СТЕКЛО С НАНОЧАСТИЦАМИ СУЛЬФИДА СВИНЦА ДЛЯ ПРОСВЕТЛЯЮЩИХСЯ ФИЛЬТРОВ Российский патент 2013 года по МПК C03C10/02 

Описание патента на изобретение RU2485062C1

Изобретение относится к составам силикатных стекол, содержащих наночастицы (нанокристаллы, квантовые точки) сульфида свинца, и предназначено для использования в качестве просветляющихся сред, а именно пассивных затворов твердотельных лазеров ближнего ИК-диапазона, используемых в таких областях как офтальмология, волоконно-оптические системы связи, оптическая локация и дальнометрия.

Стекла, содержащие нанокристаллы сульфида свинца (PbS) размером меньше радиуса экситона Бора (18 нм), представляют собой наноразмерные структуры, для которых характерен квантоворазмерный эффект, проявляющийся в сдвиге края фундаментального поглощения в коротковолновую область спектра по сравнению с объемным кристаллом и появлению выраженных полос поглощения, связанных с экситонными резонансами. Насыщение (уменьшение) поглощения в области этих резонансов, прежде всего первого, наименьшего по энергии, при интенсивном световом воздействии используется в пассивных затворах лазеров для формирования импульсов излучения наносекундной и сверхкороткой длительностей [1].

Формирование кристаллов PbS нанометрового диапазона в стеклянной матрице достигается термической обработкой стекла. Управляя размерами нанокристаллов можно смещать положение максимума поглощения первого экситонного резонанса (изменять энергию первого экситонного резонанса) в широком спектральном диапазоне и, тем самым, смещать рабочую длину волны пассивного затвора, используя для этой цели один и тот же материал - стекло с нанокристаллами PbS. Пассивный затвор, выполненный из стекла с нанокристаллами PbS, при малой интенсивности падающего светового излучения имеет высокий коэффициент поглощения в области первого экситонного резонанса нанокристалла PbS, т.е. затвор закрыт. При сильном резонансном возбуждении, когда интенсивность света сильно возрастает, коэффициент поглощения значительно снижается и наступает насыщение поглощения - эффект просветления - затвор открыт и пропускает лазерный луч.

Имеются единичные сведения о технических решениях по созданию просветляющихся фильтров на основе силикатных стекол, содержащих нанокристаллы сульфида свинца.

Наиболее близким к предлагаемому стеклу с нанокристаллами PbS по технической сущности и достигаемому результату является стекло, содержащее, мас.%: SiO2 58-65; Na2O 10-15; ZnO 5-17; Al2O3 0,5-5; PbO 3-6; RO 0-15; F 1-3,5; S 0-3; Se 0-3; S+Se 1-3, где RO: BeO 0-5; MgO 0-5; CaO 0-15; SrO 0-10; BaO 0-10 [2]. Образование наночастиц PbS в указанном стекле происходит в процессе его термической обработки при температурах 550-650°С. Стекло содержит наночастицы PbS размером 7-30 нм, что соответствует спектральному положению первого экситонного резонанса в области 1,6-2,2 мкм. Однако данное стекло не обеспечивает получения наночастиц PbS меньшего размера и не позволяет создать материал с экситонными полосами поглощения в более коротковолновой области спектра, а именно, 1,5 мкм. Излучение в данной спектральной области имеет ряд существенных особенностей. Во-первых, такое излучение является наиболее безопасным для глаз, т.к. оно полностью поглощается роговицей глаза и не может повредить сетчатку. Во-вторых, излучение с длиной волны 1,5 мкм обладает малыми потерями при прохождении через атмосферу (попадает в так называемое второе окно прозрачности атмосферы). И, в-третьих, данное излучение имеет низкие значения дисперсии и поглощения в кварцевом волокне, что дает возможность передачи световых импульсов на большие расстояния с минимальными искажениями. Указанные особенности позволяют использовать лазеры, излучающие на этой длине волны, в офтальмологии, волоконно-оптических системах связи, оптической локации и дальнометрии.

Задачей предлагаемого изобретения является обеспечение спектрального поглощения и просветления на длине волны 1,5 мкм за счет формирования в стеклянной матрице наночастиц PbS размером 5,5-5.9 нм (<7 нм).

