Изобретение относится к способу для определения и оценки индикации вихревых токов, в частности трещин, в испытываемом объекте из электропроводного материала.
При многочисленных испытаниях материалов требуются неразрушающие методы. Например, поверхности деталей из металла часто подвергаются воздействию окружающей среды, которая обуславливает коррозию, окисление, диффузию и другие процессы старения. Механические напряжения также вызывают трещины на поверхности детали.
Это относится, в частности, к рабочим и направляющим лопаткам газовой турбины, которые из-за механических и термических нагрузок особенно подвержены трещинообразованию на своей поверхности. Чтобы иметь возможность с регулярными интервалами проверять текущее состояние таких турбин, требуются неразрушающие методы контроля.
С применением принципа вихревых токов могут реализовываться подходящие методы неразрушающего контроля. При этом на испытываемый объект воздействует электромагнитное переменное поле с регулируемой частотой. За счет этого в испытываемом объекте индуцируются вихревые токи. Созданное вихревыми токами электромагнитное поле или его индуцированное напряжение определяется. При этом может определяться амплитуда и фазовое положение индуцированного напряжения.
Чтобы иметь возможность определять наличие трещин в поверхности детали, может применяться способ вихревых токов. Также глубина трещин может в принципе определяться способом вихревых токов. Однако не известно, каким образом можно проводить различие между простыми трещинами и несколькими очень близко расположенными соседними трещинами.
Задачей изобретения является создание улучшенного способа для определения и оценки одной или более индикаций вихревых токов, в особенности трещин, в электропроводной детали, который обеспечивает возможность надежного различения между отдельной трещиной и несколькими соседними трещинами.
Эта задача решается совокупностью признаков пункта 1 формулы изобретения.
Соответствующий изобретению способ для определения и оценки индикаций вихревых токов, в частности трещин, в испытываемом объекте из электропроводного материала включает в себя следующие этапы:
- нагружение испытываемого объекта электромагнитным переменным полем с предварительно определенной постоянной или переменной частотой,
- определение вихревых токов, индуцированных в испытываемом объекте, вдоль предварительно определенных параллельных измерительных путей на участке поверхности испытываемого объекта,
- обеспечение сигналов вихревых токов, причем каждый сигнал вихревых токов соответствует измерительному пути,
- преобразование сигналов вихревых токов и предоставление преобразованных измеренных величин как функции измерительного пути, частоты и положения вдоль измерительного пути,
- интерпретация преобразованных измеренных величин с применением преобразованных измеренных величин, по меньшей мере, одного соседнего измерительного пути, и
- предоставление синтезированных сигналов трещин со скорректированной амплитудой и/или положением пути по отношению к преобразованным измеренным величинам.
Идея изобретения состоит в том, что поверхность или участок поверхности испытываемого объекта сканируется вдоль параллельных измерительных путей. Тем самым осуществляется эффективное сканирование поверхности или участка поверхности испытываемого объекта. При этом определяются индуцированные в испытываемом объекте вихревые токи. Полученные измеренные данные связываются с измеренными данными соседних измерительных путей. Таким способом можно полученные измеренные данные измерительного пути корректировать с учетом измеренных данных соседних измерительных путей. Также можно многозначные измеренные данные одного измерительного пути однозначно интерпретировать с учетом измеренных данных соседних измерительных путей.
Предпочтительным образом определяется напряжение, индуцированное вихревыми токами. При этом может определяться амплитуда и фаза напряжения, индуцированного вихревыми токами. Трещины в испытываемом объекте приводят к локально измененным электрическим свойствам, например, меньшей электропроводности, чем у испытываемого объекта. Таким путем оказывается воздействие на индуцированное напряжение, и обнаруживаются трещины.
Интерпретация преобразованных измеренных величин осуществляется предпочтительно на основе предварительно определенного алгоритма оценки.
Например, алгоритм оценки базируется на эмпирически определенном наборе правил. Для этого, в частности, можно проводить опорные измерения на образцах испытываемого объекта с известными свойствами и отсюда устанавливать калибровочные функции.
В качестве альтернативы или дополнительно алгоритм оценки может базироваться на самообучающемся способе, в частности, с применением нейронной сети.
С точки зрения техники измерений, для определения вихревых токов применяется многоканальный датчик, причем каждый канал ставится в соответствие измерительному пути. С помощью многоканального датчика возможно множество измерений одновременно.
