СИСТЕМА АВТОМАТИЧЕСКОЙ ПОДСТРОЙКИ ЧАСТОТЫ РАССРЕДОТОЧЕННЫХ ЛАЗЕРОВ Российский патент 2013 года по МПК H03L7/00 H01S3/13 

Описание патента на изобретение RU2490788C1

Изобретение относится к области радиотехники и автоматики применительно к системам автоматической подстройки частоты излучения газовых лазеров непрерывного действия с улучшенными стабилизационными характеристиками и может быть использовано в космической технологии, в частности, для измерения «фиолетового смещения» частоты лазерного излучения в гравитационном поле Земли.

Известны системы автоматической подстройки частоты (АПЧ) связанных газовых лазеров непрерывного действия, взаимно когерентное излучение которых частично подается на фотосмеситель, на выходе которого формируется электрический сигнал с разностной частотой, который после его усиления в полосовом тракте воздействует на последовательно соединенные дискриминатор, интегратор и усилитель постоянного тока, выходом подключенный к пьезокорректору частоты излучения регулируемого по частоте лазера [1-7]. При этом частоты излучения двух связанных лазеров отличаются на среднюю частоту настройки дискриминатора. Указанный пьезокорректор включен в состав резонатора лазера, изменяя его длину, в связи с чем изменяется и частота лазерного излучения [8-9]. Действие таких систем АПЧ с маломощным высокостабильным лазером, колебания которого смешиваются с колебаниями мощного стабилизируемого лазера непрерывного действия и сравниваются с центральной частотой настройки дискриминатора, в результате чего возникает сигнал ошибки, фильтруемый интегратором и усиливаемый в усилителе постоянного тока, которым управляется частота излучений мощного лазера, в резонатор которого введен связанный с зеркалом резонатора пьезокорректор, с поддержанием постоянной во времени разности частот обоих лазеров на известную величину с высокой точностью.

Недостатком известных систем АПЧ является сложность автоподстройки частоты одного лазера под другой в случае значительного рассредоточения этих лазеров в пространстве, например, при установке одного их них на искусственном спутнике земли (ИСЗ), неподвижно расположенном относительно заданной точки земной поверхности (как в спутниках-ретрансляторах системы «Гланас»), а другого лазера - на земле.

Указанный недостаток устранен в заявляемом техническом решении.

Целью изобретения является обеспечение возможности измерения «фиолетового смещения» монохроматического излучения мощного лазера непрерывного действия, направленного на земную поверхность с искусственного спутника земли, неподвижно расположенного над данной точкой земной поверхности, обусловленного действием гравитационного поля Земли.

Указанная цель достигается в системе автоматической подстройки частоты рассредоточенных лазеров с непрерывным режимом излучения, содержащей несколько взаимно связанных цепей автоподстройки частоты, включающих каждая последовательно соединенные фотосмеситель, дискриминатор, интегратор и усилитель постоянного тока, подключенный к пьезокорректору частоты излучения соответствующего лазера непрерывного действия, отличающаяся тем, что одна система автоподстройки частоты из двух лазеров непрерывного действия - высокостабильного маломощного и мощного, снабженного передающим телескопом, ориентированным на земную поверхность, размещена на неподвижном относительно земли искусственном спутнике земли, а две другие системы автоподстройки частоты расположены на земной поверхности, фотосмеситель первой из них связан через приемный телескоп с излучением мощного лазера искусственного спутника земли, а его выход через малошумящий полосовой усилитель связан с перестраиваемым по частоте дискриминатором, дополнительный выход которого подсоединен к измерителю частоты настройки этого дискриминатора, а фотосмеситель второй земной системы автоподстройки частоты оптически связан с частью излучения лазера первой земной системы и второго лазера наземной системы, частота излучения которого подстраивается системой автоподстройки частоты, при этом выход усилителя постоянного тока подключен к пьезокорректору второго лазера наземной системы, а также передается в цифровом кодированном виде по радиоканалу на искусственный спутник земли через аналого-цифровой наземный передатчик с СВЧ антенной и цифро-аналоговый приемник с СВЧ антенной, установленной на искусственном спутнике земли и ориентированной на наземную СВЧ антенну.