Для решения поставленной задачи предлагается стекло с наночастицами сульфида свинца для просветляющихся фильтров, которое включает SiO2, Na2O, ZnO, PbO, S, и дополнительно содержит K2O и AlF3 при следующем соотношении компонентов, мас.%: SiO2 50,0-54,5; Na2O 6.0-7,5; ZnO 12,5-15.0; PbO 6,5-8,5; S 3,5-4,0; K2O 10,0-15,0 и AlF3 3.0-3,5. Количественное сочетание указанных компонентов в предлагаемом составе стекла позволяет формировать в стеклянной матрице наночастицы PbS определенного размера, а именно 5,5-5,9 нм, и обеспечить спектральное поглощение и просветление на длине волны 1.5 мкм и создать новый материал для просветляющихся фильтров - твердотельных пассивных затворов, с помощью которых представляется возможным осуществить генерацию наносекундных и сверхкоротких световых импульсов на длине волны 1,5 мкм в лазерах, используемых для медицины, волоконно-оптических линий связи, дистанционного зондирования атмосферы.

Из источников литературы стекло, содержащее нанокристаллы PbS, такого химического состава, для решения указанной задачи не известно и нами предлагается впервые.

Синтез стекла осуществляют в газовой пламенной печи при температуре 1400°С с выдержкой при максимальной температуре варки в течение 1 часа до полного провара и осветления стекломассы. Скорость подъема температуры в печи 300°С в час.

В качестве сырьевых материалов для приготовления шихты используют: песок кварцевый SiO2, углекислый натрий Na2CO3, углекислый калий K2CO3, оксид цинка ZnO, оксид свинца PbO, фтористый алюминий AlF3 и серу S. Шихту тщательно перемешивают, засыпают в корундизовые тигли, которые помещают в стекловаренную печь для варки.

Из готовой стекломассы методом литья в металлические формы изготавливают образцы для проведения дальнейшей термической обработки. Отжиг образцов осуществляют при температуре 450°С.

Термическую обработку стекла проводят в электрической печи при температуре 480 и 525°С при экспозицияхв 5, 10 и 20 ч выдержки. Применяя указанный температурно-временной режим термообработки, стеклянной матрицы получают наночастицы PbS стабильного размера 5,5-5.9 нм (см. таблицу 2).

Анализ рентгенограмм стекол, прошедших термообработку, подтвердил наличие в стеклянной матрице нанокристаллов PbS, сформированных в результате термической обработки. Основные межплоскостные расстояния (0,342; 0,297; 0,209 нм) соответствуют межплоскостным расстояниям кристаллической фазы PbS.

Конкретные составы предлагаемых стекол, а также их спектральные характеристики в сравнении со стеклом-прототипом представлены в таблицах 1 и 2.

Составы, находящиеся за пределами заявляемой области, не могут быть использованы в этих целях, так как кристаллизуются либо при выработке стекломассы, либо дают объемную грубо кристаллическую структуру при термообработке.

В таблице 2 указаны размеры наночастиц PbS, сформированных в силикатных стеклянных матрицах в результате термической обработки, а также приведены спектральные положения первого экситонного пика поглощения и энергия соответствующего экситонного резонанса. Данные таблицы 2 показывают, что заявляемые стекла содержат наночастицы PbS меньшего размера (5,5-5.9 нм), чем у прототипа, что обеспечивает спектральное поглощение и просветление на длине волны 1,5 мкм, т.е. на более короткой длине волны, чем у прототипа.

Таблица 1 Составы стекол Компоненты стекол Содержание компонентов в составах, мас.% 1 2 3 Прототип [2] SiO2 50,0 52,0 54,5 58-65 K2O 15.0 12,5 10,0 - AlF3 3,5 3,25 3,0 - PbO 6,5 7,5 8,5 3-6 Na2O 6,0 7,5 6,5 10-15 ZnO 15,0 12,5 14,0 5-17 Al2O3 - - - 0,5-5 F - - - 1-3,5 S 4,0 3,75 3,5 0-3 Se - - - 0-3 S+Se - - - 1-3 RO (BeO, MgO, CaO, SrO, BaO) - - - 0-15

Таблица 2 Размер, спектральное положение первого экситонного пика поглощения и энергия экситонного резонанса стекол с наночастицами PbS № образца Режим обработки (температура/время) Средний диаметр наночастиц, нм Спектральное положение полосы поглощения первого экситонного резонанса длина волны, мкм энергия резонанса, эВ 1 480°С/20 ч 5,5 1,5 0,86 2 525°С/5 ч 5,5 1,5 0,86 3 525°С/10 ч 5,9 1,54 0,90

Как видно из таблицы 2, подобранные температурно-временные режимы термообработки позволяют сформировать нанокристаллы сульфида свинца определенного размера (5,5-5,9 нм), стабилизируют их рост, чем в свою очередь обеспечивается спектральное поглощение и просветление на длине волны 1,5 мкм.

Сравнительный анализ показателей (размера нанокристаллов PbS и положения пика спектрального поглощения) предлагаемого стекла и прототипа показали, что заявляемое стекло содержит наночастицы PbS меньшего размера, чем у прототипа, при этом пик экситонного поглощения расположен в более коротковолновой области спектра (1,5 мкм), чем у прототипа.

