СПОСОБ ДИАГНОСТИРОВАНИЯ СОСТОЯНИЯ ГЛАЗОДВИГАТЕЛЬНЫХ МЫШЦ Российский патент 2013 года по МПК A61B3/113 

Описание патента на изобретение RU2484760C1

Изобретение относится к медицине и может быть использовано в офтальмологии и неврологии для диагностики нарушения функции глазодвигательных мышц.

В современной медицинской практике для исследования состояния глазодвигательных мышц у пациентов нередко используются субъективные методы оценки их функции, в том числе визуальное исследование амплитуды подвижности глазного яблока (Аветисов Э.С. Содружественное косоглазие. - М.: Медицина, 1977. - 312 с.), исследование провоцированной диплопии (пат. RU 2100956, МПК А61B 3/00), исследование посредством проекционной коордиметрии (пат. RU 2173079, МПК А61B 3/00) и др.

Недостатком перечисленных методов является недостаточно точный результат диагностирования, который основан только на субъективных ощущениях и ответах обследуемого.

Указанный недостаток устранен в способе по пат. RU 2318428, МПК А61В 3/00, основанном на электрофизиологическом исследовании функций глазодвигательных мышц. В соответствии с указанным способом исследование функционирования мышц осуществляют посредством определения их электровозбудимости с помощью точечных электродов, прикладываемых к месту прикрепления глазодвигательных мышц.

Недостаток способа заключается в том, что он является инвазивным, требующим интраоперационного применения, что не позволяет использовать его у целого ряда пациентов.

Среди известных методов наиболее близким аналогом предлагаемого решения является способ по пат. RU 2222296, МПК А61F 9/00, основанный на определении функционального состояния глазодвигательных мышц по результатам анализа динамических параметров глаз пациента при их рефлекторном перемещении.

Указанный способ включает следующие операции: поочередное предъявление пациенту справа и слева тест-объекта, последующую регистрацию рефлекторного перемещения каждого глаза, получение и оценку параметров функционального состояния глаз, определение коэффициентов асимметрии параметров и по превышению коэффициента асимметрии относительно нормы диагностирование предрасположенности к нарушению функций глазодвигательных мышц, при этом коэффициент асимметрии определяют по заявленной формуле.

В качестве параметров функционального состояния глазодвигательных мышц принимают динамические параметры перемещения глаза в ответ на заданный угол между предъявляемыми положениями тест-объекта.

В свою очередь при оценке динамических параметров перемещения глаза производят измерение в одну и другую стороны амплитуды основной рефлекторной саккады, ее скорости, величины проскоков, времени между основной и дополнительной саккадами, подсчитывают число дополнительных саккад, учитывают их ориентацию, определяют коэффициент асимметрии по каждому параметру в отдельности и суммарный коэффициент путем деления суммы на число параметров, сравнивают с аналогичным коэффициентом физиологической асимметрии, при этом диагностируют предрасположенность к сходящемуся косоглазию, если средний коэффициент асимметрии превосходит на 24%.

Для реализации способа авторы изобретения предлагают использовать фотоэлектронное устройство и компьютер.

Достоинством способа-прототипа является относительно высокая точность диагностирования. Кроме того, он достаточно прост и не требует больших временных затрат. Однако известный аналог обеспечивает выявление только одного нарушения состояния глазодвигательных мышц - предрасположенности к сходящемуся косоглазию и неприменим к диагностированию других видов нарушений.

Заявляемый способ позволяет получить новый по сравнению с прототипом технический результат, заключающийся в выявлении различных видов нарушения состояния глазодвигательных мышц.

Для достижения указанного результата используется следующая совокупность существенных признаков: в способе диагностирования состояния глазодвигательных мышц (заключающемся, так же, как и прототип, в предъявлении пациенту тест-объекта, поочередно появляющегося на экране компьютера, определении положения фиксации взоров глаз пациента на тест-объекте в каждом его положении, вычислении параметров, характеризующих состояние глазодвигательных мышц, и сравнении их с нормой), в отличие от прототипа, определение положения фиксации взоров осуществляют для каждого глаза отдельно при бинокулярной фиксации на тест-объекте взоров обоих глаз пациента, а в качестве параметров, характеризующих состояние глазодвигательных мышц, принимают расстояние между координатами положения точек фиксации взоров глаз, при этом за норму принимают расстояние в пикселях, соответствующее углу отклонения точки фиксации взора от положения тест-объекта в пределах 220 угловых минут, в свою очередь тест-объект поочередно предъявляют в центре экрана компьютера и не менее чем в 8 точках по его периферии через равные углы и равные промежутки времени.

