УСТАНОВКА ДЛЯ ПЛАЗМЕННО-ДУГОВОЙ ПЛАВКИ Российский патент 2013 года по МПК H05B7/18 

Описание патента на изобретение RU2486718C2

Предлагаемое изобретение относится к области вакуумных установок для плазменной обработки металлов, в частности, для плазменной дуговой плавки металлов и сплавов в космосе, и предназначена для проведения экспериментов преимущественно по плавке наиболее перспективных металлов (вольфрам, ниобий) и композитов на металлической основе в условиях микрогравитации.

Известны установки (электропечи сопротивления) типа «Сплав» и «Кристалл», а также универсальная электропечь, применявшаяся на американской космической станции «Скайлэб», которые располагаются в отвакуумированном технологическом блоке и имеют полости, куда помещаются герметичные патроны (ампулы), содержащие переплавляемое вещество [1]. («Космическое материаловедение и технология», 1977. «Орбитальная станция «Скайлэб», Д.Бэлью, Э.Стулингер, 1977, стр.200).

Температура таких печей сопротивления, как правило, не превышает 1000-1200°С, однако, во-первых, этого недостаточно для плавки целого ряда металлов и сплавов, а, во-вторых, при более высоких температурах трудно или невозможно подобрать материал ампулы, вследствие взаимодействия его с переплавляемым веществом.

Известно также устройство для плазменной обработки материалов в дуговом разряде, принятое за прототип, представляющее собой, плазматрон [2], содержащий анод, полый термоэмиссионный катод, соединенный с узлом подачи рабочего тела (газа), источник электропитания.

Недостатком этого устройства является необходимость в дорогой системе откачки большой производительности при использовании его для плавки в дуговом разряде и невысокое качество переплавляемого материала.

Целью предлагаемого изобретения является снижение стоимости установки за счет исключения дорогой системы откачки, увеличение качества переплавляемого материала, а также повышение техники безопасности при проведении плавки в космическом пространстве в обитаемом космическом корабле и снижение веса возвращаемого на Землю объекта, включающего переплавленный материал.

Для достижения указанной цели установка для плазменно-дуговой плавки, содержащая источник электропитания и дуговую плавильную печь, состоящую из анода и катода, сообщенного с источником рабочего тела, включает технологический блок с системой вакуумирования и нагреватель в виде стержня, смонтированный внутри технологического блока, при этом источник рабочего тела заполнен щелочным металлом, например литием, и выполнен в виде герметичной ампулы, сообщенной с катодом, причем анод, катод и ампула размещены в герметичной, отвакуумированной капсуле, а нагреватель контактирует с капсулой со стороны катода.

На фиг.1 изображен общий вид предложенной установки.

Технологический блок 1 имеет загрузочный люк 2, патрубок 3 для подключения к системе вакуумирования 4 или для сообщения внутреннего объема технологического блока с забортным космосом. В технологическом блоке 1 расположена герметичная, отвакуумированная капсула 5, выполненная из тугоплавкого металла, например молибдена. В капсуле 5 смонтированы: анод 6, выполненный из переплавляемого материала, пористый катод 7 и источник рабочего тела - ампула 8, образующие плавильную печь. Расположенная внутри катода и содержащая щелочной металл (литий) ампула 8 имеет калиброванное отверстие 16, обращенное в сторону катода 7.

Анод 6 и пористый катод 7 электрически изолированы от стенки капсулы 5 с помощью изоляторов из окиси алюминия 9, соединенных с пористым катодом 7, анодом 6 и корпусом капсулы 5 методом высокотемпературной пайки. При этом корпус капсулы 5 со стороны катода 7 выполнен полым. Пусковой нагреватель 10 катода 7 выполнен в виде стержня из материала на основе нитрида бора, на наружной цилиндрической поверхности которого в спиральных канавках уложен нагревательный элемент 15, выполненный из вольфрам-рениевой проволоки. Нагреватель 10 с помощью кронштейна 12 и изолятора 11 крепится к технологическому блоку 1. Капсула 5 со стороны пористого катода 7 устанавливается на пусковой нагреватель 10 и крепится к нему накидной гайкой 13 через изолятор 14.