В особенности, параллельные измерительные пути могут сканироваться одновременно.
В качестве альтернативы этому, для определения вихревых токов может применяться одиночный датчик, причем параллельные измерительные пути сканируются последовательно друг за другом.
Например, испытываемый объект нагружается электромагнитным переменным полем с несколькими дискретными частотами. Так как определенные свойства электрического переменного поля зависят от частоты, можно тем самым получить дополнительную информацию об испытываемом объекте.
Также испытываемый объект может нагружаться электромагнитным переменным полем с непрерывным частотным спектром. Также частотный спектр имеет характеристическую структуру и позволяет сделать выводы относительно физических свойств испытываемого объекта.
Главным образом, применяются синтезированные сигналы трещин для определения геометрических свойств одной или более трещин.
В частности, предусмотрено, что синтезированные сигналы трещин применяются для определения глубины одной или нескольких трещин. Глубина трещин во многих случаях является решающей для принятия решения, следует ли испытываемый объект заменять или ремонтировать.
Кроме того, сигналы вихревых токов могут применяться для определения электрической проводимости. Также из электрической проводимости можно получить косвенные информации о геометрической структуре трещин.
В предпочтительной форме выполнения изобретения применяются механические направляющие средства, чтобы установить движение датчика вихревых токов вдоль измерительной дорожки на участке поверхности испытываемого объекта. За счет этого, способ является воспроизводимым. В частности, при применении одиночного датчика механическая направляющая является предпочтительной для обеспечения определенных интервалов путей. Могут проводиться опорные измерения, чтобы, например, определять алгоритм оценки или калибровочные кривые.
Для этого предпочтительным образом механические направляющие средства были согласованы или согласовываются с геометрической формой испытываемого объекта.
В частности, предусмотрен способ для определения и оценки трещин на и/или в зоне поверхности испытываемого объекта. Поверхность испытываемого объекта в процессе работы особенно подвергается действию механических и химических нагрузок.
Наконец, предусмотрено, что способ для определения и оценки трещин может использоваться под поверхностью испытываемого объекта в зоне измерений электромагнитного переменного поля. Также трещины под поверхностью испытываемого объекта оказывают влияние на его электрические свойства и, тем самым, вихревые токи.
Другие признаки, преимущества и особые формы выполнения изобретения раскрыты в подчиненных пунктах.
В последующем описании чертежей способ, соответствующий изобретению, более подробно описан на примере предпочтительных форм выполнения и со ссылками на чертежи, на которых показано:
Фиг.1 - схематичный вид определения и оценки сигналов вихревых токов согласно предпочтительной форме выполнения способа, соответствующего изобретению,
Фиг.2 - схематичное примерное графическое представление преобразованных измеренных сигналов после преобразования сигнала согласно предпочтительной форме выполнения способа, соответствующего изобретению, перед применением алгоритма оценивания, и
Фиг.3 - схематичное примерное графическое представление синтезированных сигналов трещин после логического связывания согласно предпочтительной форме выполнения способа, соответствующего изобретению, после применения алгоритма оценивания.
На фиг.1 показан схематичный вид определения и оценки сигналов х1, х2, х3, х4 и х5 вихревых токов на участке 10 поверхности испытываемого объекта согласно предпочтительной форме выполнения способа, соответствующего изобретению. Сканирование участка 10 поверхности испытываемого объекта осуществляется с помощью датчика 12 вихревых токов.
Испытываемый объект подвергается действию электромагнитного переменного поля с регулируемой частотой f. Может быть предусмотрена одна или несколько определенных частот f. Также может применяться непрерывный частотный спектр с предварительно определенными граничными частотами. Посредством электромагнитного переменного поля в испытываемом объекте индуцируются вихревые токи. Выработанное вихревыми токами электромагнитное поле или его индуцированное напряжение определяется датчиком 12 вихревых токов.
Датчик 12 вихревых токов может быть выполнен как одноканальный датчик или как многоканальный датчик. В этой конкретной форме выполнения датчик 12 вихревых токов выполнен как многоканальный датчик и включает в себя пять каналов cn, cn+1, cn+2, cn+3 и cn+4. За счет перемещения датчика 12 вихревых токов вдоль направления перемещения каждому отдельному датчику ставится в соответствие измерительный путь. Измерительные пути являются параллельными друг другу на участке 10 поверхности. Также каждый из каналов cn, cn+1, cn+2, cn+3 и cn+4 соответствует измерительному пути.