Таким образом, заявляемый химический состав стекла при соответствующей термической обработке обеспечивает формирование нанокристаллов сульфида свинца размером 5,5-5,9 нм, обеспечивая спектральное поглощение и просветление на длине волны 1,5-1.54 мкм.

Указанные преимущества заявляемого стекла, содержащего наночастицы PbS такого размера, позволяют создать новый наноструктурированный стекломатериал для просветляющихся фильтров (твердотельных пассивных затворов), с помощью которых можно осуществлять генерацию коротких и сверхкоротких импульсов в лазерах, генерирующих на длине волны 1,5 мкм, используемых для медицины, дальнометрии, дистацонного зондирования атмосферы, волоконно-оптических систем передачи и обработки информации.

Область применения стекла с нанокристаллами PbS - лазерные системы генерации импульсов наносекундной и сверхкороткой длительностей.

Источники информации

1.1. Kang, F.W.Wise, "Electronic structure and optical properties of PbS and PbSe quantum dots", J. Opt. Soc. Am. B. 14, 1632-1646 (1997).

2. Патент США №5,449,645, кл. С03С 010/02, 12.09.1995 (прототип).

Похожие патенты RU2485062C1

название год авторы номер документа
СТЕКЛО С НАНОКРИСТАЛЛАМИ СУЛЬФИДА СВИНЦА ДЛЯ ПРОСВЕТЛЯЮЩИХСЯ ФИЛЬТРОВ В БЛИЖНЕЙ ИК ОБЛАСТИ СПЕКТРА 2004
  • Рачковская Галина Евтихиевна
  • Захаревич Галина Борисовна
  • Кулешов Николай Васильевич
  • Юмашев Константин Владимирович
  • Маляревич Александр Михайлович
  • Гапоненко Максим Сергеевич
RU2269492C1
СТЕКЛО С НАНОКРИСТАЛЛАМИ СЕЛЕНИДА СВИНЦА ДЛЯ ПРОСВЕТЛЯЮЩИХСЯ ФИЛЬТРОВ БЛИЖНЕЙ ИК ОБЛАСТИ СПЕКТРА 2009
  • Рачковская Галина Евтихиевна
  • Захаревич Галина Борисовна
  • Маляревич Александр Михайлович
  • Юмашев Константин Владимирович
  • Гапоненко Максим Сергеевич
RU2412917C1
СТЕКЛО С НАНОКРИСТАЛЛАМИ СЕЛЕНИДА СВИНЦА ДЛЯ НАСЫЩАЮЩИХ ПОГЛОТИТЕЛЕЙ 2007
  • Колобкова Елена Вячеславовна
  • Липовский Андрей Александрович
  • Мелехин Владимир Герасимович
  • Петриков Владимир Дмитриевич
RU2341472C1
ЛЮМИНЕСЦИРУЮЩЕЕ СТЕКЛО 2012
  • Рачковская Галина Евтихиевна
  • Захаревич Галина Борисовна
  • Юмашев Константин Владимирович
  • Скопцов Николай Александрович
RU2553879C2
СТЕКЛОКРИСТАЛЛИЧЕСКИЙ МАТЕРИАЛ ДЛЯ ПАССИВНОГО ЗАТВОРА ЛАЗЕРА, РАБОТАЮЩЕГО В БЕЗОПАСНОЙ ДЛЯ ЗРЕНИЯ ОБЛАСТИ СПЕКТРА, И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2015
  • Жилин Александр Александрович
  • Дымшиц Ольга Сергеевна
  • Алексеева Ирина Петровна
  • Шемчук Дарья Валерьевна
  • Запалова Светлана Сергеевна
  • Глазунов Илья Владимирович
  • Лойко Павел Александрович
  • Маляревич Александр Михайлович
  • Скопцов Николай Александрович
  • Юмашев Константин Владимирович
RU2592303C1
СТЕКЛОКРИСТАЛЛИЧЕСКИЙ МАТЕРИАЛ ДЛЯ ПАССИВНОГО ЛАЗЕРНОГО ЗАТВОРА И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2008
  • Дымшиц Ольга Сергеевна
  • Жилин Александр Александрович
  • Шашкин Александр Викторович
RU2380806C1
ПРОЗРАЧНАЯ СТЕКЛОКЕРАМИКА ДЛЯ СВЕТОФИЛЬТРА 2012
  • Дымшиц Ольга Сергеевна
  • Жилин Александр Александрович
  • Запалова Светлана Сергеевна
RU2501746C2
ЛЮМИНЕСЦИРУЮЩАЯ НАНОСТЕКЛОКЕРАМИКА 2014
  • Рачковская Галина Евтихиевна
  • Захаревич Галина Борисовна
  • Юмашев Константин Владимирович
  • Лойко Павел Александрович
  • Скопцов Николай Александрович
  • Арзуманян Григорий Макичевич
RU2579056C1
СПОСОБ ЛАЗЕРНОГО МОДИФИЦИРОВАНИЯ СТЕКЛА 2018
  • Ветчинников Максим Павлович
  • Шахгильдян Георгий Юрьевич
  • Липатьев Алексей Сергеевич
  • Сигаев Владимир Николаевич
RU2707626C1
Оптический композиционный материал и способ его обработки 2014
  • Багров Игорь Викторович
  • Белоусова Иннана Михайловна
  • Виденичев Дмитрий Александрович
  • Волынкин Валерий Михайлович
  • Данилов Владимир Васильевич
  • Евстропьев Сергей Константинович
  • Киселев Валерий Михайлович
  • Кисляков Иван Михайлович
  • Панфутова Анастасия Сергеевна
  • Рыжов Антон Арнольдович
  • Хребтов Артем Игоревич
RU2627371C2

