Изобретение относится к области нефтепереработки и нефтехимии, в частности к технологии приготовления алюмоникельмолибденовых катализаторов гидроочистки дизельного топлива.
Известен способ получения катализатора гидроочистки, включающий смешение соединений никеля и молибдена с гидроокисью алюминия, фильтрование, формовку, сушку и прокаливание, в котором в качестве соединений никеля и молибдена используют суспензию молибдатов никеля, получаемую растворением парамолибдата аммония в водном растворе перекиси водорода с последующим введением в нее нитрата никеля (RU 2179886, 2002).
Недостатками вышеуказанного способа является его многостадийность и недостаточная обессеривающая активность катализатора.
Известен способ получения катализатора гидроочистки, путем осаждения гидроксида алюминия сульфатным методом и введение в гидроксид алюминия сначала солей молибдена, а затем никеля при температуре 80°C и непрерывном перемешивании с последующей обработкой массы азотной или соляной кислотой (RU 2137541, 1999).
Недостатками указанного способа являются многостадийность приготовления катализатора, значительное количество отходов на промежуточных стадиях, а также недостаточная активность катализатора при невысоких температурах и давлениях процесса гидроочистки
Также известен способ приготовления катализатора гидроочистки на основе оксидов молибдена и никеля с применением термодиспергированного аморфизированного оксида алюминия, включающий смешение исходных реагентов, фильтрацию, формовку и термообработку каталитической композиции (М.И. Целютина, И.Д. Резническо и др. Экология и промышленность России, июль 2005).
Указанный способ позволяет значительно уменьшить количество отходов, но получаемый катализатор имеет недостаточную активность по удалению сернистых соединений.
Из известных технических решений наиболее близким к предлагаемому изобретению является способ получения катализатора гидроочистки, заключающийся в смешении гидроксида алюминия и сухих порошков оксидов молибдена и никеля с последующим формованием, сушкой и прокалкой при 550°C и обработкой азотной кислотой 0,015-0,025 моль на моль Al2O3 (RU 2073566, 1997).
Недостатком указанного способа является недостаточная обессеривающая активность катализатора с тенденцией снижения ее даже при увеличении в его составе активных компонентов - оксида молибдена и оксида никеля, что связано с перераспределением и блокировкой активных центров катализатора, а также многостадийность технологии приготовления.
В основу настоящего изобретения положена задача создания способа получения катализатора гидроочистки дизельного топлива, обеспечивающего повышение обессеривающей активности катализатора и упрощение технологического процесса приготовления катализатора за счет сокращения количества стадий.
Поставленная задача достигается тем, что способ получения катализатора гидроочистки дизельного топлива заключается в том, что смешивают сухие порошки оксидов никеля, молибдена и алюминия в соотношении 35-67% оксида молибдена, 9-17% оксида никеля, остальное - алюминий, из полученной смеси формируют таблетки заданного размера и массы, которые размещают в тугоплавкой форме с внутренним высокотемпературным защитным покрытием, указанную форму помещают в центрифугу и производят ее вращение с величиной центробежного ускорения 4-80g, где g - ускорение свободного падения, в процессе вращения центрифуги инициируют горение таблеток и поддерживают процесс горения в атмосфере воздуха при температуре выше температуры плавления компонентов смеси таблеток до получения интерметаллидного сплава, после выгрузки из центрифуги полученного сплава его последовательно подвергают выщелачиванию от алюминия раствором гидрооксида щелочного металла в течение 20-60 мин., промывке и стабилизации раствором 10% лимонной кислоты и 1% перекиси водорода.
В основу синтеза полиметаллических сплавов в предлагаемом способе положен метод самораспространяющегося высокотемпературного синтеза (СВС), химическая схема которого представлена следующими стадиями:
(Ox1+Ох2+Ох3+…Oxn)+R→[Полиметаллический сплав]+RkOl+Q,
где: Oxi - оксиды Ni, Со, Mn и т.д., R - металл восстановитель (Al), [Полиметаллический сплав] - (Ni, Со, Mn)Alx, Q - тепловой эффект процесса.
Суть процесса заключается в протекании экзотермических реакций между исходными порошковыми компонентами в волне горения. Это приводит к реализации высоких температур (выше температуры плавления продуктов реакции, до 3000°C) и формированию расплава продуктов синтеза, состоящего из двух фаз - многокомпонентного интерметаллида и оксида алюминия. Вследствие их взаимной нерастворимости и разницы в удельных весах происходит фазоразделение и кристаллизация, образующийся слиток представляет собой двухслойный продукт, где нижний слой формирует металлическая фаза, а верхний - оксидная (Al2O3). Малое время синтеза (несколько десятков секунд) и защита поверхности металлической фазы от окисления расплавом Al2O3 позволяют проводить процесс на воздухе.