При альтернативном применении одноканального датчика, с помощью одного и того же датчика сканируются друг за другом параллельно проходящие измерительные пути на участке 10 поверхности.
Сигналы х1, х2, х3, х4 и х5 вихревых токов отдельных каналов cn, cn+1, cn+2, cn+3 и
cn+4 обрабатываются в блоке преобразования 14 сигналов и затем обрабатываются в блоке логического связывания 16.
Прежде всего, сигналы х1, х2, х3, х4 и х5 вихревых токов отдельных каналов cn, cn+1, cn+2, cn+3 и cn+4 подвергаются обработке 14 сигналов. При обработке 14 сигналов для каждого канала cn, cn+1, cn+2, cn+3 и cn+4 вырабатываются преобразованные измеренные величины u1, u2, u3, u4 и u5. Преобразованные измеренные величины u1, u2, u3, u4 и u5 являются функциями каналов cn, cn+1, cn+2, cn+3 и cn+4 частоты f и измерительной позиции s. Измерительная позиция s определяет точку на соответствующем измерительном пути.
Обработка 14 сигналов х1, х2, х3, х4 и х5 вихревых токов осуществляется для каждого канала cn, cn+1, cn+2, cn+3 и cn+4 и для каждой частоты f.
В последующем блоке логического связывания 16 преобразованные измеренные величины u1, u2, u3, u4 и u5 интерпретируются по предварительно определенным критериям.
При этом для каждой измерительной позиции s значение одной или более выбранных преобразованных измеренных величин u1, u2, u3, u4 и u5 сравнивается с соответствующими величинами соседних позиций. Помимо этого, значение выбранных преобразованных измеренных величин u1, u2, u3, u4 и u5 может сравниваться с соответствующими величинами соседних позиций для различных частот f.
Путем применения алгоритма оценивания на основе эмпирически определенного набора правил или посредством самообучающегося набора при этом вырабатываются синтезированные сигналы v1, v2, v3, v4 и v5 трещин. Синтезированные сигналы v1, v2, v3, v4 и v5 трещин скорректированы в соответствии с исследуемым путем cn и амплитудой. Скорректированные таким образом сигналы v1, v2, v3, v4 и v5 трещин улучшают вывод относительно положения и числа трещин и могут применяться для определения глубины трещины.
Посредством сканирования участка 10 поверхности испытываемого объекта вырабатывается линейное представление или плоскостное представление сигналов х1, х2, х3, х4 и х5 вихревых токов. Сигналы х1, х2, х3, х4 и х5 вихревых токов являются, таким образом, функцией позиции s вдоль измерительного пути или позиции на участке 10 поверхности.
Предусмотрено механическое направляющее устройство, чтобы датчик 12 вихревых токов перемещать вдоль предварительно определенного измерительного пути воспроизводимым образом.
Применение нескольких частот f обеспечивает дополнительную информацию о свойствах трещины, так как многие электромагнитные параметры зависят от частоты. Испытываемый объект может одновременно или последовательно нагружаться различными частотами f.
На фиг.2 схематично показано примерное графическое представление преобразованных измеренных величин u1, u2, u3, u4 и u5 после преобразования 12 сигналов и перед логическим связыванием 16, согласно предпочтительному варианту осуществления соответствующего изобретению способа. Преобразованные измеренные величины u1, u2, u3, u4 и u5 получаются из соответствующих сигналов х1, х2, х3, х4 и х5 вихревых токов.
Преобразование 14 сигналов для сигналов х1, х2, х3, х4 и х5 вихревых токов осуществляется для каждого канала cn, cn+1, cn+2, cn+3 и
cn+4 и для каждой частоты f отдельно. При преобразовании 14 сигналов для каждого канала cn, cn+1, cn+2, cn+3 и cn+4 вырабатываются соответствующие преобразованные измеренные величины u1, u2, u3, u4 и u5. Получаемые в результате преобразованные измеренные величины u1, u2, u3, u4 и u5 являются функциями канала cn, cn+1, cn+2, cn+3 и cn+4, частоты f и измерительной позиции s.
