой 8 МГц. Помимо этого, в устройстве управления 10 размещен генератор гармонических колебаний, который вырабатывает и подает на катушку индуктивности 2 вихретокового пробника гармоническое колебание с частотой порядка одного мегагерца.

Вихретоковый датчик 11, структурная схема которого представлена на Фиг.1, работает следующим образом.

Генератор гармонических колебаний, размещенный в устройстве управления 10, вырабатывает гармонический сигнал с частотой колебаний порядка одного мегагерца и подает его на катушку индуктивности 2 вихретокового пробника. Катушка индуктивности 2 под действием этого сигнала излучает электромагнитное поле. Электромагнитное поле катушки индуктивности 2 вихретокового пробника взаимодействует с металлической поверхностью объекта контроля 1, наводя в ней вихревые токи. Электромагнитное поле этих токов действует навстречу электромагнитному полю катушки индуктивности 2 вихретокового пробника, изменяя ее комплексное сопротивление. Изменение величины зазора Δ между металлической поверхностью объекта контроля 1 и вихретоковым пробником с катушкой индуктивности 2 приводит к изменению комплексного сопротивления катушки индуктивности 2, что приводит к изменению в катушке индуктивности амплитуды возбуждающего гармонического колебания, подаваемого на нее устройством управления 10. По величине изменения амплитуды гармонического колебания устройством управления 10 рассчитывается текущее значение величины зазора Δ между металлической поверхностью объекта контроля 1 и вихретоковым пробником с катушкой индуктивности 2. Таким образом измеряется величина зазора Δ. На основе измеренного значения величины зазора Δ устройством управления 10 определяется и запоминается текущее значение величины перемещения металлической поверхности объекта контроля 1 вдоль направления на вихретоковый пробник с катушкой индуктивности 2 относительно ее исходного положения. Измеренное значение величины зазора Δ между металлической поверхностью объекта контроля 1 и вихретоковым пробником с катушкой индуктивности 2 сравнивается в устройстве управления 10 с диапазоном его значений значением, поддерживаемым вихретоковым датчиком 11. Если измеренное значение величины зазора Δ попадает в заданный диапазон его разрешенных значений, то алгоритм работы вихретокового датчика 11 повторяется начиная с очередного измерения величины зазора Δ между металлической поверхностью объекта контроля 1 и вихретоковым пробником с катушкой индуктивности 2. При выходе измеренного значения величины зазора Δ между металлической поверхностью объекта контроля 1 и вихретоковым пробником с катушкой индуктивности 2 за пределы заданного диапазона его разрешенных значений устройство управления 10 выдает управляющий сигнал на шаговый двигатель 9 для поворота вала 8 этого двигателя. Поворот вала шагового двигателя 8 через упругую муфту 7 передается на привод шагового двигателя 6, который поворачивается синхронно с валом шагового двигателя 8. С приводом шагового двигателя 6 механически соединен подвижный винт 5, и поэтому он поворачивается одновременно с приводом шагового двигателя 6 и валом шагового двигателя 8. При повороте подвижный винт 5 (Фиг.1) движется по резьбе внутри отрезка металлической трубки 4. Отрезок металлической трубки 4 (Фиг.1) жестко закреплен болтами внутри трубки из диэлектрика 3, которая установлена так, что не может вращаться, а может перемещаться только в строго фиксированном продольном направлении параллельно ее продольной оси симметрии по размещенным в ее пазах 2, 3 (Фиг.2) специальным направляющим пластинам. Таким образом, поворот подвижного винта 5 (Фиг.1) приводит к продольному перемещению трубки из диэлектрика 3. При отклонении измеренного значения величины зазора Δ (Фиг.1) между металлической поверхностью объекта контроля 1 и вихретоковым пробником с катушкой индуктивности 2 за пределы заданного диапазона его разрешенных значений устройство управления 10 выдает управляющий сигнал на шаговый двигатель 9 для поворота вала 8 этого двигателя, а значит, и синхронного с этим поворота привода шагового двигателя 6 и подвижного винта 5 на такой угол, поворот на который вызывает продольное перемещение трубки из диэлектрика 3 на такое расстояние, чтобы устанавливаемое при этом значение величины зазора Δ между металлической поверхностью объекта контроля 1 и вихретоковым пробником с катушкой индуктивности 2 попадало в середину заданного диапазона его разрешенных значений. После отработки шаговым двигателем 9 (Фиг.1) этого управляющего сигнала алгоритм работы вихретокового датчика 11 повторяется начиная с очередного измерения величины зазора между металлической поверхностью объекта контроля и вихретоковым пробником с катушкой индуктивности.