Использование перегрузки, создаваемой в центрифуге СВС-установки, позволяет увеличить полноту фазоразделения и приводит к выравниванию (гомогенизации) по объему состава многокомпонентного металлического сплава. Задаваемая скорость вращения ротора центрифуги позволяет создавать в процессе синтеза требуемые перегрузки от 1 до 1000 g.
Синтез интерметаллидных сплавов из элементов осуществлялся в режиме теплового взрыва. Основная особенность этого режима синтеза заключается в том, что инициирование процесса СВС проводится не с поверхности, а за счет прогрева всего объема реагирующего вещества до температуры зажигания. При этом в зависимости от соотношения определяющих параметров, максимум температуры может возникать либо в центре реакционного объема, либо между центром и поверхностью
Способ осуществляют следующим образом.
Предварительно смешивают сухие порошки оксидов никеля, молибдена и алюминия в соотношении 35-67% оксида молибдена, 9-17% оксида никеля, остальное - порошок алюминий. Из полученной смеси формируют путем прессования таблетки заданного размера и массы, например, диаметром 6-12 мм и массой 3-5 г. Начальная относительная плотность варьируется в пределах 60-70%).
Затем таблетки размещают в тугоплавкой форме с внутренним высокотемпературным защитным покрытием из оксидной фазы на основе корунда и органического связующего.
Указанную форму помещают в центрифугу и производят ее вращение с величиной центробежного ускорения 4-80g, где g - ускорение свободного падения. В процессе вращения центрифуги инициируют горение таблеток и поддерживают процесс горения в атмосфере воздуха при температуре выше температуры плавления компонентов смеси таблеток до получения интерметаллидного сплава.
После выгрузки из центрифуги полученного сплава его последовательно выщелачивают от алюминия раствором гидрооксида щелочного металла в течение 20-60 мин, промывают дистиллированной водой и стабилизируют раствором 10% лимонной кислоты и 1% перекиси водорода.
Реакция синтеза инициируется на воздухе с помощью раскаленной электрическим током вольфрамовой спирали. Зона реакции распространяется по образцу во фронтальном режиме за счет сильно экзотермического взаимодействия исходных реагентов. Температура горения, согласно термодинамическому анализу, близка к температурам плавления интерметаллидной фазы. Окончание проведения процесса фиксировали по резкому падению температуры, например, с 2500°C до 1800°C и ниже в связи с прекращением процесса горения и началом охлаждения расплава. Обычно время процесса горения в синтезе с образованием интерметаллидного сплава в зависимости от массы сплавляемых образцов составляет 10-60 сек.
Дополнительная щелочная обработка этих интерметаллидных сплавов с целью увеличения поверхности расширяет круг областей их применения. В процессе СВС катализаторов и носителей при высокой температуре и малом времени синтеза (до нескольких секунд) образуются структуры с высокой дефектностью кристаллической решетки. После прохождения волны горения, в процессе остывания проходят постпроцессы - продолжение формирования структуры и состава активных структур катализаторов. В связи с этим условия охлаждения (скорость охлаждения может составлять сотни градусов в минуту) также способствуют образованию дефектной кристаллической решетки. Это могут быть дефекты Шоттки (с вакансиями или с присутствием в решетке иона примеси с большим или меньшим зарядом катиона), дефекты по Френкелю (вакансии в узлах и ионы в энергетически невыгодных позициях - междоузлиях).
Кроме точечных дефектов возможно образование одномерных и двухмерных дефектов кристаллов. В местах выходов дислокаций, а также в местах поверхностных точечных дефектов геометрическое расположение атомов катализатора и их энергетическое состояние отличается от их расположения на остальной поверхности. Межатомные расстояния и энергетическое состояние атомов в кристаллических катализаторах являются важными факторами, влияющими на их активность.
Изучение активности синтезированных катализаторов проводили на микропроточной каталитической установке в стационарном слое катализатора объемом 50 см3 по ТУ 2177-007-44912618-00 на прямогонной фракции 180-360°C дизельного топлива ЗАО «РНПК» с исходным содержанием сернистых соединений 9900 ррт при следующих условиях проведения эксперимента:
Р опыта = 3,5МПа,
V с = 1 час -1
Н2/сырье=300 н см3/см3
Температура в реакторе = 250°С, 320°С, 350°С и 400°С,
Отбор проб катализата после выхода на режим:
Проба №1 - через четыре часа,
Проба №2 - за два часа до окончания опыта.