Для наглядности определения вида и степени нарушения состояния глазодвигательных мышц положения точек фиксации взоров глаз отображают на экране компьютера на двумерной видеоокулограмме, при этом разницу в положениях точек фиксации в каждом положении тест-объекта представляют в виде вектора, величина которого отображает расстояние между координатами точек фиксации, а направление соответствует направлению от точки фиксации, максимально приближенной к тестовой точке, к точке, более удаленной от нее, при этом по превышению величины вектора относительно нормы определяют нарушение функции глазодвигательной системы, а по его направлению по отношению к центру видеоокулограммы выявляют поврежденную мышцу.

Для большей наглядности получемых результатов на видеоокулограмме точки фиксации взоров изображены для каждого глаза в виде различимых геометрических фигур, окрашенных в различимые цвета.

Регистрацию положения зрительных осей для каждого глаза для последующего определения соответствующих им координат точек фиксации взора осуществляют с помощью двух инфракрасных видеокамер, размещенных на мониторе компьютера симметрично его продольной оси и подсоединенных к входу компьютера.

Сущность способа заключается в том, что в отличие от прототипа, где оценку состояния глазодвигательных мышц осуществляют по результатам анализа динамических характеристик глаз пациента при их рефлекторном перемещении, в предлагаемом способе для этой цели анализируют расстояния между положениями взоров левого и правого глаз во время их фиксации на тест-объекте и, исходя из величины расстояния и направления, оценивают выраженность нарушения функционального состояния глазодвигательных мышц.

Сопоставление предлагаемого способа и прототипа показало, что поставленная задача - выявление различных видов нарушений решается в результате новой совокупности признаков, что доказывает соответствие предлагаемого изобретения критерию патентоспособности «новизна».

В свою очередь проведенный информационный поиск не выявил решений, содержащих отдельные отличительные признаки заявляемого изобретения, что позволяет сделать вывод о соответствии заявляемого способа критерию «изобретательский уровень».

Сущность изобретения поясняется графиками, где

на фиг.1 дано двумерное изображение видеоокулограммы, выведенное на экран компьютера и соответствующее положению точек фиксации взора левого и правого здоровых глаз пациента;

на фиг.2 изображена видеоокулограмма, выведенная на экран компьютера и соответствующая положению точек фиксации взора левого и правого глаз пациента с нарушением подвижности прямой наружной мышцы левого глаза;

на фиг.3 изображена видеоокулограмма, выведенная на экран компьютера и соответствующая положению точек фиксации взора левого и правого глаз пациента с нарушением подвижности прямой внутренней мышцы правого глаза.

Для реализации способа используют компьютер и две инфракрасные видеокамеры, распложенные симметрично продольной оси монитора компьютера. Видеокамеры отслеживают положения зрачков пациента при предъявлении ему тест-объекта. Информация о положении зрачков поступает на вход компьютера. С помощью программного обеспечения определяют расхождение между координатами точек фиксации взора для каждого глаза и далее проводят сравнение с нормой. Полученные результаты выводят на экран компьютера в виде двумерной видеоокулограммы, а далее делают заключение о функциональном состоянии глазодвигательных мышц пациента.

Способ осуществляется следующим образом.

Пациента помещают на расстоянии примерно 0,6 м от экрана монитора (при осуществлении способа был использован ЖК-монитор с диагональю 19" и разрешением 1280×1024). Голову фиксируют в вертикальном положении.