Таким образом, в процессе работы вихретокового датчика 11 (Фиг.1) значение величины зазора Δ между металлической поверхностью объекта контроля 1 и вихретоковым пробником с катушкой индуктивности 2 поддерживается в пределах заданного диапазона его разрешенных значений. Это обеспечивает снижение зависимости чувствительности и точности определения величины перемещения металлической поверхности объекта контроля 1 (Фиг.1) относительно ее исходного положения вдоль направления на вихретоковый пробник с катушкой индуктивности 2 от величины зазора Δ между металлической поверхностью объекта контроля 1 и вихретоковым пробником с катушкой индуктивности 2, снижение влияния на точность измерений посторонних металлических масс при возрастании величины зазора Δ, а также уменьшение диапазона значений величины зазора Δ, необходимых для линеаризации передаточной функции вихретокового датчика при его калибровке.

Для исключения постоянного колебательного режима работы привода шагового двигателя 6 (Фиг.1) в управлении работой шагового двигателя 9 использован режим «гистерезиса». Этот режим работы иллюстрируется с помощью Фиг.3. На Фиг.3 использованы следующие обозначения:

1 - металлическая поверхность объекта контроля;

2 - вихретоковый пробник в виде трубки из диэлектрика;

3 - катушка индуктивности вихретокового пробника;

Δмин. - минимальное разрешенное значение величины зазора между металлической поверхностью объекта контроля и вихретоковым пробником с катушкой индуктивности;

Δмакс. - максимальное разрешенное значение величины зазора между металлической поверхностью объекта контроля и вихретоковым пробником с катушкой индуктивности;

Δтек. - текущее значение величины зазора между металлической поверхностью объекта контроля и вихретоковым пробником с катушкой индуктивности.

«Гистерезисный» режим работы заключается в том, что в устройстве управления 10 (Фиг.1) вихретокового датчика 11 задается диапазон разрешенных значений величины зазора Δ от его минимального Δмин. (Фиг.3) до его максимального Δмакс. значений. Только при выходе измеренного текущего значения величины зазора Δтек. (Фиг.3) между металлической поверхностью объекта контроля и вихретоковым пробником с катушкой индуктивности за пределы диапазона его разрешенных значений, заданных в устройстве управления 10 (Фиг.1), это устройство выдает управляющий сигнал на шаговый двигатель 9 для поворота вала 8 этого двигателя, вызывающего продольное перемещение трубки из диэлектрика 3 (Фиг.1). Значение этого управляющего сигнала таково, что вал шагового двигателя 8 (Фиг.1), упругая муфта 7, привод шагового двигателя 6 и подвижный винт 5 поворачиваются на угол, при повороте на который обеспечивается такое продольное перемещение трубки из диэлектрика 3 с размещенной в ней катушкой индуктивности 2, чтобы устанавливаемое при этом перемещении значение величины зазора Δ (Фиг.1) попадало в середину заданного диапазона его разрешенных значений. Вихретоковым датчиком 11 (Фиг.1) компенсируются медленные изменения величины зазора Δ с большими амплитудами (например, вызванные тепловыми деформациями корпуса объекта контроля, приводящими к большим по амплитуде медленным перемещениям его металлической поверхности), а быстрые изменения величины зазора Δ, имеющие малую амплитуду, измеряются вихретоковым датчиком, но не компенсируются.

В целях подтверждения осуществимости заявленного объекта и достигнутого технического результата изготовлен и испытан действующий макет устройства, реализующий заявленный способ. Проведенные испытания показали осуществимость заявленного способа вихретокового контроля и устройства для его осуществления, подтвердили практическую значимость заявленного способа.

Проведенный патентный поиск показал, что предлагаемое изобретение в полной мере отвечает критерию новизны.

ЛИТЕРАТУРА

1. Грошков Е., Кирпичев А., Клюшев А. Интеллектуальные вихретоковые датчиковые системы // Компоненты и технологии, 2009, №1, с.22-24.