Пример 1. Смесь порошков оксида никеля - 9%, оксида молибдена- 35%, остальное - алюминий, подвергают сушке и запрессовывают в таблетки диаметром 12 мм и массой 3-3,5 г. Полученные таблетки помещают в графитовую форму, на внутреннюю поверхность которой предварительно наносят суспензию литой оксидной фазы на основе корунда и органического связующего - поливинилбутераля на спирту. Нанесенную форму высушивают при температуре 150°C не менее 2-х часов. Готовую и, заполненную таблетками графитовую форму помещают в центробежную установку, в которой вращением создают перегрузку 10-40g, после чего смесь воспламеняют инициирующей вольфрамовой электроспиралью. Высокая температура процесса (выше температуры плавления продуктов реакции на 2800-3000°C) приводит к образованию расплава состоящего из двух фаз, нижняя - многокомпонентного интерметаллидного сплава и верхняя - из оксида алюминия. Окончание проведения процесса фиксируется по падению температуры с 2500°C до 1800°C и ниже в связи с прекращением процесса горения и начала процесса охлаждения. Нижний интерметаллидный слиток на основе алюминидов никеля и молибдена подвергают размолу в течение 20-60 мин, после чего отбирают фракцию диаметром 0,5-3,5 мм, которую подвергают выщелачиванию 10% раствором едкого натра в течение 20 мин, полученный образец катализатора промывают дистиллированной водой, стабилизируют перекисью водорода и высушивают при температуре 90°С. Состав катализатора после выщелачивания алюминия: оксид никеля - 14%, оксид молибдена - 48%, остальное - оксид алюминия. Результаты испытаний катализатора в процессе обессеривания приведены в табл.1.
Пример 2. Условия проведения процесса аналогичны по примеру 1, перегрузка синтеза интерметаллидного сплава в центрифуге составляет 60g, выщелачивание проводится 10% раствором едкого кали в течение 20 мин. Состав катализатора: оксид никеля - 11%, оксид молибдена- 41%, остальное - алюминий. Результаты испытаний приведены в табл.2
Пример 3. Условия проведения процесса аналогичны по примеру 1, перегрузка сплавления интерметаллидного сплава в центробежной центрифуге составляет 10g, выщелачивание алюминия проводится 10% раствором едкого натра в течение 30 мин. С последующей стабилизацией раствором 10% лимонной кислоты. Состав катализатора после выщелачивания: оксид никеля 12%,оксид молибдена 47%, остальное оксид алюминия. Результаты испытаний катализатора приведены в табл.3.
Пример 4. Условия проведения процесса аналогичны по примеру 1, состав исходной смеси: оксид никеля 13%, оксид молибдена - 55%, остальное - алюминий подвергают сплавлению в центробежной центрифуге при перегрузке 60g, а выщелачивание проводится 20% раствором едкого натра в течение 120 мин. С последующей стабилизацией раствором 10% лимонной кислоты и перекисью водорода. Состав катализатора: оксид никеля - 17%, оксид молибдена - 66%, остальное оксид алюминия. Результаты испытания приведены в табл.4
Таким образом, отличительным признаком предлагаемого изобретения является то, что для синтеза катализатора используют не сухие соли никеля и молибдена, а непосредственно сухие порошки оксидов этих металлов, а вместо пропиточного способа синтеза катализаторов с последующей кислотной обработкой и многостадийной промывкой и термообработкой, применяют технологию прямого получения интерметаллидного сплава методом самораспространяющегося высокотемпературного синтеза, с последующим выщелачиванием атомов алюминия и получением активного катализатора гидроочистки с наноструктурированной поверхностью созданной активными центрами оксидов молибдена и никеля.
Использование в предлагаемом способе метода СВС даже при получении катализатора, идентичного по химическому составу синтезированному традиционным методом, приводит к образованию отличной от него структуры, что позволяет рассматривать СВС-продукты, как новый класс катализаторов и носителей.