Испытуемому предъявляют тест-объект в виде кружка белого цвета с черным центром, поочередно появляющегося на сером фоне экрана монитора в центре и затем в 8 основных меридианах: на 1, 3, 5, 6, 7, 9, 11 и 12 часах по периферии экрана. Время предъявления объекта - 4 с, время исчезновения - 3 с. Испытуемый фокусирует взгляд вначале в центре экрана, а затем на каждом из 8 последовательно появляющихся объектах. При этом координаты фиксации взора, выраженные в пикселях, регистрируют каждые 100 мс в течение 4 с. По окончании теста определяют среднее значение координат каждой точки фиксации отдельно для каждого глаза, рассчитывают расстояние между усредненными значениями координат точек фиксации по формуле

,

где n - расстояние между точками фиксации взора правого и левого глаз; x1 - координаты по оси абсцисс для правого глаза; x2 - координаты по оси абсцисс для левого глаза; y1 - координаты по оси ординат для правого глаза; y2 - координаты по оси ординат для левого глаза.

Полученные результаты сравнивались с клиническими признаками поражения различных мышц, а также с показателями коордиметрии и диплограммами по Хаабу. Анализ результатов, полученных заявляемым методом, показал, что расстояние между точками фиксации взора для правого и левого глаз находится в норме в пределах от 0 до 130 пикселей, что в пересчете на величину расхождения осей глаз соответствует 0÷220 угловым минутам. При нарушении функции глазодвигательной мышцы среднее значение расстояния между точками фиксации взора имеет величину выше 130 пикселей (угол между осями глаз больше 220 угловых минут).

Для наглядности полученные результаты (расстояние между точками фиксации взоров левого и правого глаз) выводят на экран компьютера в виде двумерной видеоокулограммы, по которой наглядно определяют направление и величину отклонения пораженного глаза. Для облегчения восприятия изображений точки фиксации взора правого глаза изображены в виде ромбов, окрашенных в красный цвет, левого глаза - в виде квадратов, окрашенных в синий цвет.

Пример 1.

Обследовали группу здоровых пациентов в возрасте от 16 до 48 лет. Перед исследованием испытуемым было проведено стандартное офтальмологическое обследование, а также традиционные пробы, оценивающие функциональную активность глазодвигательных мышц.

Результаты проведенных исследований одного из пациентов приведены на фиг.1 и в табл.1, где во 2 и 3 колонках даны значения координат точек фиксации взора левого и правого глаз пациента в каждом положении тест-объекта, выраженные в пикселях. В 4 и 5 колонках указаны значения расстояний между точками фиксации взора правого и левого глаза (величины векторов), выраженные в пикселях и в угловых минутах.

Табл.1 Положения тест-объекта на экране компьютера Координаты точки фиксации взора правого глаза (пксл) Координаты точки фиксации взора левого глаза (пксл) Расстояние между точками фиксации взора левого и правого глаз (пксл) Угол между осями левого и правого глаз (у гл. мин) 1 2 3 4 5 X1 Y1 Х2 Y2 N α центр 634,18 520,30 630,43 517,33 4,78 8 1 1220,21 924,93 1225,02 920,71 6,40 11 3 1240,85 505,66 1232,38 498,46 11,12 19 5 1215,45 80,46 1235,65 39,62 45,56 78 6 625,98 86,79 633,51 101,07 16,14 28 7 64,94 93,94 85,78 76,34 27,27 47 9 63,74 518,92 74,77 524,28 12,26 21 11 68,34 942,37 80,49 959,91 21,34 37 12 631,68 866,10 637,31 895,29 29,74 51

Как видно из видеоокулограммы (фиг.1) и табличных данных табл.1, максимальное расстояние между точками фиксации взора глаз пациента составляет 45,56 пикселей в меридиане 5 часов, что отвечает нормальному состоянию двигательных мышц глаз пациента (78 угл. мин).

Пример 2.

Обследован пациент К.В.Н., страдающий паралитическим сходящимся косоглазием.