Достижение поставленной цели объясняется увеличением энергии фотонов в поле тяготения земли при пробеге ими пространства от искусственного спутника земли (ИСЗ) до земной поверхности при положительном градиенте поля тяготения в направлении распространения фотонов оптической частоты и отрицательном градиенте поля тяготения для радиоизлучения, направленного на ИСЗ, частота которого на пять порядков ниже частоты лазерного излучения, что несущественно влияет на погрешность измерения «фиолетового сдвига» частоты за счет поля тяготения земли. Выделение из совокупного частотного сдвига, обусловленного вариациями собственной частоты этого лазера из-за его нестабильности и «фиолетовым смещением» частоты в гравитационном поле земли, составляющей «фиолетового смещения» частоты осуществляется предварительными статистическими методами за достаточно большой промежуток времени усреднения дрейфа частоты лазерного излучения мощного лазера, установленного на ИСЗ при совместном действии всех трех систем автоподстройки на земле, то есть в отсутствии приращения энергии фотонов под действием градиента поля тяготения.

Изобретение понятно из приведенной на рис.1 блок-схемы системы АПЧ рассредоточенных в пространстве лазерных систем, которая включает следующие компоненты.

На искусственном спутнике земли:

1 - мощный лазер непрерывного действия,

2 - первый светоделительный кубик с большим коэффициентом отражения,

3 - передающий телескоп,

4 - высокостабильный маломощный лазер непрерывного действия,

5 - отражатель малой части излучения мощного лазера 1,

6 - второй светоделительный кубик,

7 - первый фотосмеситель,

8 - первый дискриминатор с фиксированной настройкой,

9 - первый интегратор,

10 - первый усилитель постоянного тока,

11 - приемная СВЧ антенна,

12 - цифро-аналоговый приемник (его выход соединен с пьезокорректором лазера 4).

На земной поверхности:

13 - приемный телескоп,

14 - лазер первой наземной системы автоподстройки частоты,

15 - третий светоделительный кубик с большим коэффициентом пропускания,

16 - второй фотосмеситель,

17 - малошумящий полосовой усилитель,

18 - второй дискриминатор с перестройкой центральной частоты,

19 - второй интегратор,

20 - второй усилитель постоянного тока, подключенный к пьезокорректору лазера 14,

21 - измеритель частоты настройки второго дискриминатора 18,

22 - четвертый светоделительный кубик,

23 - отражатель излучений лазера 14,

24 - пятый светоделительный кубик,

25 - третий фотосмеситель,

26 - лазер второй наземной системы автоподстройки частоты,

27 - отражатель излучения лазера 26,

28 - третий дискриминатор с фиксированной настройкой,

29 - третий интегратор,

30 - третий усилитель постоянного тока, включенный к пьезокорректору лазера 26 и к входу аналого-цифрового передатчика,

31 - аналого-цифровой передатчик сигнала управления лазером 4 на ИСЗ,

32 - передающая СВЧ антенна.

На рис.2 представлена структура аналого-цифрового передатчика и цифро-аналогового приемника сигналов управления частотой маломощного высокостабильного лазера непрерывного действия 4, представленная следующими блоками:

33 - аналого-цифровой преобразователь,

34 - СВЧ модулятор,

35 - задающий СВЧ генератор,

36 - усилитель мощности,

37 - малошумящее входное СВЧ устройство,

38 - СВЧ смеситель,

39 - СВЧ гетеродин,

40 - усилитель промежуточной частоты,

41 - амплитудный детектор с ограничителем по минимуму,

42 - цифровой демодулятор,

43 - цифро-аналоговый преобразователь,

44 - усилитель постоянного тока с подстраиваемым начальным уровнем, подключенный к пьезокорректору лазера 4.

Рассмотрим действие заявляемой системы.