название | год | авторы | номер документа |
---|---|---|---|
Катализатор гидрирования высокоароматизированного среднедистиллятного нефтяного сырья и способ его приготовления | 2020 |
|
RU2757368C1 |
СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА ДЛЯ ГЛУБОКОГО ОКИСЛЕНИЯ CO И УГЛЕВОДОРОДОВ И КАТАЛИЗАТОР, ПОЛУЧЕННЫЙ ЭТИМ СПОСОБОМ | 2010 |
|
RU2434678C1 |
СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА ДЛЯ СИНТЕЗА ВЫСШИХ УГЛЕВОДОРОДОВ ИЗ СО И Н И КАТАЛИЗАТОР, ПОЛУЧЕННЫЙ ЭТИМ СПОСОБОМ | 2011 |
|
RU2455065C1 |
Способ получения электродов из сплавов на основе алюминида никеля | 2017 |
|
RU2644702C1 |
Способ получения катализатора гидроочистки дизельных фракций и катализатор, полученный этим способом | 2018 |
|
RU2684422C1 |
Способ получения электродов из сплавов на основе алюминида титана | 2016 |
|
RU2630157C2 |
СПОСОБ ПОЛУЧЕНИЯ ОТЛИВОК СПЛАВОВ НА ОСНОВЕ ГАММА АЛЮМИНИДА ТИТАНА | 2013 |
|
RU2523049C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ НАНОРАЗМЕРНЫХ НИТЕЙ В ВИДЕ РАЗВЕТВЛЕННЫХ ПУЧКОВ ИЗ ТУГОПЛАВКОГО МЕТАЛЛА | 2017 |
|
RU2678859C1 |
СПОСОБ ПОЛУЧЕНИЯ ЛИТОГО СПЛАВА В РЕЖИМЕ ГОРЕНИЯ | 2004 |
|
RU2270877C1 |
СПОСОБ ПОЛУЧЕНИЯ СПЛАВА ХРОМ-МОЛИБДЕН-ВОЛЬФРАМ В РЕЖИМЕ ТЕХНОЛОГИЧЕСКОГО ГОРЕНИЯ | 2023 |
|
RU2819548C1 |
Изобретение относится к каталитической химии, в частности к способу получения алюмоникельмолибденовых катализаторов гидроочистки дизельного топлива методом самораспространяющегося высокотемпературного синтеза через стадию интерметаллидных сплавов. Способ получения катализатора заключается в том, что смешивают сухие порошки оксидов никеля, молибдена и алюминия в соотношении 35-67% оксида молибдена, 9-17% оксида никеля, остальное - алюминий, из полученной смеси формируют таблетки заданного размера и массы, которые размещают в тугоплавкой форме с внутренним высокотемпературным защитным покрытием, указанную форму помещают в центрифугу и производят ее вращение с величиной центробежного ускорения 4-80g, где g - ускорение свободного падения, в процессе вращения центрифуги инициируют горение таблеток и поддерживают процесс горения в атмосфере воздуха при температуре выше температуры плавления компонентов смеси таблеток до получения интерметаллидного сплава, после выгрузки из центрифуги полученного сплава его последовательно подвергают выщелачиванию от алюминия раствором гидрооксида щелочного металла в течение 20-60 мин, промывке и стабилизации раствором 10% лимонной кислоты и 1% перекиси водорода. Технический эффект - сокращение стадий приготовления катализатора и получение высокоактивного катализатора. 4 табл., 4 пр.
Способ получения катализатора гидроочистки дизельного топлива, заключающийся в том, что смешивают сухие порошки оксидов никеля, молибдена и алюминия в соотношении 35-67% оксида молибдена, 9-17% оксида никеля, остальное - алюминий, из полученной смеси формируют таблетки заданного размера и массы, которые размещают в тугоплавкой форме с внутренним высокотемпературным защитным покрытием, указанную форму помещают в центрифугу и производят ее вращение с величиной центробежного ускорения 4-80g, где g - ускорение свободного падения, в процессе вращения центрифуги инициируют горение таблеток и поддерживают процесс горения в атмосфере воздуха при температуре выше температуры плавления компонентов смеси таблеток до получения интерметаллидного сплава, после выгрузки из центрифуги полученного сплава его последовательно подвергают выщелачиванию от алюминия раствором гидрооксида щелочного металла в течение 20-60 мин, промывке и стабилизации раствором 10% лимонной кислоты и 1% перекиси водорода.
СПОСОБ ПРИГОТОВЛЕНИЯ АЛЮМОКОБАЛЬТМОЛИБДЕНОВОГО КАТАЛИЗАТОРА ГИДРООЧИСТКИ НЕФТЯНЫХ ФРАКЦИЙ | 1995 |
|
RU2073566C1 |
КАТАЛИЗАТОР ГИДРООЧИСТКИ НЕФТЯНЫХ ФРАКЦИЙ И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2010 |
|
RU2445163C1 |
КАТАЛИЗАТОР, СПОСОБ ЕГО ПОЛУЧЕНИЯ, СПОСОБ ПОЛУЧЕНИЯ НОСИТЕЛЯ ДЛЯ ЭТОГО КАТАЛИЗАТОРА И ПРОЦЕСС ГИДРООБЕССЕРИВАНИЯ ДИЗЕЛЬНЫХ ФРАКЦИЙ | 2006 |
|
RU2313389C1 |
US 6013598 A1, 11.01.2000 | |||
WO 2008016969 A3, 07.02.2008 | |||
Способ восстановления разрыва дистального сухожилия двуглавой мышцы плеча | 1982 |
|
SU1120972A1 |
Авторы
Даты
2013-08-27—Публикация
2012-07-17—Подача