СПОСОБ ЭКСПЛУАТАЦИИ КОМПЛЕКТА НИКЕЛЬ-ВОДОРОДНЫХ АККУМУЛЯТОРНЫХ БАТАРЕЙ В СИСТЕМЕ ЭЛЕКТРОПИТАНИЯ ГЕОСТАЦИОНАРНОГО КОСМИЧЕСКОГО АППАРАТА Российский патент 2013 года по МПК H01M10/00 

Описание патента на изобретение RU2486634C2

Изобретение относится к электротехнической промышленности и может быть использовано при эксплуатации никель-водородных аккумуляторных батарей (АБ) в системах электропитания космических аппаратов (КА), функционирующих на геостационарной орбите.

При эксплуатации комплекта никель-водородных аккумуляторных батарей в системе электропитания геостационарного космического аппарата необходимо учитывать специфику работы АБ на геостационарной орбите. Она заключается в следующем: на орбитах со 100%-ной освещенностью, в течение двух периодов в году по 5 месяцев АБ непрерывно находятся в режиме "мелкого" цитирования в состоянии, близком к полной заряженности. При включениях электрореактивной двигательной установки (например, стационарного плазменного двигателя) для коррекции орбиты, которая может происходить дважды в сутки, возможен разряд АБ на ограниченную емкость. Этот режим разряда для АБ не является критичным и проверочным. Наиболее критичным периодом для АБ является пребывание КА на орбите с теневыми участками (периоды в области равноденствий). При постепенном нарастании длительности тени глубина разряда АБ увеличивается от 0 до максимума при максимальной длительности тени 1,2 часа и затем снижается до нуля. Способ эксплуатации комплекта никель-водородных аккумуляторных батарей в системе электропитания геостационарного космического аппарата должен обеспечивать проведение своевременных профилактических мероприятий, восстанавливающих текущую емкость аккумуляторных батарей перед прохождением КА теневых участков орбиты и исключающих незапланированные перерывы в работе целевой аппаратуры КА.

Известен способ эксплуатации никель-водородных аккумуляторных батарей по патенту РФ №2289178, заключающийся в том, что проводят зарядно-разрядные циклы, осуществляют контроль напряжения каждого аккумулятора и батареи в целом, определяют текущую разрядную и зарядную емкости, а также ток заряда, заряд АБ проводят постоянным током до величины (0,6-0,8) номинальной емкости. Перед началом теневых участков геостационарной орбиты выполняют восстановительный разрядно-зарядный цикл АБ, при этом разряд проводят на сопротивление величиной, определяемой по формуле

R = n 1,25 T 0 C н о м

где n - количество аккумуляторов в никель-водородной аккумуляторной батарее;

1,25 - среднее разрядное напряжение аккумуляторов;

To - время разряда, ч;

Cном - номинальная емкость никель-водородной аккумуляторной батареи,

с ограничением разряда по величине напряжения, равного числу (n-1) аккумуляторов в батарее, в течение 40-50 ч (T0), а заряд проводят током, величиной не менее 0,15 номинальной емкости.

Недостатком известного способа является то, что он не регламентирует следующие важные эксплуатационные аспекты работы с АБ:

1) проверка готовности АБ к прохождению теневых участков;

2) технология оценки текущей разрядной емкости АБ;

3) проведение при необходимости восстановительных действий с последующим контролем их эффективности.

Кроме того, разряд АБ в известном способе ограничивают исходя из состояния заряженности какого-либо аккумулятора, что ограничивает возможность использования всей имеющейся в аккумуляторной батарее емкости.

Все это снижает надежность и эффективность эксплуатации АБ, в частности, и надежность целевого использования КА в целом.

