КОМПОЗИЦИОННЫЙ КАТОДНЫЙ МАТЕРИАЛ Российский патент 2013 года по МПК H01M4/52 H01M10/525 

Описание патента на изобретение RU2492557C1

Изобретение относится к электротехнической промышленности и может быть использовано для производства улучшенного катодного активного материала литий-ионных аккумуляторных батарей для питания портативной электроники, электроинструмента, электротранспорта.

Известны литий-ионные аккумуляторные батареи с активным катодным материалом на основе сложных оксидов LiCoO2, LiMn2O4, LiCo1/3Ni1/3Mn1/3O2. Существует несколько общих методов получения таких материалов, среди которых наиболее распространенными являются методы, предполагающие образование промежуточных продуктов в растворе, описанные в патентах [US 5135732] и [US 4246253]. Недостатками материалов, полученных этими способами, являются искажение структуры и протекание побочных реакций при циклировании аккумулятора, что приводит к необратимым потерям емкости.

Также известен катодный активный материал LiFePO4/C [US 5910382], который представляет собой фосфат лития-железа со структурой оливина с углеродным покрытием. Литий-ионные аккумуляторы на основе фосфата лития железа имеют значительные преимущества перед стандартными литий-ионными аккумуляторами. Структура LiFePO4 стабильнее за счет более прочного связывания атомов кислорода, что обуславливает повышенную безопасность при эксплуатации, в то время как традиционный катодный материал LiCoO2 при высокой степени зарядки склонен к разложению, которое может сопровождаться взрывом или возгоранием аккумулятора. Кроме того, LiFePO4 заряжается и разряжается практически при одном и том же напряжении около 3.5 В. Недостатком LiFePO4 является несколько более низкое рабочее напряжение, что приводит к уменьшению энергоемкости и ограничению сферы применения литий-ионных аккумуляторов на его основе.

К аналогам предлагаемого изобретения также относится техническое решение по патенту US 7390473. Согласно этому патенту LiFePO4 получают смешением реагентов в растворе с последующим соосаждением прекурсоров или выпариванием жидкой фазы. Наноразмерный кристаллический LiFePO4 получают после выдержки прекурсоров при температуре от 600 до 800°C. Существенным недостатком этого способа получения активного материала является его низкая электронная и ионная проводимость.

К аналогам предлагаемого изобретения также относится техническое решение по патенту Канады [СА 2307119]. Сущность изобретения заключается в повышении поверхностной электронной проводимости фосфата лития-железа. На кристаллы LiFePO4 наносят электропроводящий углеродный слой. Несмотря на удовлетворительную электронную проводимость такого композиционного материала, он не обладает достаточными электрохимическими показателями из-за низкой ионной проводимости.

Наиболее близкое техническое решение [RU 2402114], (прототип), заключается в повышении ионной и электронной проводимости фосфата лития-железа путем допирования структуры LiFePO4 катионами поливалентных элементов Co, Ni, Mg, Са, Zn, Al, Cu, Ti, Zr, S, Si, V, Mo. Предложенный материал представляет собой частицы состава LipFexMl-x(PO4)t(AO4)l-t и углеродную добавку, где M=Co, Ni, Mg, Ca, Zn, Al, Cu, Ti, Zr, где A=S, Si, V, Mo, где 0<p<2; 0<x<1; 0≤t≤1, с заявленным размером частиц от 20 до 500 нм и толщиной углеродного покрытия до 20 нм.

Недостатком прототипа, несмотря на увеличение емкости литий-ионного аккумулятора на его основе, является сравнительно низкая ионная проводимость, не позволяющая обеспечить высокую скорость процессов зарядки и разрядки аккумулятора, а также существенное понижение емкости на больших токах. Дополнительного увеличения емкости литий-ионного аккумулятора на основе LiFePO4 можно добиться путем уменьшения размера частиц катодного материала.

Технической задачей является разработка способа получения катодного материала на основе LiFePO4 с размером кристаллов 20÷400 нм и относительно более высокой ионной проводимостью.

Изобретение направлено на изыскание способа получения композиционного катодного материала на основе LiFePO4, с размером кристаллов 20÷100 нм, обладающего повышенной ионной проводимостью и, как следствие, более высокой емкостью.