2. Патент №2185617. Российская Федерация. Способ вихретокового контроля и устройство для его осуществления / Клюшев А.В.; заявл. 07.02.2000.

Похожие патенты RU2482471C1

название год авторы номер документа
УПРАВЛЯЕМЫЙ УПРУГОПЛАСТИЧЕСКИЙ ДЕМПФЕР ОБОРУДОВАНИЯ И ТРУБОПРОВОДОВ ГЛАВНОГО ЦИРКУЛЯЦИОННОГО КОНТУРА РЕАКТОРА АЭС 2011
  • Денисов Олег Викторович
  • Кузько Дмитрий Анатольевич
  • Прыгунов Александр Германович
  • Денисов Данила Олегович
RU2463496C1
ЛАЗЕРНЫЙ ВОЛОКОННО-ОПТИЧЕСКИЙ ДАТЧИК УГЛОВОЙ СКОРОСТИ С ОБЪЕМНОЙ ФУРЬЕ-ГОЛОГРАММОЙ 2013
  • Прыгунов Александр Германович
  • Синютин Сергей Алексеевич
  • Прыгунов Алексей Александрович
  • Синютин Евгений Сергеевич
  • Щербань Игорь Викторович
RU2539755C2
ГОЛОГРАФИЧЕСКИЙ СПОСОБ ИЗМЕРЕНИЯ ВЫСОТЫ ПОДЪЁМА НАД ПОВЕРХНОСТЬЮ ОБЪЕКТА В ПРЕДЕЛАХ ЗЕМНОЙ АТМОСФЕРЫ 2015
  • Прыгунов Александр Германович
  • Синютин Сергей Алексеевич
  • Прыгунов Алексей Александрович
  • Синютин Евгений Сергеевич
RU2615310C2
ГОЛОГРАФИЧЕСКИЙ СПОСОБ АВТОМАТИЧЕСКОЙ РЕГУЛИРОВКИ УСИЛЕНИЯ СИГНАЛА 2015
  • Прыгунов Александр Германович
  • Синютин Сергей Алексеевич
  • Прыгунов Алексей Александрович
  • Синютин Евгений Сергеевич
RU2597664C2
СПОСОБ КОМПЕНСАЦИИ ИСКАЖЕНИЙ АМПЛИТУДНО-ФАЗОВОГО РАСПРЕДЕЛЕНИЯ ПОЛЯ В РАСКРЫВЕ АДАПТИВНОЙ АНТЕННОЙ РЕШЕТКИ, ОБУСЛОВЛЕННЫХ ВЛИЯНИЕМ КЛИМАТИЧЕСКИХ ФАКТОРОВ 2010
  • Габриэльян Дмитрий Давидович
  • Прыгунов Александр Германович
  • Рахманинов Александр Иванович
  • Трепачев Виктор Владимирович
  • Худяков Владислав Валерьевич
RU2446521C2
ГРАВИМЕТР С ЖИДКИМ ЧУВСТВИТЕЛЬНЫМ ЭЛЕМЕНТОМ 1992
  • Прыгунов Александр Германович
  • Брихара Василий Иванович
RU2069880C1
УСТРОЙСТВО ДЛЯ КОНТРОЛЯ СТЕНОК ТРУБОПРОВОДОВ 2011
  • Филатов Александр Анатольевич
  • Бакурский Николай Николаевич
  • Соловых Игорь Анатольевич
  • Братков Илья Степанович
  • Бакурский Александр Николаевич
  • Петров Валерий Викторович
RU2453835C1
Дефектоскоп для сварных швов 2015
  • Дмитриев Сергей Федорович
  • Ишков Алексей Владимирович
  • Маликов Владимир Николаевич
  • Катасонов Александр Олегович
RU2639592C2
СПОСОБ ВИХРЕТОКОВОГО КОНТРОЛЯ МЕДНОЙ КАТАНКИ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2014
  • Романов Сергей Иванович
  • Смолянов Владимир Михайлович
  • Журавлёв Алексей Викторович
  • Новосельцев Дмитрий Вячеславович
  • Будков Алексей Ремович
  • Серебренников Андрей Николаевич
  • Мальцев Алексей Борисович
RU2542624C1
ТЕРМОГРАФИЧЕСКИЙ СПОСОБ КОНТРОЛЯ ОБЪЕКТОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2017
  • Головин Юрий Иванович
  • Головин Дмитрий Юрьевич
  • Бойцов Эрнест Александрович
  • Самодуров Александр Алексеевич
  • Тюрин Александр Иванович
RU2670186C1