Наиболее близким техническим решением является способ эксплуатации никель-водородных аккумуляторных батарей по патенту РФ №2399122, выбранный в качестве прототипа, заключающийся в том, что периодически, например один раз в 6-9 месяцев, вводят запрет заряда для одной из АБ, в качестве разрядной нагрузки используют бортовую аппаратуру космического аппарата, критерием ограничения глубины разряда выбирают величину напряжения АБ, причем значение граничного уровня напряжения устанавливают в вольтах равным числу n либо (n+1) аккумуляторов в аккумуляторной батарее, при достижении которого снимают запрет заряда АБ, включая тем самым ее в штатную работу, значения зарядной емкости срабатывания сигнального датчика давления и максимального напряжения АБ при заряде, определяемые в процессе завершения формовочного цикла, используют для оценки состояния аккумуляторной батареи и прогнозирования ее деградации, аналогичную последовательность операций повторяют для последующей АБ, при этом промежуток времени от завершения формовочного цикла одной АБ до начала формовочного цикла другой АБ выбирают исходя из температурного режима отформованной АБ.

Недостатком известного способа является то, что он ориентирован на работу комплекта АБ в составе низкоорбитальных КА и не учитывает специфики работы КА на геостационарной орбите, что снижает надежность и эффективность эксплуатации АБ, в частности, и надежность целевого использования КА в целом.

Задачей предлагаемого изобретения является повышение надежности и эффективности эксплуатации комплекта никель-водородных аккумуляторных батарей и надежности целевого использования КА.

Поставленная задача решается тем, что при эксплуатации комплекта никель-водородных аккумуляторных батарей в системе электропитания геостационарного космического аппарата, заключающейся в проведении зарядов, хранении в заряженном состоянии подзарядов и разрядов, когда степень заряда аккумуляторных батарей ограничивают по уровню давления водорода в аккумуляторах, контролируют параметры каждой аккумуляторной батареи, например электрическую емкость, напряжение аккумуляторов и температуру, периодически вводят запрет заряда для одной из аккумуляторных батарей и проводят ее профилактический разряд с ограничением его по заданному критерию, после чего снимают запрет заряда аккумуляторной батареи, включая тем самым ее в штатную работу, аналогичную последовательность операций повторяют, при необходимости, для других АБ, запрет заряда и проведение профилактического разряда проводят перед началом теневых участков орбиты, при этом оценивают величину разрядной электрической емкости на предмет ее достаточности для прохождения последующих теневых участков, при необходимости профилактический разряд повторяют. При этом глубину профилактического разряда аккумуляторной батареи выбирают по минимальной величине ее напряжения, при котором обеспечивается стабильный уровень напряжения на выходе системы электропитания конкретной структуры. Кроме того, при несоответствии разрядной электрической емкости величине, достаточной для прохождения последующих теневых участков, последующую зарядную электрическую емкость пересчитывают в разрядную по формуле Срз·ηз,

где Cр - разрядная емкость аккумуляторной батареи, А*ч;

Cз - зарядная емкость аккумуляторной батареи, А*ч;

ηз - коэффициент полезного действия процесса заряда аккумуляторной батареи,

а полученный результат используют для оценки величины разрядной электрической емкости на предмет ее достаточности для прохождения последующих теневых участков.

Действительно, современные никель-водородные аккумуляторные батареи, используемые в космической технике, имеют в своем составе байпасные диоды, шунтирующие аккумуляторы в разрядном направлении при полном разряде какого-либо аккумулятора. Наличие указанных разрядных диодов (с низким падением напряжения менее 0,3 В) позволяет разряжать аккумуляторные батареи (без риска вывести какой-либо аккумулятор из строя) на их предельную глубину, определяемую общим минимальным напряжением АБ, при котором обеспечивается стабильный уровень напряжения на выходе системы электропитания конкретной структуры. Иными словами, использовать имеющуюся в АБ энергию по максимуму.

Проведение глубокого профилактического разряда АБ способствует проработке активной массы аккумуляторов и соответственно снижению их внутреннего сопротивления, снижению разбаланса аккумуляторов по емкости, что в конечном итоге повышает ее текущие емкостные возможности. При этом факт повышения емкости АБ после профилактического разряда можно увидеть на последующем заряде или на повторном цикле. Более глубокий профилактический разряд дает более полный эффект, а разрядную емкость АБ можно оценить по ее последующей (за разрядом) зарядной емкостью, пересчитав ее в разрядную по формуле Сp=сз·ηз,

где Cр - разрядная емкость аккумуляторной батареи, А*ч;

Cз - зарядная емкость аккумуляторной батареи, А*ч;

ηз - коэффициент полезного действия процесса заряда аккумуляторной батареи.