Технический результат достигается тем, что предложен композиционный катодный материал, состоящий из механической смеси нанокристаллов фосфата лития-железа (LiFePO4) и фосфата со структурой Насикон, а именно: либо двойного фосфата состава LixM2(PO4)3, где: x=1 для М=TiIV, ZrIV; x=3 для М=InIII, CrIII, FeIII; либо сложного фосфата состава Lil+yMIV2-yMIIIy(PO4)3, где: y=0.001÷1.999; MIV=TiIV, ZrIV; MIII=InIII, CrIII, FeIII, при этом смесь покрыта углеродом при следующих соотношениях компонентов, мас.%:

фосфат лития-железа 82÷98 фосфат со структурой Насикон 1÷15 углерод 1÷6,

причем размер частиц фосфата лития-железа составляет от 20 до 100 нм, размер частиц фосфата со структурой Насикон составляет от 20 до 200 нм, а толщина углеродного покрытия от 1 до 5 нм.

Предложенный композиционный катодный материал получают путем механохимического взаимодействия компонентов. На границе раздела фаз образуется тонкий Дебаевский слой, способствующий увеличению ионной проводимости, ускорению электрохимических процессов и улучшению характеристики катодного материала в целом.

Введение фосфата со структурой Насикон в количестве менее 1 мас.% не приводит к улучшению характеристик композиционного катодного материала из-за недостаточной площади границы раздела фаз. Введение фосфата со структурой Насикон в количестве более 15 мас.% приводит к понижению ионной проводимости и емкости материала.

Сущность изобретения заключается в том, что для создания катодного материала на основе LiFePO4 с повышенной ионной проводимостью и малым размером частиц, предложено получать композиционный материал, содержащий фосфат со структурой Насикон [LixM2(PO4)3(х=1 для M=TiIV, ZrIV; x=3 для M=InIII, CrIII, FeIII) или Lil+yMIV2-yMIIIy(PO4)3 (y=0.001÷1.999, MIV=TiIV, ZrIV; MIII=InIII, CrIII, FeIII)], что позволяет увеличить продолжительность циклирования, повысить емкость литий-ионных аккумуляторов на его основе.

Указанная техническая задача и указанный технический результат достигаются благодаря использованию в качестве дополнительного компонента кристаллов с высокой ионной проводимостью.

Сущность заявляемого изобретения поясняется следующими прилагаемыми иллюстрациями:

Фиг.1. Рентгенограмма LiFePO4+5%Li1.3Ti1.7Fe0.3(PO4)3+4%C.

Фиг.2. Микрофотография LiFePO4+5%Li1.3Ti1.7Fe0.3(PO4)3+4%C.

Фиг.3. Зарядно-разрядная кривая первого цикла для образца LiFePO4+5%Li1.3Ti1.7Fe0.3(PO4)3+4%C при циклировании током 0.1C.

Фиг.4. Изменение разрядной емкости для образца LiFePO4+5%Li1.3Ti1.7Fe0.3(PO4)3+4%C при циклировании током 0.1С.

Предлагаемое изобретение реализуется следующим образом. Заявляемый композиционный катодный материал на основе LiFePO4 получают методом, включающим следующие стадии:

- синтез прекурсора для LiFePO4: приготовление водного раствора из основных компонентов, содержащих катионы лития, железа, фосфат-анионы; выдерживание реакционной смеси при температурах 150÷500°C.

- синтез фосфата со структурой Насикон [LixM2(PO4)3 (x=1 для M=TiIV, ZrIV; х=3 для M=InIII, CrIII, FeIII) или Lil+yMIV2-yMIIIy(PO4)3 (y=0.001÷1.999, MIV=TiIV, ZrIV; MIII=InIII, CrIII, FeIII)]: приготовление раствора реагентов в этиленгликоле; выдерживание реакционной смеси при 150÷400°C; проведение конечного отжига при температурах 650÷950°C и охлаждение.

- смешение полученных порошков в стехиометрических количествах и добавление прекурсора для получения углерода;

- проведение механической активации смеси с помощью перетирания в шаровой мельнице для улучшения контактов между частицами;

- выдерживание реакционной смеси при температуре от 500 до 800°C в инертной атмосфере. Время выдержки должно быть достаточным для образования продуктов реакции, обычно 8÷14 часов. Выбор нижнего температурного предела обусловлен недостаточной степенью кристаллизации продукта при температуре ниже 500°C. При температурах выше 800°C скорость роста кристаллов продукта реакции становится слишком высокой, начинается агломерация частиц, что приводит к образованию крупнокристаллического продукта с недостаточной электрохимической активностью.