Иллюстрации к изобретению RU 2 482 471 C1

Реферат патента 2013 года СПОСОБ ВИХРЕТОКОВОГО КОНТРОЛЯ

Изобретение относится к измерительной технике и может быть использовано в промышленности для контроля осевого смещения и поперечного биения валов. В способе задают и поддерживают диапазон разрешенных значений величины зазора между металлической поверхностью объекта контроля и вихретоковым пробником с катушкой индуктивности. Вихретоковым датчиком измеряют величину зазора между металлической поверхностью объекта контроля и вихретоковым пробником с катушкой индуктивности и на основе результатов этих измерений определяют и запоминают величину перемещения металлической поверхности объекта контроля вдоль направления на вихретоковый пробник с катушкой индуктивности относительно ее исходного положения. При этом на основе результатов измерений вихретоковый пробник с катушкой индуктивности перемещают, в случае необходимости, на такое расстояние, чтобы обеспечить поддержание значения величины зазора между металлической поверхностью объекта контроля и вихретоковым пробником с катушкой индуктивности в пределах заданного диапазона разрешенных значений величины этого зазора. Технический результат заключается в снижении зависимости чувствительности и точности определения вихретоковым датчиком значения величины перемещения металлической поверхности объекта контроля вдоль направления на вихретоковый пробник с катушкой индуктивности, снижении влияния посторонних металлических масс на точность измерений, уменьшении диапазона значений величины зазора между металлической поверхностью объекта контроля и вихретоковым пробником с катушкой индуктивности. 3 ил.

Формула изобретения RU 2 482 471 C1

Способ вихретокового контроля, заключающийся в том, что в зоне контроля на заданном расстоянии от металлической поверхности объекта контроля устанавливают вихретоковый датчик, вихретоковый пробник с катушкой индуктивности которого закрепляют на подвижном штоке привода шагового двигателя, на катушку индуктивности вихретокового пробника подают переменный электрический сигнал, по величине амплитуды которого на этой катушке индуктивности измеряют величину зазора между металлической поверхностью объекта контроля и вихретоковым пробником с катушкой индуктивности и на основе этого определяют величину перемещения металлической поверхности объекта контроля вдоль направления на катушку индуктивности, отличающийся тем, что в вихретоковом датчике задается и поддерживается в процессе измерений диапазон разрешенных значений величины зазора между металлической поверхностью объекта контроля и вихретоковым пробником с катушкой индуктивности, при отклонении за пределы которого измеренного значения величины этого зазора выдается управляющий сигнал на шаговый двигатель для продольного перемещения подвижного штока привода этого двигателя на такое расстояние, чтобы устанавливаемое при этом значение величины зазора между металлической поверхностью объекта контроля и вихретоковым пробником с катушкой индуктивности попадало в середину диапазона величин его разрешенных значений.

Документы, цитированные в отчете о поиске Патент 2013 года RU2482471C1

СПОСОБ ВИХРЕТОКОВОГО КОНТРОЛЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2000
  • Клюшев А.В.
RU2185617C2
Грошков Е., Кирпичев А., Клюшев А
Интеллектуальные вихретоковые датчиковые системы // Компоненты и технологии, 2009, №1, с.22-24
ВИХРЕТОКОВЫЙ ПРЕОБРАЗОВАТЕЛЬ ПЕРЕМЕЩЕНИЙ 2006
  • Запускалов Валерий Григорьевич
  • Маслов Александр Иванович
  • Ковтун Александр Сергеевич
RU2298178C1
СПОСОБ ВЫЯВЛЕНИЯ ГАЗОНАСЫЩЕННЫХ СЛОЕВ НА ТИТАНОВЫХ СПЛАВАХ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1993
  • Митюрин Владимир Сергеевич
RU2115115C1

RU 2 482 471 C1

Авторы

Синютин Сергей Алексеевич

Кузько Дмитрий Анатольевич

Прыгунов Александр Германович

Лыткин Александр Викторович

Даты

2013-05-20Публикация

2011-09-13Подача