На фиг.3 показано схематичное примерное графическое представление синтезированных сигналов v1, v2, v3, v4 и v5 трещин после логического связывания 16 согласно предпочтительной форме выполнения способа, соответствующего изобретению. Синтезированные сигналы v1, v2, v3, v4 и v5 трещин получаются из преобразованных измеренных величин u1, u2, u3, u4 и u5. При определении синтезированного сигнала v3 трещины применяется соответствующая преобразованная измеренная величина u3 и, по меньшей мере, также соседние преобразованные измеренные величины u2 и u4. Оценивание соседних преобразованных измеренных величин u1 и u5 приводит к результату одиночного сигнала, позиционированного между каналами.
Соответствующий изобретению способ является особенно эффективным методом для того, чтобы как установить, так и оценить трещины на поверхности испытываемого объекта. Помимо этого, могут определяться дополнительные геометрические свойства трещин за счет того, что устанавливается, имеет ли место единственная трещина, или две или более рядом расположенных трещин.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ СЧИТЫВАНИЯ И УПРАВЛЕНИЯ ТВЕРДОТЕЛЬНЫМ ВОЛНОВЫМ ГИРОСКОПОМ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2001 |
|
RU2194249C1 |
СПОСОБ ЭЛЕКТРОМАГНИТНОЙ ДЕФЕКТОСКОПИИ СТАЛЬНЫХ ТРУБ В СКВАЖИНАХ | 2000 |
|
RU2176317C1 |
СИСТЕМА ПРЕОБРАЗОВАНИЯ МОЩНОСТИ | 2011 |
|
RU2525863C1 |
СПОСОБ ИЗМЕРЕНИЯ СОСТАВЛЯЮЩИХ ПОЛНОГО СОПРОТИВЛЕНИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1998 |
|
RU2154834C2 |
АВТОМАТИЧЕСКИЙ КАЛИБРАТОР МЕР ИЗМЕРИТЕЛЬНО-ВЫЧИСЛИТЕЛЬНОГО КОМПЛЕКСА | 2007 |
|
RU2345377C1 |
Способ магнитоиндукционной томографии | 2018 |
|
RU2705248C1 |
СПОСОБ ИЗМЕРЕНИЯ ПАРАМЕТРОВ ПОЛНОГО СОПРОТИВЛЕНИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1994 |
|
RU2092861C1 |
СИСТЕМА ВОЗДУШНЫХ СИГНАЛОВ ВЕРТОЛЕТА | 2005 |
|
RU2307358C1 |
СПОСОБ ВЫДЕЛЕНИЯ ПОЛЕЗНОГО СИГНАЛА РЕАЛИЗУЕМОГО ПРОЦЕССА | 2008 |
|
RU2394216C1 |
СПОСОБ И УСТРОЙСТВО ДЛЯ РАСПОЗНАВАНИЯ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ | 2006 |
|
RU2329563C1 |
Изобретение относится к способу определения и оценки трещин в испытываемом объекте из электропроводного материала. Способ включает: нагружение испытываемого объекта электромагнитным переменным полем с предварительно определенной постоянной или переменной частотой (f), определение вихревых токов, индуцированных в испытываемом объекте, вдоль предварительно определенных параллельных измерительных путей на участке (10) поверхности испытываемого объекта, обеспечение сигналов вихревых токов, причем каждый сигнал вихревых токов соответствует измерительному пути, преобразование (14) сигналов вихревых токов и предоставление преобразованных измеренных величин как функции измерительного пути, частоты (f) и положения (s) вдоль измерительного пути, интерпретация (16) преобразованных измеренных величин с применением преобразованных измеренных величин, по меньшей мере, одного соседнего измерительного пути, и предоставление сигналов трещин со скорректированной амплитудой и/или положением пути по отношению к преобразованным измеренным величинам. Технический результат заключается в повышении различительной способности определения трещин. 16 з.п. ф-лы, 3 ил.
