СПОСОБ ОБУЧЕНИЯ АВИАДИСПЕТЧЕРОВ ДИСПЕТЧЕРСКИХ ПУНКТОВ РУЛЕНИЯ, СТАРТА И ПОСАДКИ НА РЕАЛЬНОМ ЛЕТНОМ ПОЛЕ Российский патент 2013 года по МПК G09B9/00 

Описание патента на изобретение RU2493606C2

Изобретение относится к способам обучения с использованием тренажеров.

По типу выполняемых технологических задач авиационные диспетчерские пункты делятся на диспетчерские пункты руления, диспетчерские пункты старта и посадки, диспетчерские пункты круга, диспетчерские пункты подхода, диспетчерские пункты районного центра, диспетчерские пункты местных воздушных линий, аэродромные диспетчерские пункты. Авиадиспетчеры диспетчерских пунктов руления контролируют движение воздушных судов по территории аэродрома, выдают разрешения на буксировку, запуск двигателей, руление. Авиадиспетчеры диспетчерских пунктов старта и посадки контролируют движение на взлетно-посадочной полосе и предпосадочной прямой, руководят взлетающими и заходящими на посадку воздушными судами, выдают разрешения на взлет, посадку. Таким образом, в зону ответственности авиадиспетчеров диспетчерских пунктов руления, старта и посадки входит конкретный аэродром со всеми его отличительными особенностями, со всеми мелкими визуальными факторами, которые учитываются авиадиспетчером при оценке ситуации. Указанное обстоятельство определяет необходимость проводить обучение авиадиспетчеров диспетчерских пунктов руления, старта и посадки на реальном рабочем месте, обеспечивающем обзор реального аэродрома. Однако по соображениям безопасности создание на реальном летном поле учебных нештатных, в том числе аварийных, ситуаций полностью исключается.

Техническая задача предлагаемого изобретения состоит в создании впервые способа обучения авиадиспетчеров диспетчерских пунктов руления, старта и посадки на реальном летном поле на базе технологии комбинированной реальности.

Технический результат предлагаемого изобретения состоит в реализации его назначения - обучение авиадиспетчеров диспетчерских пунктов руления, старта и посадки на реальном летном поле.

Указанный технический результат достигается тем, что способ обучения авиадиспетчеров диспетчерских пунктов руления, старта и посадки на реальном летном поле, включает формирование стереоизображений трехмерных виртуальных объектов и наложение их на видеоизображение реального летного поля с использованием тренажера на базе технологии комбинированной реальности, содержащего шлем виртуальной реальности, снабженный двумя микродисплеями и двумя видеокамерами, систему позиционирования, включающую средство определения трех линейных и трех угловых координат положения шлема виртуальной реальности в пространстве, и компьютер, генерирующий пару стереоизображений для микродисплеев шлема виртуальной реальности, причем измерительный преобразователь системы позиционирования размещен на шлеме виртуальной реальности.

Для осуществления предлагаемого способа может быть использован любой известный шлем виртуальной реальности, снабженный двумя микродисплеями и двумя видеокамерами (см., например, http://www.nvisinc.com/product2009.php?id=57, http://www.vuzix.com/ar/products wrap920ar.html).

Для осуществления предлагаемого способа могут быть использованы такие системы позиционирования с комплектами программных приложений, как DASH (Display and Sight Helmet), IHADSS (Integrated Helmet and Display Sighting System), Knighthelm, JHMCS (Joint Helmet-Mounted Cueing System) и др. (см., например, Филатов О.Г. и Солдатенков В.А. «Электромагнитная система позиционирования для нашлемной системы целеуказания и индикации» в ж. «ЭЛЕКТРОНИКА: Наука, Технология, Бизнес», 2003, вып.5 - http://www.electronics.ru/issue/2003/5/16), удовлетворяющие следующим требованиям:

минимальные масса и габаритные размеры составных частей системы, размещенных на шлеме виртуальной реальности;

определение шести координат положения шлема в пространстве: трех линейных и трех угловых;

определение угловых координат в горизонтальной плоскости в диапазоне до ±180°, в вертикальной плоскости - до ±60°;

максимальная погрешность определения угловых координат в конусе с осью, совпадающей с продольной осью объекта, не должна превышать нескольких десятков угловых минут;

максимальная погрешность определения линейных координат не должна превышать 2-3 мм;

частота выдачи информации об угловых координатах должна быть не менее 60 Гц;

постоянство характеристик устройств системы в диапазоне рабочих температур от 15 до 30°С;

отсутствие вредных воздействий работы системы на здоровье пользователя, а также на оборудование и системы, находящиеся поблизости.

Осуществление предлагаемого способа состоит в следующем.

Обучаемый авиадиспетчер в шлеме виртуальной реальности, снабженном двумя микродисплеями и двумя видеокамерами, находится в помещении, из которого имеется обзор реального летного поля (например, командный пункт диспетчерской вышки). На шлеме виртуальной реальности размещен измерительный преобразователь системы позиционирования, передающий сигнал о положении шлема виртуальной реальности (головы авиадиспетчера) в систему позиционирования. Компьютер, получая данные от системы позиционирования о трех линейных и трех угловых координатах положения головы авиадиспетчера в пространстве, генерирует пару стереоизображений для микродисплеев шлема виртуальной реальности. Компьютер выводит на микродисплеи шлема виртуальной реальности генерируемое видеокамерами шлема изображение реального летного поля с наложением на него стереоизображений виртуальных трехмерных объектов (самолеты, автотранспорт, персонал, птицы на взлетной полосе и др.), управляемых программно или операторами (инструкторами).