В Таблице приведены примеры реализации заявляемого изобретения. Примеры иллюстрируют, но не ограничивают предложенный способ.

Таблица № Приме-ра Емкость на токе 0.1C / ионная проводимость образцов LiFePO4/C/фосфат со структурой Насикон с различным содержанием и составом фазы фосфата со структурой Насикон и при содержании C=4 мас.% 1. LiFePO4/1%Li1.3Ti1.7Fe0.3(PO4)3 146 мАч/г/ 5·10-10 Ом-1см-1

2. LiFePO4/5%Li1.3Ti1.7Fe0.3(PO4)3 154 мАч/г/ 1·10-9 Ом-1см-1 3. LiFePO4/15%Li1.3Ti1.7Fe0.3(PO4)3 140 мАч/г/ 9·10-11 Ом-1см-1 4. LiFePO4/5%Li1.1Zr1.9Fe0.1(PO4)3 150 мАч/г/ 3·10-10 Ом-1см-1 5. LiFePO4/5%Li1.7Zr1.3Fe0.7(PO4)3 145 мАч/г/ 1·10-10 Ом-1см-1 6. LiFePO4/5%LiZr2(PO4)3 148 мАч/г/ 2·10-10 Ом-1см-1 7. LiFePO4/5%Li3In2(PO4)3 146 мАч/г/ 2·10-10 Ом-1см-1 Прото-тип LiFePO4 138 мАч/г/ 6·10-12 Ом-1см-1

Материалы и методы

Для синтеза LiFePO4 можно использовать следующие исходные реагенты: нитрат лития (LiNO3, 99+%, Aldrich), карбонат лития (Li2CO3, Merck, >99%), гидроксид лития (LiOH, 99%, Acros), оксалат железа II (FeC2O4*2H2O, 99% Aldrich), нитрат железа III (Fe(NO3)39H2O, >98%, Riedel-de Haen), оксид железа III (Fe2O3, >98%, Sigma Aldrich), гидрофосфат аммония ((NH4)2HPO4, >97%, Roth), фосфат железа III (FePO4, 98%, Fluka), дигидрофосфат аммония (NH4H2PO4, >98%, Roth). Для синтеза фосфатов со структурой Насикон можно использовать: гидрофосфат аммония ((NH4)2HPO4, >97%, Roth), карбонат лития (Li2CO3, Merck, >99%), лимонную кислоту (C6H8O7, «ЧДА», Химмед), бутоксид титана ((C4H9O)4Ti, Alfa Aesar, 98+%), оксихлорид циркония (ZrOCl2, Merck, >98%), оксид индия (In2O3, >99%, Merck), оксид железа III (Fe2O3, >98%, Sigma Aldrich), нитрат хрома III (Cr(NO3)3·9H2O, 99%, Acros). В качестве источника углерода можно использовать активированный уголь, лимонную кислоту (C6H8O7, «ЧДА», Химмед), сахарозу (C12H22O11, Alfa Aesar, ≥98%), гидроксиэтиленцеллюлозу (Merck), полипропилен ([CH2CH(CH3)]n, Sigma Aldrich).

Анализ полученных порошков производят с использованием методов сканирующей электронной микроскопии (на сканирующем электронном микроскопе Carl Zeiss NVision 40 при ускоряющем напряжении 1 кВ и определением среднего размера частиц). Рентгенофазовый анализ (РФА) проводят на дифрактометре Rigaku D/MAX 2200 (CuKα-излучение). Лабораторные испытания полученных образцов композиционных катодных материалов проводят в тестовых литиевых ячейках и литий-ионных аккумуляторах емкостью 3 мАч с помощью зарядно-разрядного стенда ЗРУ 50 мА - 10 В (ООО "НТЦ Бустер", Россия). Поиск предпочтительных составов материала определяли по разрядной емкости.

Результаты и выводы

Согласно данным РФА все представленные примеры соответствуют указанным в Таблице структурным параметрам и фазовому составу (Фиг.1). Линейные размеры монокристаллов фосфата лития железа составляют от 20 до 100 нм, предпочтительно 30-50 нм; линейные размеры фосфатов со структурой Насикон составляют 20÷200 нм. Эти параметры определяются по данным электронной микроскопии для каждого компонента отдельно (Фиг.2, пример 2). Удельная емкость материала составляет >150 мАч/г при токе 0.1C (Фиг.3, пример 2); >95 мАч/г при токе 10C. Потери емкости после 200 циклов не превышают 3% (Фиг.4, пример 2).