На фиг.1 приведена функциональная схема автономной системы электропитания КА для реализации заявляемого способа.

Автономная система электропитания КА содержит солнечную батарею 1, подключенную к нагрузке 2, через преобразователь напряжения 3, аккумуляторные батареи 41-4n, подключенные через зарядные преобразователи 51-5n к солнечной батарее 1, а через разрядные преобразователи 61-6n ко входу выходного фильтра преобразователя напряжения 3. Кроме того, аккумуляторные батареи 41-4n содержат в своем составе байпасные разрядные цепи, состоящие из диодов, подключенных параллельно каждому аккумулятору в разрядном направлении.

При этом нагрузка 2 в своем составе содержит бортовую ЭВМ, систему телеметрии и командно-измерительную радиолинию.

Параллельно аккумуляторным батареям 41-4n подключены устройства контроля аккумуляторных батарей 71-7n, связанные входом с аккумуляторными батареями 41-4n для контроля напряжения, давления и температуры аккумуляторов, а выходом с нагрузкой 2. Кроме того, устройства контроля аккумуляторных батарей 71-7n содержат в своем составе разрядные сопротивления (на схеме не показано) для проведения профилактических разрядов аккумуляторных батарей 41-4n.

В цепи заряда-разряда аккумуляторных батарей установлены измерительные шунты 81-8n.

Зарядные преобразователи 51-5n состоят из регулирующего ключа 9, управляемого схемой управления 10, вольтодобавочного узла, выполненного на трансформаторе 5-5, транзисторах 5-1 и 5-2 и выпрямителя на диодах 5-3 и 5-4.

Разрядные преобразователи 61-6n состоят из регулирующего ключа 11, управляемого схемой управления 12.

Преобразователь напряжения 3 состоит из регулирующего ключа 13, управляемого схемой управления 14, входного фильтра на конденсаторе 3-1 и выходного фильтра на диоде 3-2, дросселе 3-3 и конденсаторе 3-4.

Схемы управления 10-зарядных преобразователей 51-5n, 12-разрядных преобразователей 61-6n, 14 - преобразователя напряжения 3 выполнены в виде широтно-импульсных модуляторов, входом подключенных к шинам стабилизируемого напряжения. Схемы управления 10 зарядных преобразователей 51-5n дополнительно связаны с измерительными шунтами 81-8n и нагрузкой 2.

Устройство работает следующим образом.

В процессе эксплуатации аккумуляторные батареи 41-4n работают, в основном, в режиме хранения и периодических дозарядов от солнечной батареи 1 через зарядные преобразователи 51-5n. Такой режим работы позволяет содержать их в постоянной готовности на случай аварийных ситуаций (потеря ориентации КА на Солнце) или на прохождение штатных теневых участков орбиты.

Питание нагрузки 2 осуществляется при этом от солнечной батареи 1 через преобразователь напряжения 3.

При прохождении теневых участков орбиты, либо при нарушении ориентации КА на Солнце, нагрузка 2 питается от аккумуляторных батарей 41-4n через разрядные преобразователи 61-6n.

Устройства контроля 71-7n контролируют напряжение, давление и температуру аккумуляторов аккумуляторных батарей 41-4n и передают информацию об их состоянии в нагрузку 2.

В процессе эксплуатации аккумуляторной батареи перед началом теневых участков орбиты по командам с Земли через командно-измерительную радиолинию запускают программу профилактического разряда какой-либо аккумуляторной батареи. При этом с помощью бортовой ЭВМ реализуются необходимые действия по блокировке (запрет заряда) и последующей разблокировке работы зарядного преобразователя, включению и выключению профилактического разряда, контролю разрядной и зарядной емкости, проведению вычислений и принятию решения о положительном завершении профилактической работы (завершению работы программы).