1. Способ для определения и оценки вихретоковых показателей, в частности трещин, в испытываемом объекте из электропроводного материала, причем способ содержит следующие этапы: нагружение испытываемого объекта электромагнитным переменным полем с предварительно определенной постоянной или переменной частотой (f), определение вихревых токов, индуцированных в испытываемом объекте, вдоль предварительно определенных параллельных измерительных путей (cn, cn+1, cn+2, cn+3, cn+4) на участке (10) поверхности испытываемого объекта, обеспечение сигналов (x1, x2, x3, x4, x5) вихревых токов, причем каждый сигнал (x1, x2, x3, x4, x5) вихревых токов соответствует измерительному пути (cn, cn+1, cn+2, cn+3, cn+4), преобразование (14) сигналов (x1, x2, x3, x4, x5) вихревых токов и предоставление преобразованных измеренных величин (u1, u2, u3, u4, u5) как функции измерительного пути (cn, cn+1, cn+2, cn+3, cn+4), частоты (f) и позиции (s) вдоль измерительного пути (cn, cn+1, cn+2, cn+3, cn+4), интерпретация (16) преобразованных измеренных величин (u1, u2, u3, u4, u5) с применением преобразованных измеренных величин (u1, u2, u3, u4, u5), по меньшей мере, одного соседнего измерительного пути (cn, cn+1, cn+2, cn+3, cn+4) и предоставление синтезированных сигналов (v1, v2, v3, v4, v5) трещин со скорректированной амплитудой и/или положением пути по отношению к преобразованным измеренным величинам (u1, u2, u3, u4, u5).
2. Способ по п.1, отличающийся тем, что определяется амплитуда и фаза напряжения, индуцированного вихревыми токами.
3. Способ по п.1, отличающийся тем, что интерпретация (16) преобразованных измеренных величин (u1, u2, u3, u4, u5) осуществляется на основе предварительно определенного алгоритма оценки.
4. Способ по п.3, отличающийся тем, что алгоритм оценки базируется на эмпирически определенном наборе правил.
5. Способ по п.3 или 4, отличающийся тем, что алгоритм оценки базируется на самообучающемся способе, в частности, с применением нейронной сети.
6. Способ по п.1, отличающийся тем, что для определения вихревых токов применяется многоканальный датчик (12), причем каждый канал ставится в соответствие измерительному пути (cn, cn+1, cn+2, cn+3, cn+4).
7. Способ по п.6, отличающийся тем, что параллельные измерительные пути (cn, cn+1, cn+2, cn+3, cn+4) сканируются одновременно.
8. Способ по п.1 или 2, отличающийся тем, что для определения вихревых токов применяется одиночный датчик, причем параллельные измерительные пути (cn, cn+1, cn+2, cn+3, cn+4) сканируются последовательно друг за другом.
9. Способ по п.1 или 2, отличающийся тем, что испытываемый объект нагружается электромагнитным переменным полем с несколькими дискретными частотами (f).
10. Способ по п.1 или 2, отличающийся тем, что испытываемый объект нагружается электромагнитным переменным полем с непрерывным частотным спектром.
11. Способ по п.1 или 3, отличающийся тем, что применяются синтезированные сигналы (v1, v2, v3, v4,v5) трещин для определения геометрических свойств одной или более трещин.
12. Способ по п.1 или 3, отличающийся тем, что синтезированные сигналы (v1, v2, v3, v4,v5) трещин применяются для определения глубины одной или нескольких трещин.
13. Способ по п.1, или 3, или 6, отличающийся тем, что сигналы (x1, x2, x3, x4, x5) вихревых токов применяются для определения электрической проводимости.
14. Способ по п.6, отличающийся тем, что применяются механические направляющие средства, чтобы установить движение датчика (12) вихревых токов вдоль измерительного пути на участке (10) поверхности испытываемого объекта.
15. Способ по п.14, отличающийся тем, что механические направляющие средства были согласованы или согласовываются с геометрической формой испытываемого объекта.
16. Способ по п.1, или 3, или 6, отличающийся тем, что способ предусмотрен для определения и оценки трещин на и/или в зоне поверхности испытываемого объекта.
17. Способ по п.1, или 3, или 6, отличающийся тем, что способ предусмотрен для определения и оценки трещин под поверхностью испытываемого объекта.
DE 4201502 A1, 22.07.1993 | |||
US 4555664 A, 26.11.1985 | |||
ЕР 0165761 A2, 27.12.1985 | |||
ВИХРЕТОКОВОЕ УСТРОЙСТВО ДЛЯ ОБНАРУЖЕНИЯ ПОВЕРХНОСТНЫХ И ПОДПОВЕРХНОСТНЫХ ТРЕЩИН В ДЕТАЛЯХ ИЗ ТОКОПРОВОДЯЩИХ МАТЕРИАЛОВ | 2006 |
|
RU2312333C1 |
Авторы
Даты
2013-09-20—Публикация
2009-05-19—Подача