Табл.2 Положения тест-объекта на экране компьютера Координаты точки фиксации взора правого глаза (пксл) Координаты точки фиксации взора левого глаза (пксл) Расстояние между точками фиксации взора левого и правого глаз (пксл) Угол между осями левого и правого глаз (угл. мин) 1 2 3 4 5 X1 Y1 Х2 Y2 N α центр 610,44 487,05 676,25 449,41 75,80 130 1 1227,65 946,57 1213,85 949,47 14,10 24 3 1218,48 548,88 1224,47 535,24 14,90 25 5 1209,56 114,11 1205,20 117,18 5,33 9 6 626,78 89,96 709,14 105,90 83,89 144 7 85,84 105,10 245,61 97,63 159,95 275 9 52,31 508,58 231,45 524,30 179,83 308 11 59,75 952,77 200,34 931,02 142,26 240 12 629,71 958,19 692,37 997,18 73,80 126

В табл.2 и на видеоокулограмме (фиг.2) представлены результаты обследования, которые показывают, что

1) к тестовой точке фиксации взора максимально приближены точки фиксации правого глаза. Это подтверждает, что правый глаз пациента является здоровым;

2) расстояния (величины векторов) между точками фиксации левого глаза относительно правого превышают норму в меридианах: 7 часов - 159,95 пкс (275 угл. мин), 9 часов - 179,83 пкс (308 угл. мин), 11 часов - 142,26 пкс (240 угл. мин), что свидетельствует о нарушениях состояния глазодвигательной системы левого глаза;

3) направление векторов в указанных точках свидетельствует о нарушении функции наружной прямой глазодвигательной мышцы глаза.

Пример 3.

Обследован пациент Н.С.А., страдающий паралитическим расходящимся косоглазием.

Табл.3 Положения тест-объекта на экране компьютера Координаты точки фиксации взора правого глаза (пксл) Координаты точки фиксации взора левого глаза (пксл) Расстояние между точками фиксации взора левого и правого глаз (пксл) Угол между осями левого и правого глаз (угл. мин) 1 2 3 4 5 X1 Y1 Х2 Y2 N α центр 683,86 487,05 621,89 476,80 62,81 119 1 1265,79 936,80 1123,27 951,89 143,32 246 3 1257,75 543,81 1112,97 529,60 145,48 248 5 1265,79 110,79 1124,95 121,07 141,21 242 6 702,50 91,37 629,56 109,07 75,0 129 7 91,05 111,60 91,46 102,29 9,32 16 9 86,22 519,35 92,48 531,62 13,78 23 11 83,19 923,80 85,65 942,95 19,30 32 12 724,53 951,80 631,67 939,90 93,62 160

В табл.3 и на видеоокулограмме (фиг.3) представлены результаты обследования, которые показывают, что

1) к тестовой точке фиксации взора максимально приближены точки фиксации левого глаза. Это подтверждает, что левый глаз пациента является здоровым;

2) расстояния (величины векторов) между точками фиксации правого глаза относительно левого превышают норму в меридианах: 1 час - 143,32 пкс (246 угл. мин), 3 часа - 145,48 пкс (248 угл. мин), 5 часов - 141,21 пкс (242 угл. мин), вызванным нарушением функции в меридианах: 7 часов - 159,95 пкс (275 угл. мин), 9 часов - 179,83 пкс (308 угл. мин), 11 часов - 142,26 пкс (240 угл. мин), что свидетельствует о нарушениях состояния глазодвигательной мышцы правого глаза;

3) направление векторов в указанных точках свидетельствует о нарушении функции внутренней прямой мышцы глаза.

Таким образом, заявляемый способ показал себя высокоинформативным в диагностике функциональных нарушений глазодвигательных мышц, легко выполнимым и не требующим больших временных затрат (время всего исследования занимает не более 5 минут), что позволяет применять метод у пациентов различных возрастных групп. Кроме того, разработанный способ неинвазивен и может быть успешно использован в амбулаторных условиях при обследовании лиц с паралитическим косоглазием и другими нарушениями глазодвигательной системы, а также может быть использован для оценки динамики восстановления функций после проведенного хирургического лечения.

Изложенное позволяет сделать вывод о соответствии изобретения критерию «промышленная применимость».