Таким образом, применение предлагаемого способа эксплуатации комплекта никель-водородных аккумуляторных батарей в системе электропитания геостационарного космического аппарата позволяет повысить надежность и эффективность их эксплуатации и надежность целевого использования КА.

Похожие патенты RU2486634C2

название год авторы номер документа
СПОСОБ УПРАВЛЕНИЯ АВТОНОМНОЙ СИСТЕМОЙ ЭЛЕКТРОСНАБЖЕНИЯ ГЕОСТАЦИОНАРНОГО КОСМИЧЕСКОГО АППАРАТА 2012
  • Коротких Виктор Владимирович
  • Нестеришин Михаил Владленович
  • Опенько Сергей Иванович
  • Стадухин Николай Васильевич
RU2524696C2
СПОСОБ ЗАРЯДА КОМПЛЕКТА АККУМУЛЯТОРНЫХ БАТАРЕЙ В СОСТАВЕ АВТОНОМНОЙ СИСТЕМЫ ЭЛЕКТРОПИТАНИЯ КОСМИЧЕСКОГО АППАРАТА 2012
  • Коротких Виктор Владимирович
  • Нестеришин Михаил Владленович
  • Опенько Сергей Иванович
RU2510105C2
СПОСОБ УПРАВЛЕНИЯ АВТОНОМНОЙ СИСТЕМОЙ ЭЛЕКТРОСНАБЖЕНИЯ КОСМИЧЕСКОГО АППАРАТА 2013
  • Коротких Виктор Владимирович
  • Козлов Роман Викторович
  • Нестеришин Михаил Владленович
  • Опенько Сергей Иванович
  • Журавлёв Александр Викторович
RU2535301C2
СПОСОБ ЭКСПЛУАТАЦИИ НИКЕЛЬ-ВОДОРОДНЫХ АККУМУЛЯТОРНЫХ БАТАРЕЙ СИСТЕМЫ ЭЛЕКТРОПИТАНИЯ КОСМИЧЕСКОГО АППАРАТА 2009
  • Гуртов Александр Сергеевич
  • Миненко Сергей Иванович
  • Фомакин Виктор Николаевич
  • Галкин Валерий Владимирович
  • Шевченко Юрий Михайлович
  • Горбачева Изабелла Васильевна
RU2399122C1
СПОСОБ УПРАВЛЕНИЯ АВТОНОМНОЙ СИСТЕМОЙ ЭЛЕКТРОСНАБЖЕНИЯ КОСМИЧЕСКОГО АППАРАТА 2014
  • Коротких Виктор Владимирович
  • Нестеришин Михаил Владленович
  • Опенько Сергей Иванович
  • Стадухин Николай Васильевич
RU2574922C2
СПОСОБ УПРАВЛЕНИЯ АВТОНОМНОЙ СИСТЕМОЙ ЭЛЕКТРОСНАБЖЕНИЯ КОСМИЧЕСКОГО АППАРАТА 2014
  • Коротких Виктор Владимирович
  • Нестеришин Михаил Владленович
  • Опенько Сергей Иванович
RU2577632C1
СПОСОБ ЭКСПЛУАТАЦИИ НИКЕЛЬ-ВОДОРОДНЫХ АККУМУЛЯТОРНЫХ БАТАРЕЙ СИСТЕМЫ ЭЛЕКТРОПИТАНИЯ ЛЕТАТЕЛЬНЫХ АППАРАТОВ 2015
  • Рясной Николай Владимирович
  • Гуртов Александр Сергеевич
  • Фомакин Виктор Николаевич
  • Томина Валентина Степановна
  • Колесников Константин Сергеевич
RU2621694C9
СПОСОБ УПРАВЛЕНИЯ ПАРАМЕТРАМИ АККУМУЛЯТОРОВ НИКЕЛЬ-ВОДОРОДНЫХ АККУМУЛЯТОРНЫХ БАТАРЕЙ СИСТЕМЫ ЭЛЕКТРОПИТАНИЯ КОСМИЧЕСКОГО АППАРАТА 2014
  • Миненко Сергей Иванович
  • Фомакин Виктор Николаевич
  • Безбородова Людмила Владимировна
RU2586171C2
СПОСОБ ПИТАНИЯ НАГРУЗКИ ПОСТОЯННЫМ ТОКОМ В АВТОНОМНОЙ СИСТЕМЕ ЭЛЕКТРОПИТАНИЯ ИСКУССТВЕННОГО СПУТНИКА ЗЕМЛИ 2007
  • Коротких Виктор Владимирович
  • Кудряшов Виктор Спиридонович
RU2334337C1
СПОСОБ УПРАВЛЕНИЯ ПАРАМЕТРАМИ АККУМУЛЯТОРОВ НИКЕЛЬ-ВОДОРОДНЫХ АККУМУЛЯТОРНЫХ БАТАРЕЙ СИСТЕМЫ ЭЛЕКТРОПИТАНИЯ КОСМИЧЕСКОГО АППАРАТА (ВАРИАНТЫ) 2014
  • Пушкин Валерий Иванович
  • Миненко Сергей Иванович
  • Гуртов Александр Сергеевич
  • Фомакин Виктор Николаевич
RU2586172C2