Отличительной особенностью композиционного катодного материала является повышенная концентрация дефектов на границе раздела фаз и повышенная ионная проводимость. Синтезированный композиционный катодный материал имеет высокую электрохимическую емкость как при малых, так и при больших (до 10C) скоростях разряда по сравнению с известными аналогами и прототипом. Такая совокупность существенных признаков нового композиционного катодного материала выражает сущность изобретения, которое может позволить решить проблемы производства и эксплуатации литий-ионных аккумуляторов и расширить возможности их использования.

Похожие патенты RU2492557C1

название год авторы номер документа
Композиционный катодный материал 2016
  • Новикова Светлана Александровна
  • Грызлов Дмитрий Юрьевич
  • Кулова Татьяна Львовна
  • Скундин Александр Мордухаевич
  • Ярославцев Андрей Борисович
RU2623212C1
НАНОРАЗМЕРНЫЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ, СОДЕРЖАЩИЙ МОДИФИЦИРОВАННЫЙ НАНОРАЗМЕРНЫЙ ФОСФАТ ЛИТИЯ-ЖЕЛЕЗА И УГЛЕРОД 2009
  • Тарнопольский Василий Александрович
  • Профатилова Ирина Александровна
  • Сафронов Дмитрий Вадимович
  • Стенина Ирина Александровна
  • Ярославцев Андрей Борисович
RU2402114C1
КОМПОЗИТНЫЙ КАТОДНЫЙ МАТЕРИАЛ ЛИТИЙ-ИОННОГО АККУМУЛЯТОРА НА ОСНОВЕ LIV(PO)СО СТРУКТУРОЙ НАСИКОН И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2013
  • Чуриков Алексей Владимирович
  • Иванищев Александр Викторович
  • Гридина Нелли Александровна
  • Ушаков Арсений Владимирович
  • Волынский Вячеслав Виталиевич
  • Тюгаев Вячеслав Николаевич
  • Клюев Владимир Владимирович
RU2542721C1
Способ создания однородного углеродного покрытия с контролируемой толщиной на поверхности катодного материала для металл-ионных аккумуляторов и катодный материал, полученный указанным способом 2019
  • Абакумов Артем Михайлович
  • Дрожжин Олег Андреевич
  • Бурова Дарья Юрьевна
  • Ярчук Анна Романовна
  • Сергеев Владимир Глебович
  • Карпушкин Евгений Александрович
  • Кубарьков Алексей Владимирович
  • Суманов Василий Дмитриевич
  • Стивенсон Кит
RU2723638C1
Способ получения композиционного катодного материала на основе NaV(PO)F для натрий-ионных аккумуляторов 2020
  • Косова Нина Васильевна
  • Семыкина Дарья Олеговна
RU2747565C1
КАТОДНЫЙ АКТИВНЫЙ МАТЕРИАЛ НА ОСНОВЕ ЛИТИРОВАННОГО ФОСФАТА ЖЕЛЕЗА С МОДИФИЦИРУЮЩЕЙ ДОБАВКОЙ МАРГАНЦА 2011
  • Клюев Владимир Владимирович
  • Волынский Вячеслав Виталиевич
  • Тюгаев Вячеслав Николаевич
  • Волынская Валентина Васильевна
RU2453950C1
ЛИТИЕВЫЕ БАТАРЕИ, СОДЕРЖАЩИЕ ЛИТИЙ-НЕСУЩИЙ ФОСФАТ ЖЕЛЕЗА И УГЛЕРОД 2011
  • Пату Себастьен
  • Мартинэ Себастьен
  • Лонуа Себастьен
  • Гург Ален
  • Жермо Ален
  • Виллемс,Изабель
RU2551849C2
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОДИСПЕРСНЫХ КАТОДНЫХ МАТЕРИАЛОВ LiFeMPO/C СО СТРУКТУРОЙ ОЛИВИНА 2010
  • Косова Нина Васильевна
  • Девяткина Евгения Тимофеевна
  • Томилова Галина Николаевна
  • Ляхов Николай Захарович
  • Александров Александр Борисович
  • Снопков Юрий Владимирович
  • Резвов Сергей Анатольевич
  • Рожков Владимир Владимирович
RU2444815C1
КОМПОЗИТНЫЙ КАТОДНЫЙ МАТЕРИАЛ ДЛЯ ЛИТИЙ-ИОННЫХ БАТАРЕЙ 2014
  • Кондратьев Вениамин Владимирович
  • Левин Олег Владиславович
  • Толстопятова Елена Геннадьевна
  • Елисеева Светлана Николаевна
  • Алексеева Елена Валерьевна
RU2584678C1
СПОСОБ ПОЛУЧЕНИЯ КАТОДНОГО МАТЕРИАЛА СО СТРУКТУРОЙ ОЛИВИНА ДЛЯ ЛИТИЕВОЙ АВТОНОМНОЙ ЭНЕРГЕТИКИ 2011
  • Чуриков Алексей Владимирович
  • Романова Вероника Олеговна
  • Гридина Нелли Александровна
  • Ушаков Арсений Владимирович
RU2482572C2