Вся система настраивается на земле. Пусть частота излучений мощного лазера непрерывного действия 1 равна νO1, а частота высокостабильного маломощного лазера непрерывного действия 4 равна νO2 и отличается от частоты νO1 на разность Δf1O2O1, на которую настроена центральная частота FO1 первого дискриминатора 8 с фиксированной настройкой, и сигнал этой частоты Δf1 выделяется на выходе первого фотосмесителя 7 от сложения колебаний лазеров 1 и 4. При неравенстве Δf1≠FO1 на выходе первого дискриминатора 8 возникает ненулевой сигнал того или иного знака в зависимости от расстройки этого дискриминатора относительно частоты Δf1, Выходной сигнал дискриминатора 8 интегрируется в первом интеграторе 9 с постоянной времени τИ1>>1/Δf1, и после его усиления в первом усилителе постоянного тока 10 подается на пьезокорректор мощного лазера 1, выравнивая его частоту до получения равенства Δf1=FO1, при соблюдении которого всегда поддерживается в лазере 1 частота νO1O2-FO1 в установившемся процессе.

Фотоны этой частоты νO1, распространяющиеся от ИСЗ с высоты H от земной поверхности получают при этом добавочную энергию за счет их движения в поле тяготения земли с положительным градиентом. Как нетрудно показать, добавка этой энергии в каждом из фотонов, воспринимаемых наземной аппаратурой, составляет:

Δ W = h   Δ ν Ф = γ M ( h ν O 1 / c 2 ) H / R ( R + H ) = g O ( h ν O 1 / c 2 ) H R / ( R + H ) , ( 1 )

где h=6,62.10-34 Дж.сек - постоянная Планка, M - масса Земли, c=3.108 м/с - электродинамическая постоянная (скорость света в пустоте), R - радиус Земли (м), gO=9,81 м/с2 - ускорение силы тяжести на поверхности Земли. Если принять во внимание, что радиус Земли много больше высоты ИСЗ, то есть R>>H, то уравнение (1) можно переписать к виду hΔνФ≈gO(hνO1/c2)H, откуда получим для величины «фиолетового смещения» частоты фотонов под действием гравитационного поля с положительным градиентом:

Δ ν Ф = g O ν O 1 H R / c 2 ( R + H ) g O ν O 1 H / c 2 . ( 2 )

Таким образом, приходящие к земной поверхности оптические колебания будут иметь частоту

ν O * = ν O 1 + Δ ν Ф = ν O 2 F O 1 + g O ν O 1 H R / c 2 ( R + H ) , ( 3 )

которую воспринимает приемный телескоп 13, и колебания этой частоты поступают на второй фотосмеситель 16 вместе с оптическими колебаниями от лазера 14 первой наземной системы автоподстройки частоты, частота которого νO3 отличается от частоты ν O * на частоту второго дискриминатора 18 с перестраиваемой центральной частотой настройки FO2 и при этом имеем соотношение:

ν O 3 = ν O * + F O 2 = ν O 2 F O 1 + g O ν O 1 H R / c 2 ( R + H ) F O 2 , ( 4 )

где частота FO2 второго дискриминатора 18 может перестраиваться, что индицируется измерителем частоты 21.

Колебания оптической частоты νO3 поступают на вход третьего фотосмесителя 25 и смешиваются в нем с оптическими колебаниями лазера 26 второй наземной системы автоподстройки частоты, частота которого равна νO4O3+FO3. При выборе FO1=FO3 получим, что частота колебаний VO4 в лазере 26 будет поддерживаться равной:

ν O 4 = ν O 2 + g O ν O 1 H R / c 2 ( R + H ) F O 2 , ( 5 )

что вытекает из (4) подстановкой условия FO1=FO3, которое всегда легко выполнимо.

Тогда при условии подстройки второго дискриминатора 18 с перестраиваемой центральной частотой так, что выполняется равенство gOνO1HR/с2(R+Н)=FO2, окончательно будем иметь равенство вида νO4O2, Иначе говоря, при соответствующем выборе начального уровня сигнала с выхода первого усилителя постоянного тока 10 в системе на ИСЗ частота его высокостабильного лазера 4 будет в точности равна частоте колебаний в лазере 14 первой земной системы автоподстройки частоты, что и требовалось соблюсти в связанной системе лазеров, рассредоточенных в пространстве.