Похожие патенты RU2484760C1

название год авторы номер документа
Способ определения параметров горизонтально-вертикальной диплопии 2020
  • Гладышева Галина Владимировна
  • Плисов Игорь Леонидович
  • Анциферова Наталья Геннадьевна
  • Мамулат Дарья Римовна
  • Пущина Варвара Борисовна
  • Шарохин Михаил Александрович
  • Белоусова Ксения Александровна
RU2738861C1
Способ диагностики косоглазия методом видеоокулографии 2021
  • Азнаурян Игорь Эрикович
  • Баласанян Виктория Олеговна
  • Кудряшова Елена Александровна
  • Агагулян Сатеник Гагиковна
  • Узуев Магомед Исаевич
RU2767704C1
Способ определения показаний к хирургии нистагма, сочетанного с косоглазием 2022
  • Азнаурян Игорь Эрикович
  • Баласанян Виктория Олеговна
  • Кудряшова Елена Александровна
  • Агагулян Сатеник Гагиковна
  • Узуев Магомед Исаевич
RU2791653C1
Способ определения показаний к хирургическому лечению нистагма 2022
  • Азнаурян Игорь Эрикович
  • Баласанян Виктория Олеговна
  • Кудряшова Елена Александровна
  • Агагулян Сатеник Гагиковна
  • Узуев Магомед Исаевич
RU2780365C1
СПОСОБ ЛЕЧЕНИЯ КОСОГЛАЗИЯ 2014
  • Усанов Дмитрий Александрович
  • Усанова Татьяна Борисовна
  • Постельга Александр Эдуардович
  • Дорошенко Алексей Алексеевич
RU2595793C2
СПОСОБ ВЫЯВЛЕНИЯ ПРЕДРАСПОЛОЖЕННОСТИ К СХОДЯЩЕМУСЯ КОСОГЛАЗИЮ 1999
  • Филин А.В.
  • Филин В.А.
RU2222296C2
СПОСОБ ФУНКЦИОНАЛЬНОГО ЛЕЧЕНИЯ ПРИ ЦИКЛОТРОПИИ 2001
  • Рабичев И.Э.
  • Кащенко Т.П.
  • Шарифуллина Н.А.
RU2192839C1
СПОСОБ ДИАГНОСТИКИ ШИЗОФРЕНИИ 2017
  • Усанов Дмитрий Александрович
  • Постельга Александр Эдуардович
  • Дорошенко Алексей Алексеевич
  • Барыльник Юлия Борисовна
  • Гусева Мадина Ахмедовна
RU2674946C1
СПОСОБ ОДНОВРЕМЕННОЙ ОЦЕНКИ СТЕПЕНИ ФУНКЦИОНАЛЬНОГО ПОДАВЛЕНИЯ ОДНОГО ГЛАЗА ДРУГИМ В ОБЛАСТИ ФИКСАЦИИ ВЗОРА И В РАЗНЫХ ТОЧКАХ ПОЛЯ ЗРЕНИЯ И КОМПЬЮТЕРИЗИРОВАННАЯ СИСТЕМА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2016
  • Тахчиди Христо Периклович
  • Рожкова Галина Ивановна
  • Стрижебок Алла Владимировна
  • Воробьева Дарья Андреевна
  • Сенько Игорь Викторович
  • Рычкова Светлана Игоревна
  • Грачева Мария Александровна
  • Сидоренко Евгений Иванович
  • Жильцова Елена Юрьевна
  • Онуфриева Надежда Викторовна
RU2645415C1
СПОСОБ ДИАГНОСТИКИ ФУНКЦИОНАЛЬНОГО СОСТОЯНИЯ ГЛАЗОДВИГАТЕЛЬНЫХ МЫШЦ У ДЕТЕЙ 2006
  • Лобанова Людмила Сергеевна
  • Гуляев Виктор Юрьевич
RU2318428C1

Иллюстрации к изобретению RU 2 484 760 C1

Реферат патента 2013 года СПОСОБ ДИАГНОСТИРОВАНИЯ СОСТОЯНИЯ ГЛАЗОДВИГАТЕЛЬНЫХ МЫШЦ