Реферат патента 2013 года СПОСОБ ЭКСПЛУАТАЦИИ КОМПЛЕКТА НИКЕЛЬ-ВОДОРОДНЫХ АККУМУЛЯТОРНЫХ БАТАРЕЙ В СИСТЕМЕ ЭЛЕКТРОПИТАНИЯ ГЕОСТАЦИОНАРНОГО КОСМИЧЕСКОГО АППАРАТА

Изобретение относится к электротехнической промышленности и может быть использовано при эксплуатации никель-водородных аккумуляторных батарей (АБ) в системах электропитания космических аппаратов (КА), функционирующих на геостационарной орбите. Техническим результатом изобретения является повышение надежности и эффективности эксплуатации комплекта никель-водородных аккумуляторных батарей и надежности целевого использования КА. Указанный результат достигается тем, что запрет заряда и проведение профилактического разряда проводят перед началом теневых участков орбиты, при этом оценивают величину разрядной электрической емкости на предмет ее достаточности для прохождения последующих теневых участков, при необходимости профилактический разряд повторяют. 2 з.п. ф-лы, 1 ил.

Формула изобретения RU 2 486 634 C2

1. Способ эксплуатации комплекта никель-водородных аккумуляторных батарей в системе электропитания геостационарного космического аппарата, заключающийся в проведении зарядов, хранении в заряженном состоянии, подзарядов и разрядов, при этом степень заряда аккумуляторных батарей ограничивают по уровню давления водорода в аккумуляторах, контролируют параметры каждой аккумуляторной батареи, например электрическую емкость, напряжение аккумуляторов и температуру, периодически вводят запрет заряда для одной из аккумуляторных батарей и проводят ее профилактический разряд с ограничением его по заданному критерию, после чего снимают запрет заряда аккумуляторной батареи, включая тем самым ее в штатную работу, аналогичную последовательность операций повторяют, при необходимости, для других АБ, отличающийся тем, что запрет заряда и проведение профилактического разряда проводят перед началом теневых участков орбиты, при этом оценивают величину разрядной электрической емкости на предмет ее достаточности для прохождения последующих теневых участков, при необходимости профилактический разряд повторяют.

2. Способ по п.1, отличающийся тем, что глубину профилактического разряда аккумуляторной батареи выбирают по минимальной величине ее напряжения, при котором обеспечивается стабильный уровень напряжения на выходе системы электропитания конкретной структуры.