При этом настройкой второго дискриминатора 18 обеспечиваем измерение искомой величины «фиолетового смещения» частоты, которое равно:

Δ ν Ф = F O 2 = g O ν O 1 H R / c 2 ( R + H ) g O ν O 1 H / c 2 . ( 6 )

Если в качестве лазеров непрерывного действия использовать Xe Cl-лазеры с длиной волны 0,308 нм и соответственно частотой νO1=3.108/0,308.10-6=0,974.1015 Гц, то при Н=4.105 м и R=3,65.106 м получим частотный сдвиг ΔνФ=9,81*0,974.1015*4.105*3,65.106/9.1016*4,05.106=3,827 104 Гц=38,27 кГц. На эту частоту должен быть настроен второй дискриминатор 18, и его настройка фиксируется измерителем частоты настройки 21. Другие дискриминаторы - первый 8 и третий 28 имеют фиксированные настройки, например, на частоте FO1=FO3=50 кГц.

Важно отметить, что передавая сигнал подстройки высокостабильного маломощного лазера 4 по радиоканалу на СВЧ колебаниях, например, на частоте fO=10 ГГц (длина волны λСВЧ=3 см), который распространяется с Земли на ИСЗ, то есть при отрицательном градиенте земного тяготения, «красное смещение» частоты радиосигнала в приемной СВЧ антенне 11 будет столь малым по величине, в частности, равным ΔνСВЧ=ΔνФfOO1=38,27*1010/0,974.1015=39,29.10-5 кГц≈0,4 Гц, что этой погрешностью изменения частоты «фиолетового смещения» частоты (38,27 кГц) можно пренебречь.

Таким образом, кроме создания стабилизированной системы связанных и существенно рассредоточенных в пространстве лазеров непрерывного излучения, с помощью такой системы, часть из которой устанавливается на ИСЗ, можно измерить эффект «фиолетового смещения» частоты оптических колебаний в дополнение к известному «красному смещению». Можно поэтому считать, что при изгибании луча света вблизи сильно гравитирующих масс, например, Солнца, связанном с тяготением, возникающее «красное смещение» обусловлено именно фактором искривления хода луча, его отклонением от прямолинейного движения фотонов, а получаемая фотоном энергия при приближении к гравитирующему объекту в точности равна отдаваемой им энергии этому объекту при удалении фотона от него. Из этого делается важный физический вывод о том, что всякое вынужденное искривление траектории луча света (вообще электромагнитной волны в широком спектре) связано с потерей фотонами энергии на вторичное излучение, в связи с чем возникает «красное смещение». Это - новый физический феномен. Аналогично этому эффекту ранее автором была заявлена закономерность сохранения поляризации электромагнитных волн [10], при которой всякое вынужденное изменение поляризации электромагнитной волны средой, в которой она распространяется (например, нестационарно анизотропной), приводит к «красному смещению» частоты, то есть к потере энергии и появлению вторичного излучения [11-14].

Литература

1. Меньших О.Ф. Устройство автоматической подстройки частоты. Авт. свид. СССР №360125, опубл. в бюлл. №26 от 09.09.1972.

2. Меньших О.Ф. Устройство АПЧ, Авт. свид. СССР №322131, ДСП, приор, от 02.03.1970.

3. Меньших О.Ф. Устройство АПЧ, Авт. свид. СССР №329929, ДСП, приор, от 16.04.1970.

4. Меньших О.Ф. Устройство для частотной модуляции излучения газового лазера, Авт. свид. СССР №1373188, ДСП, приор. от 16.12.1985.

5. Меньших О.Ф. Способ измерения кратковременной стабильности частоты излучения газового лазера, Авт. свид. СССР №1554719, ДСП, приор. 06.11.1987.

6. Меньших О.Ф. Устройство для измерения кратковременной стабилизации частоты излучения газовых лазеров, Авт. свид. СССР №1556291, ДСП, приор. от 11.04.1988.

7. Меньших О.Ф. Устройство АПЧ лазерного доплеровского локатора, Авт. свид. СССР №1591675, ДСП, приор. от 24.08.1988.