Иллюстрации к изобретению RU 2 492 557 C1

Реферат патента 2013 года КОМПОЗИЦИОННЫЙ КАТОДНЫЙ МАТЕРИАЛ

Изобретение относится к электротехнической промышленности и может быть использовано для производства катодного материала литий-ионных аккумуляторных батарей для питания портативной электроники, электроинструмента, электротранспорта. Предложен композиционный катодный материал, состоящий из механической смеси нанокристаллов фосфата лития-железа (LiFePO4) и фосфата со структурой Насикон, а именно: либо двойного фосфата состава LixM2(PO4)3, где: х=1 для M=TiIV, ZrIV; x=3 для М=InIII, CrIII, FeIII; либо сложного фосфата состава Li1+yMIV2-yMIIIy(PO4)3, где: y=0.001÷1.999; MIV=TilV, ZrIV; MIII=InIII, CrIII, FeIII; при этом смесь покрыта углеродом при следующих соотношениях компонентов, мас.%: фосфат лития-железа 82÷98; фосфат со структурой Насикон 1÷15; углерод 1÷6, причем размер кристаллов фосфата лития-железа составляет от 20 до 100 нм, размер кристаллов фосфата со структурой Насикон составляет от 20 до 200 нм, толщина углеродного покрытия составляет от 1 до 5 нм. Композиционный материал позволяет значительно повысить концентрацию дефектов на границе раздела фаз и увеличить его ионную проводимость. 4 ил., 1 табл.

Формула изобретения RU 2 492 557 C1

Композиционный катодный материал, состоящий из механической смеси нанокристаллов фосфата лития-железа (LiFePO4) и фосфата со структурой Насикон, а именно: либо двойного фосфата состава LixM2(РО4)3, где: х=1 для M=TiIV, ZrIV; х=3 для M=InIII, CrIII, FeIII; либо сложного фосфата состава Li1+yMIV2-yMIIIy(PO4)3, где: y=0,001÷1,999; MIV=TiIV, ZrIV; MIII=InIII, CrIII, FeIII, при этом смесь покрыта углеродом при следующих соотношениях компонентов, мас.%:
фосфат лития-железа 82÷98 фосфат со структурой Насикон 1÷15 углерод 1÷6,


причем размер кристаллов фосфата лития-железа составляет от 20 до 100 нм, размер кристаллов фосфата со структурой Насикон составляет от 20 до 200 нм, толщина углеродного покрытия составляет от 1 до 5 нм.

Документы, цитированные в отчете о поиске Патент 2013 года RU2492557C1

НАНОРАЗМЕРНЫЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ, СОДЕРЖАЩИЙ МОДИФИЦИРОВАННЫЙ НАНОРАЗМЕРНЫЙ ФОСФАТ ЛИТИЯ-ЖЕЛЕЗА И УГЛЕРОД 2009
  • Тарнопольский Василий Александрович
  • Профатилова Ирина Александровна
  • Сафронов Дмитрий Вадимович
  • Стенина Ирина Александровна
  • Ярославцев Андрей Борисович
RU2402114C1
US 20120094186 А1, 19.04.2012
US 0005910382 A1, 08.06.1999
US 0008048571 B2, 01.11.2011.

RU 2 492 557 C1

Авторы

Сафронов Дмитрий Вадимович

Новикова Светлана Александровна

Свитанько Андрей Игоревич

Ярославцев Андрей Борисович

Даты

2013-09-10Публикация

2012-09-11Подача