Установка работает следующим образом. Соединяют объем технологического блока 1 с системой вакуумирования 4, включают пусковой нагреватель 10 и разогревают пористый катод 7 и ампулу с литием 8. Литий испаряется и поступает через отверстие в ампуле 8 и пористый термоэмиссионный элемент катода 7 в межэлектродный промежуток (промежуток между анодом 6 и катодом 7) капсулы 5. Подают напряжение между анодом 6 и катодом 7 и зажигают разряд, увеличивают ток разряда и производят расплавление анода 6 в литиевой плазме низкого давления.

Анод 6 выполнен в виде цилиндра из несмачивающихся в условиях гравитации элементов, например, ниобия, легированного одним из редкоземельных элементов. Плавку проводят по заданной циклограмме.

Техническим результатом предлагаемого изобретения является возможность получения сверхпроводящего сплава с рекордной температурой перехода сплава в сверхпроводящее состояние.

Кроме того, в предложенной установке предполагается проведение плавок композиционных материалов на основе бериллия.

После проведения плавки капсулу 5 снимают с нагревателя 10 и возвращают на Землю.

Положительный эффект установки для плазменно-дуговой плавки в космосе достигается за счет проведения плавки в условиях микрогравитации в дуговом разряде низкого давления в плазме лития, в закрытой, герметичной, отвакуумированной капсуле. В результате чего за счет сильных восстановительных свойств литиевой плазмы увеличивается чистота переплавляемых материалов, возрастает ресурс катода плазмотрона, а также повышается техника безопасности, исключается попадание вредных аэрозольных соединений лития в атмосферу обитаемого космического корабля. При этом плавка проводится в низковольтной (15-20 Вольт) дуге низкого давления, что также повышает технику безопасности (по сравнению с плавкой электронным лучом) и значительно упрощает установку. Следует также отметить, что возвращаемая на Землю капсула имеет малую массу из-за исключения из возвращаемых на Землю элементов установки для плазменно-дуговой плавки технологического блока 1, пускового нагревателя 10 и узлов крепления 11, 12, 13 и 14 капсулы 5 на технологическом блоке.

Использованная литература

1. Д.Бэлью, Э.Стулингер. «Орбитальная станция «Скайлэб». «Космическое материаловедение и технология», 1977, стр.200.

2. Заявка на изобретение №2004138506/06 от 28.12.2004, опубликованная 10.06.2006. МПК Н05Н 1/24.

Похожие патенты RU2486718C2

название год авторы номер документа
ПЛАВИЛЬНАЯ ПЕЧЬ УСТАНОВКИ ДЛЯ ПЛАЗМЕННО-ДУГОВОЙ ПЛАВКИ 2011
  • Лайко Юрий Александрович
  • Островский Валерий Георгиевич
RU2504929C2
ВАКУУМНАЯ ДУГОВАЯ ГАРНИСАЖНАЯ ПЕЧЬ 2005
  • Мусатов Марк Иванович
  • Фомичев Виктор Сергеевич
  • Пузаков Игорь Юрьевич
  • Белов Евгений Ильич
  • Киселев Николай Владимирович
RU2288287C2
МЕТОД И УСТРОЙСТВО ПОЛУЧЕНИЯ КОМПАКТНЫХ СЛИТКОВ ИЗ ПОРОШКООБРАЗНЫХ МАТЕРИАЛОВ 2009
  • Кузьмин Михаил Георгиевич
  • Чередниченко Владимир Семенович
  • Чвалинский Юрий Михайлович
RU2406276C1
ЭЛЕКТРОДУГОВАЯ ПЛАВИЛЬНАЯ ПЕЧЬ, ЭЛЕКТРОДНЫЙ УЗЕЛ И СПОСОБ ЭЛЕКТРОДУГОВОЙ ПЛАВКИ 2000
  • Аникеев В.Н.
  • Докукин М.Ю.
  • Хвесюк В.И.
  • Цыганков П.А.
RU2184160C1
УСТАНОВКА ДЛЯ АКТИВНОГО ВОЗДЕЙСТВИЯ НА ИОНОСФЕРУ ЗЕМЛИ 1998
  • Уткин Ю.А.
  • Коротеев А.С.
  • Коба В.В.
  • Романовский Ю.А.
RU2131176C1
УСТРОЙСТВО ДЛЯ ПЛАВЛЕНИЯ И КРИСТАЛЛИЗАЦИИ МАТЕРИАЛОВ 2000
  • Дружинин Ю.Ю.
  • Лютиков А.М.
  • Новиков В.И.
  • Севьянц А.Л.
  • Смирнова М.Н.
  • Устьянцева Л.В.
  • Филатов И.Г.
RU2190705C2
ПЛАВИЛЬНЫЙ ТИГЕЛЬ 2001
  • Альтман П.С.
  • Фомичев В.С.
  • Гончаров К.А.
RU2194232C2
АППАРАТ ДЛЯ ПЛАВКИ И ЦЕНТРОБЕЖНО-ВАКУУМНОГО ЛИТЬЯ 2005
  • Кудян Сергей Георгиевич
  • Баранов Михаил Викторович
  • Сиканевич Александр Васильевич
  • Ефремов Владимир Васильевич
  • Ефремов Сергей Владимирович
  • Гайдук Вера Филипповна
RU2304035C2
МАГНИТОПЛАЗМОДИНАМИЧЕСКИЙ ДВИГАТЕЛЬ И СПОСОБ ЕГО РАБОТЫ 2007
  • Островский Валерий Георгиевич
RU2351800C1
УСТАНОВКА ДЛЯ АКТИВНОГО ВОЗДЕЙСТВИЯ НА ИОНОСФЕРУ ЗЕМЛИ ПУТЕМ ИНЖЕКЦИИ ПЛАЗМЫ 1998
  • Уткин Ю.А.
  • Коротеев А.С.
  • Коба В.В.
  • Пришлецов А.Б.
RU2126611C1