8. Семин В.Е. и др. Монолитные кварцевые частотные дискриминаторы, «Электронная техника», сер.5, Радиодетали и радиокомпоненты, 1975, вып.5, с.119-121.

9. Васильев А.А. и др. Пространственные модуляторы света, под ред. Компанейца И.Н., М., Радио и связь, 1987, с.59-71.

10. Меньших О.Ф. Закон сохранения поляризации электромагнитных волн, Заявка на открытие, М., МААНО, Справка №ВВ-155 от 17.11.2003.

11. Меньших О.Ф. «Генерирование микроволн в анизотропных средах действием оптической ударной волны», доклад на У Всесоюзном семинаре по оптоэлектронике, Институт проблем управления АН СССР, 22.04.1975 г., Москва.

12. Меньших О.Ф. «Способ генерирования электрических колебаний и устройство для его реализации», Авт. свид. СССР №1380476 на пионерское изобретение, ДСП, Москва.

13. Меньших О.Ф. «Устройство для обнаружения эффекта резонанса «красного смещения» электромагнитных волн в анизотропных средах», Патент РФ №2276394 бюлл №13 от 10.05.2006.

14. Меньших О.Ф. «Устройство для измерения «красного смещения» плоско поляризованного когерентного излучения», Патент РФ №.2276347, бюлл. №13 от 10.05.2006.

Похожие патенты RU2490788C1

название год авторы номер документа
ИМИТАТОР БЛИКОВЫХ ПЕРЕОТРАЖЕНИЙ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ МОРСКОЙ ПОВЕРХНОСТЬЮ 2011
  • Меньших Олег Фёдорович
RU2451302C1
СТЕРЕОСКОПИЧЕСКИЙ КОГЕРЕНТНЫЙ ДОПЛЕРОВСКИЙ ЛОКАТОР 2016
  • Меньших Олег Фёдорович
RU2627550C1
ЛАЗЕРНЫЙ КОГЕРЕНТНЫЙ ЛОКАТОР ЦЕЛЕУКАЗАНИЯ 2014
  • Меньших Олег Фёдорович
RU2563312C1
ЛАЗЕРНЫЙ КОГЕРЕНТНЫЙ ЛОКАТОР ДЛЯ РАКЕТ МОРСКОГО БАЗИРОВАНИЯ 2014
  • Меньших Олег Фёдорович
RU2565821C1
ЛАЗЕРНЫЙ ЛОКАТОР 2011
  • Меньших Олег Фёдорович
RU2456636C1
СПОСОБ ЛОКАЦИИ 2005
  • Меньших Олег Федорович
RU2296350C1
ПРИБОР ДЛЯ СТАТИСТИЧЕСКОГО ИССЛЕДОВАНИЯ РАСПРЕДЕЛЕНИЯ ЭНЕРГИИ БЛИКОВЫХ ПЕРЕОТРАЖЕНИЙ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ ОТ МОРСКОЙ ПОВЕРХНОСТИ 2010
  • Меньших Олег Фёдорович
RU2422853C1
СПОСОБ ОБНАРУЖЕНИЯ НИЗКОЛЕТЯЩИХ КРЫЛАТЫХ РАКЕТ МОРСКОГО БАЗИРОВАНИЯ 2009
  • Меньших Олег Фёдорович
RU2422852C1
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ "КРАСНОГО СМЕЩЕНИЯ" ПЛОСКОПОЛЯРИЗОВАННОГО КОГЕРЕНТНОГО ИЗЛУЧЕНИЯ 2004
  • Меньших Олег Фёдорович
RU2276347C1
СПОСОБ РЕГИСТРАЦИИ СТАТИСТИЧЕСКОГО РАСПРЕДЕЛЕНИЯ ПЕРЕОТРАЖЕНИЙ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ ОТ НИЗКОЛЕТЯЩЕЙ РАКЕТЫ БЛИКАМИ МОРСКОЙ ПОВЕРХНОСТИ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2011
  • Меньших Олег Фёдорович
RU2451301C1

Иллюстрации к изобретению RU 2 490 788 C1

Реферат патента 2013 года СИСТЕМА АВТОМАТИЧЕСКОЙ ПОДСТРОЙКИ ЧАСТОТЫ РАССРЕДОТОЧЕННЫХ ЛАЗЕРОВ