Изобретение относится к медицине, а именно к офтальмологии. Предъявляют тест-объект, поочередно появляющийся на экране компьютера. Определяют положение фиксации взоров глаз на тест-объекте в каждом его положении. При этом определение положения фиксации взоров осуществляют для каждого глаза отдельно при бинокулярной фиксации на тест-объекте взоров обоих глаз пациента. В качестве параметров, характеризующих состояние глазодвигательных мышц, принимают расстояние между координатами положения точек фиксации взоров глаз. За норму принимают расстояние в пикселях, соответствующее углу отклонения точки фиксации взора от положения тест-объекта в пределах 220 угловых минут. Тест-объект поочередно предъявляют в центре экрана компьютера и не менее чем в 8 точках по его периферии через равные углы и равные промежутки времени. Если расстояние, отображенное вектором, между положениями точек фиксации взора превышает норму, диагностируют нарушение функции глазодвигательной мышцы. По направлению вектора оценивают выраженность нарушения функционального состояния мышцы. Способ повышает информативность диагностики, что достигается за счет выявления различных видов нарушения глазодвигательных мышц. 2 з.п. ф-лы, 3 ил., 3 табл., 3 пр.

Формула изобретения RU 2 484 760 C1

1. Способ диагностирования состояния глазодвигательных мышц, заключающийся в предъявлении пациенту тест-объекта, поочередно появляющегося на экране компьютера, определении положения фиксации взоров глаз пациента на тест-объекте в каждом его положении, вычислении параметров, характеризующих состояние глазодвигательных мышц, и сравнении их с нормой, отличающийся тем, что определение положения фиксации взоров осуществляют для каждого глаза отдельно при бинокулярной фиксации на тест-объекте взоров обоих глаз пациента, а в качестве параметров, характеризующих состояние глазодвигательных мышц, принимают расстояние между координатами положения точек фиксации взоров глаз, при этом за норму принимают расстояние в пикселях, соответствующее углу отклонения точки фиксации взора от положения тест-объекта в пределах 220 угловых минут, в свою очередь, тест-объект поочередно предъявляют в центре экрана компьютера и не менее чем в 8 точках по его периферии через равные углы и равные промежутки времени.

2. Способ по п.1, отличающийся тем, что положения точек фиксации взоров глаз отображают на экране компьютера на двумерной видеоокулограмме, при этом разницу в положениях точек фиксации в каждом положении тест-объекта представляют в виде вектора, величина которого отображает расстояние между координатами точек фиксации, а направление соответствует направлению от точки фиксации, максимально приближенной к тестовой точке, к точке, более удаленной от нее, при этом по превышению величины вектора относительно нормы определяют нарушение функции глазодвигательной системы, а по его направлению по отношению к центру видеоокулограммы выявляют поврежденную мышцу.

3. Способ по п.2, отличающийся тем, что на видеоокулограмме точки фиксации взоров изображены для каждого глаза в виде различимых геометрических фигур, окрашенных в различимые цвета.

Документы, цитированные в отчете о поиске Патент 2013 года RU2484760C1

СПОСОБ ВЫЯВЛЕНИЯ ПРЕДРАСПОЛОЖЕННОСТИ К СХОДЯЩЕМУСЯ КОСОГЛАЗИЮ 1999
  • Филин А.В.
  • Филин В.А.
RU2222296C2
Ракета с поворотным крылом 1930
  • Фангулов И.Т.
SU22522A1
US 2009153796 A1, 18.06.2009
US 2010049075 A1, 25.02.2010
СЕНЯКИНА А.С
Термометрический метод оценки состояния глазодвигательных прямых мышц
Офтальмологический журнал
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
LENNERSTRAND G
Strabismus and sensory-motor function of eye muscles
J
Integr
Neurosci
Способ обработки целлюлозных материалов, с целью тонкого измельчения или переведения в коллоидальный раствор 1923
  • Петров Г.С.
SU2005A1

RU 2 484 760 C1

Авторы

Ковальская Анастасия Анатольевна

Коскин Сергей Алексеевич

Шелепин Юрий Евгеньевич

Бойко Эрнест Витальевич

Хараузов Алексей Кольмарович

Вахрамеева Ольга Анатольевна

Даты

2013-06-20Публикация

2011-11-21Подача