Реферат патента 2013 года СТЕКЛО С НАНОЧАСТИЦАМИ СУЛЬФИДА СВИНЦА ДЛЯ ПРОСВЕТЛЯЮЩИХСЯ ФИЛЬТРОВ

Стекло с наночастицами сульфида свинца (PbS) используется в лазерной технике в качестве просветляющихся фильтров, а именно твердотельных пассивных затворов для лазеров ближнего ИК-диапазона, применяемых в офтальмологии, волоконно-оптических системах связи, оптической локации и дальнометрии. Обеспечение спектрального поглощения и просветления на длине волны 1,5 мкм достигается за счет формирования в стеклянной матрице наночастиц PbS определенного размера (5,5-5,9 нм) в результате проведения термической обработки стекла. Стекло включает компоненты при следующем их соотношении, мас.%: SiO2 50,0-54,5; Na2O 6,0-7,5; ZnO 12,5-15,0; PbO 6,5-8,5; S 3,5-4,0; АlF3 3,0-3,5; K2О 10,0-15,0. Техническая задача изобретения - формирование в силикатной стеклянной матрице нанокристаллов сульфида свинца размером 5,5-5,9 нм для обеспечения спектрального поглощения и просветления на длине волны 1,5 мкм. 2 табл.

Формула изобретения RU 2 485 062 C1

Стекло с наночастицами сульфида свинца для просветляющихся фильтров, включающее SiO2, Na2O, ZnO, PbO, S, отличающееся тем, что оно дополнительно содержит K2О и АlF3 при следующем соотношении компонентов, мас.%:
SiO2 50,0-54,5 Na2O 6,0-7,5 K2O 10,0-15,0 ZnO 12,5-15,0 АlF3 3,0-3,5 PbO 6,5-8,5 S 3,5-4,0

Документы, цитированные в отчете о поиске Патент 2013 года RU2485062C1

US 5449645 A, 12.09.1995
СТЕКЛО С НАНОКРИСТАЛЛАМИ СУЛЬФИДА СВИНЦА ДЛЯ ПРОСВЕТЛЯЮЩИХСЯ ФИЛЬТРОВ В БЛИЖНЕЙ ИК ОБЛАСТИ СПЕКТРА 2004
  • Рачковская Галина Евтихиевна
  • Захаревич Галина Борисовна
  • Кулешов Николай Васильевич
  • Юмашев Константин Владимирович
  • Маляревич Александр Михайлович
  • Гапоненко Максим Сергеевич
RU2269492C1
СТЕКЛО С НАНОКРИСТАЛЛАМИ СЕЛЕНИДА СВИНЦА ДЛЯ НАСЫЩАЮЩИХ ПОГЛОТИТЕЛЕЙ 2007
  • Колобкова Елена Вячеславовна
  • Липовский Андрей Александрович
  • Мелехин Владимир Герасимович
  • Петриков Владимир Дмитриевич
RU2341472C1
Синхронно-импульсная система единого времени 1984
  • Борисов Юрий Дмитриевич
  • Гарф Лев Михайлович
  • Рудяков Борис Леонидович
  • Чичев Эдуард Хаджимусович
SU1180835A1
US 6756334 B2, 29.06.2004
US 20050075234 A, 07.04.2005.

RU 2 485 062 C1

Авторы

Рачковская Галина Евтихиевна

Захаревич Галина Борисовна

Гурин Валерий Степанович

Юмашев Константин Владимирович

Лойко Павел Александрович

Даты

2013-06-20Публикация

2011-10-18Подача