Изобретение относится к области радиотехники и автоматики, к системам автоматической подстройки частоты излучения газовых лазеров непрерывного действия с улучшенными стабилизационными характеристиками и может быть использовано в космической технологии, в частности, для измерения «фиолетового смещения» частоты лазерного излучения в гравитационном поле Земли. Технический результат - обеспечение возможности измерения «фиолетового смещения» монохроматического излучения мощного лазера непрерывного действия, направленного на земную поверхность с искусственного спутника земли, неподвижно расположенного над данной точкой земной поверхности, обусловленного действием гравитационного поля Земли. Система автоматической подстройки частоты рассредоточенных лазеров с непрерывным режимом излучения содержит несколько взаимно связанных цепей автоподстройки частоты, включающих каждая последовательно соединенные фотосмеситель, дискриминатор, интегратор и усилитель постоянного тока, подключенный к пьезокорректору частоты излучения соответствующего лазера непрерывного действия, при этом одна система автоподстройки частоты из двух лазеров непрерывного действия размещена на неподвижном относительно земли искусственном спутнике земли, а две другие - на земной поверхности. 2 ил.

Формула изобретения RU 2 490 788 C1

Система автоматической подстройки частоты рассредоточенных лазеров с непрерывным режимом излучения, содержащая несколько взаимно связанных цепей автоподстройки частоты, включающих каждая последовательно соединенные фотосмеситель, дискриминатор, интегратор и усилитель постоянного тока, подключенный к пьезокорректору частоты излучения соответствующего лазера непрерывного действия, отличающаяся тем, что одна система автоподстройки частоты из двух лазеров непрерывного действия - высокостабильного маломощного и мощного, снабженного передающим телескопом, ориентированным на земную поверхность, размещена на неподвижном относительно земли искусственном спутнике земли, а две другие системы автоподстройки частоты расположены на земной поверхности, фотосмеситель первой из них связан через приемный телескоп с излучением мощного лазера искусственного спутника земли, а его выход через малошумящий полосовой усилитель связан с перестраиваемым по частоте дискриминатором, дополнительный выход которого подсоединен к измерителю частоты настройки этого дискриминатора, а фотосмеситель второй земной системы автоподстройки частоты оптически связан с частью излучения лазера первой земной системы и второго лазера наземной системы, частота излучения которого подстраивается системой автоподстройки частоты, при этом выход усилителя постоянного тока подключен к пьезокорректору второго лазера наземной системы, а также передается в цифровом кодированном виде по радиоканалу на искусственный спутник земли через аналого-цифровой наземный передатчик с СВЧ антенной и цифроаналоговый приемник с СВЧ антенной, установленной на искусственном спутнике земли и ориентированной на наземную СВЧ антенну.

Документы, цитированные в отчете о поиске Патент 2013 года RU2490788C1

УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ "КРАСНОГО СМЕЩЕНИЯ" ПЛОСКОПОЛЯРИЗОВАННОГО КОГЕРЕНТНОГО ИЗЛУЧЕНИЯ 2004
  • Меньших Олег Фёдорович
RU2276347C1
УСТРОЙСТВО ДЛЯ ОБНАРУЖЕНИЯ ЭФФЕКТА РЕЗОНАНСА "КРАСНОГО СМЕЩЕНИЯ" ЭЛЕКТРОМАГНИТНЫХ ВОЛН В АНИЗОТРОПНЫХ СРЕДАХ 2004
  • Меньших Олег Федорович
RU2276394C1
RU 2055431 C1, 27.02.1996
СПОСОБ СТАБИЛИЗАЦИИ ЧАСТОТЫ ИЗЛУЧЕНИЯ ЛАЗЕРА 2009
  • Борисов Борис Дмитриевич
RU2447557C2
US 7274718 B2, 25.09.2007
US 20100207693 A1, 19.08.2010.

RU 2 490 788 C1

Авторы

Меньших Олег Фёдорович

Даты

2013-08-20Публикация

2012-09-06Подача