3. Способ по п.1, отличающийся тем, что при несоответствии разрядной электрической емкости величине, достаточной для прохождения последующих теневых участков, последующую зарядную электрическую емкость пересчитывают в разрядную по формуле Ср=сз·ηз, где
Ср - разрядная емкость аккумуляторной батареи, А·ч;
Сз - зарядная емкость аккумуляторной батареи, А·ч;
ηз - коэффициент полезного действия процесса заряда аккумуляторной батареи,
а полученный результат используют для оценки величины разрядной электрической емкости на предмет ее достаточности для прохождения последующих теневых участков.

Документы, цитированные в отчете о поиске Патент 2013 года RU2486634C2

СПОСОБ ЭКСПЛУАТАЦИИ ГЕРМЕТИЧНОЙ НИКЕЛЬ-ВОДОРОДНОЙ АККУМУЛЯТОРНОЙ БАТАРЕИ В АВТОНОМНОЙ СИСТЕМЕ ЭЛЕКТРОПИТАНИЯ ИСКУССТВЕННОГО СПУТНИКА ЗЕМЛИ 2005
  • Коротких Виктор Владимирович
  • Эвенов Геннадий Дмитриевич
RU2294581C1
СПОСОБ ЭКСПЛУАТАЦИИ НИКЕЛЬ-ВОДОРОДНЫХ АККУМУЛЯТОРНЫХ БАТАРЕЙ СИСТЕМЫ ЭЛЕКТРОПИТАНИЯ КОСМИЧЕСКОГО АППАРАТА 2009
  • Гуртов Александр Сергеевич
  • Миненко Сергей Иванович
  • Фомакин Виктор Николаевич
  • Галкин Валерий Владимирович
  • Шевченко Юрий Михайлович
  • Горбачева Изабелла Васильевна
RU2399122C1
СПОСОБ ЭКСПЛУАТАЦИИ НИКЕЛЬ-ВОДОРОДНОЙ АККУМУЛЯТОРНОЙ БАТАРЕИ В АВТОНОМНОЙ СИСТЕМЕ ЭЛЕКТРОПИТАНИЯ И АККУМУЛЯТОРНАЯ БАТАРЕЯ ДЛЯ ЕГО РЕАЛИЗАЦИИ 2004
  • Коротких Виктор Владимирович
  • Хартов Виктор Владимирович
  • Эвенов Геннадий Дмитриевич
RU2274930C2
АВТОМАТИЗИРОВАННАЯ СИСТЕМА КОНТРОЛЯ И ДИАГНОСТИКИ АККУМУЛЯТОРНЫХ БАТАРЕЙ 2005
  • Темирев Алексей Петрович
  • Никифоров Борис Владимирович
  • Скачков Юрий Васильевич
  • Каменев Юрий Борисович
  • Юрин Александр Владимирович
  • Чигарев Андрей Валерьевич
  • Анисимов Андрей Владимирович
  • Федоров Андрей Евгеньевич
  • Савченко Александр Владимирович
RU2283504C1
СПОСОБ ЭКСПЛУАТАЦИИ НИКЕЛЬ-ВОДОРОДНОЙ АККУМУЛЯТОРНОЙ БАТАРЕИ В СОСТАВЕ КОСМИЧЕСКОГО АППАРАТА НЕГЕРМЕТИЧНОГО ИСПОЛНЕНИЯ С РАДИАЦИОННЫМ ОХЛАЖДЕНИЕМ И КОСМИЧЕСКИЙ АППАРАТ ДЛЯ ЕГО РЕАЛИЗАЦИИ 2007
  • Коротких Виктор Владимирович
RU2371361C2
WO 2006075112 А1, 20.07.2006
СХЕМА АРБИТРАЖА ДОСТУПА К ШИНЕ 2006
  • Ганасан Джая Пракаш Субраманиам
  • Хофманн Ричард Жерар
  • Ломан Теренс Дж.
RU2372645C2

RU 2 486 634 C2

Авторы

Коротких Виктор Владимирович

Нестеришин Михаил Владленович

Опенько Сергей Иванович

Стадухин Николай Васильевич

Даты

2013-06-27Публикация

2011-08-05Подача