Реферат патента 2013 года УСТАНОВКА ДЛЯ ПЛАЗМЕННО-ДУГОВОЙ ПЛАВКИ

Изобретение относится к области вакуумных установок для плазменной дуговой плавки металлов и сплавов в космосе и предназначена для проведения экспериментов преимущественно по плавке наиболее перспективных металлов (вольфрам, ниобий) и композитов на металлической основе в условиях микрогравитации. Установка для плазменно-дуговой плавки содержит дуговую плавильную печь, включающую анод, катод, сообщенный с источником щелочного металла, нагреватель и источник электропитания. Установка дополнительно содержит технологический блок с системой вакуумирования, внутри которого смонтирован нагреватель в виде стержня, при этом источник с щелочным металлом выполнен в виде герметичной ампулы, сообщенной с катодом, причем анод, катод и ампула размещены в герметичной, отвакуумированной капсуле, а нагреватель контактирует с капсулой со стороны катода. Технический результат - возможность получения сверхпроводящего сплава с рекордной температурой перехода сплава в сверхпроводящее состояние, повышение техники безопасности, снижение массы возвращаемой на Землю капсулы. 1 ил.

Формула изобретения RU 2 486 718 C2

Установка для плазменно-дуговой плавки, содержащая источник электропитания и дуговую плавильную печь, состоящую из анода и катода, сообщенного с источником рабочего тела, отличающаяся тем, что она включает технологический блок с системой вакуумирования и нагреватель в виде стержня, смонтированный внутри технологического блока, при этом источник рабочего тела заполнен щелочным металлом, например литием, и выполнен в виде герметичной ампулы, сообщенной с катодом, причем анод, катод и ампула размещены в герметичной, отвакуумированной капсуле, а нагреватель контактирует с капсулой со стороны катода.

Документы, цитированные в отчете о поиске Патент 2013 года RU2486718C2

Бэлью Д., Стулингер Э
Орбитальная станция «Скайлэб»
Космическое материаловедение и технология, 1977, с.200
RU 2004138506 A1, 10.06.2006
Н.С.Catos, Experiment MA Apollo-Soyuz Test Project
Summary Science Report
NASA, Washington 1977, V.1, с.429-447
СПОСОБ ПОЛУЧЕНИЯ МОНОКРИСТАЛЛОВ ТУГОПЛАВКИХ МЕТАЛЛОВ И СПЛАВОВ 0
  • Е. М. Савицкий, Г. С. Бурханов, Л. Г. Баранов Н. Н. Раскатов
SU232214A1
RU 94036650 A1, 27.08.1986.

RU 2 486 718 C2

Авторы

Лайко Юрий Александрович

Черашев Денис Валериевич

Островский Валерий Георгиевич

Даты

2013-06-27Публикация

2011-05-27Подача