С помощью виртуальных воздушных судов и иных виртуальных трехмерных объектов на реальном летном поле моделируют учебные нештатные, в том числе аварийные, ситуации, при этом виртуальный характер объектов обеспечивает полную безопасность процесса обучения.

При осуществлении изобретения могут быть использованы следующие примеры сценариев учебных ситуаций.

Пример 1 (для авиадиспетчеров диспетчерских пунктов руления)

Моделируется ситуация террористической атаки с захватом террористами аэродромного автотранспорта. Создается виртуальный автомобиль, который «террористы» (оператор-инструктор) пытаются направить на самолет, выполняющий маневры на рулежных дорожках, с целью осуществления столкновения автомобиля с самолетом.

Пример 2 (для авиадиспетчеров диспетчерских пунктов посадки)

Моделируется ситуация опасного сближения самолетов. Авиадиспетчер участвует в посадке серии виртуальных самолетов, управляемых летчиками-операторами (инструкторами). При посадке одного из виртуальных самолетов неожиданно на взлетно-посадочной полосе возникает виртуальный объект-препятствие (другое воздушное судно, автотранспорт и т.п.).

Пример 3 (для авиадиспетчеров диспетчерских пунктов старта)

Моделируется ситуация отказа двигателей при взлете самолета вследствие попадания птиц. При взлете виртуального воздушного судна на взлетно-посадочной полосе появляется стая виртуальных птиц.

В процессе обучения авиадиспетчеры коммуницируют с пилотами-операторами виртуальных самолетов (инструкторами) посредством стандартных способов связи. Инструкторы контролируют действия авиадиспетчеров и оценивают следующее:

время реакции на возникновение чрезвычайной ситуации;

точность оценки таких параметров аварийной ситуации, как: расстояние до объектов, высота и скорость объектов, направление их движения, время до столкновения объектов и пр.;

адекватность оценки возникшей угрозы безопасности полетов;

точность следования инструкциям соответствующих нормативных документов.

Таким образом, при осуществлении изобретения реализуется его назначение - обучение авиадиспетчеров диспетчерских пунктов руления, старта и посадки на реальном летном поле. При этом безусловно обеспечивается: безопасность моделирования учебных ситуаций, возможность оперативного (не более 0,5 часа) развертывания технических средств для осуществления обучения на рабочем месте авиадиспетчеров, а также организация обучения без отрыва от производства.

Похожие патенты RU2493606C2

название год авторы номер документа
СПОСОБ ОБУЧЕНИЯ СОТРУДНИКОВ СЛУЖБЫ АВИАЦИОННОЙ БЕЗОПАСНОСТИ С ПРИМЕНЕНИЕМ СИСТЕМЫ ДОПОЛНЕННОЙ РЕАЛЬНОСТИ 2012
  • Горбунов Андрей Леонидович
  • Зелинский Андрей Юрьевич
  • Кауров Андрей Иванович
RU2528457C2
ПОЛИЭРГАТИЧЕСКИЙ ТРЕНАЖЕРНЫЙ КОМПЛЕКС ПРЕДУПРЕЖДЕНИЯ СТОЛКНОВЕНИЙ ЛЕТАТЕЛЬНЫХ АППАРАТОВ 2013
  • Берестов Леонид Михайлович
  • Мирошниченко Людмила Яковлевна
  • Якушев Анатолий Федорович
  • Ясенок Андрей Васильевич
  • Калинин Юрий Иванович
  • Мусихина Ольга Анатольевна
  • Фролкина Людмила Вениаминовна
  • Пальцева Елена Михайловна
RU2524508C1
СПОСОБ ОБУЧЕНИЯ СПЕЦИАЛИСТОВ КОНТРОЛЮ И ПРОВЕРКЕ СРЕДСТВ ДЕСАНТИРОВАНИЯ, УСТАНОВЛЕННЫХ НА ТЕХНИКЕ И/ИЛИ ГРУЗАХ, ГОТОВЫХ К ДЕСАНТИРОВАНИЮ 2019
  • Мордакин Борис Юрьевич
  • Кутовой Сергей Степанович
  • Костин Кирилл Константинович
  • Котов Павел Фёдорович
  • Скачков Сергей Николаевич
RU2736313C1
СПОСОБ ФОРМИРОВАНИЯ ИЗОБРАЖЕНИЯ ДОПОЛНЕННОЙ РЕАЛЬНОСТИ, ОБЕСПЕЧИВАЮЩИЙ КОРРЕКТНОЕ ВОСПРИЯТИЕ УДАЛЕНИЯ ВИРТУАЛЬНЫХ ОБЪЕКТОВ 2014
  • Горбунов Андрей Леонидович
  • Зелинский Андрей Юрьевич
  • Кауров Андрей Иванович
RU2592458C2
Тренажер для парашютно-спасательной подготовки летного состава авиации 2022
  • Кругликов Виктор Яковлевич
  • Марков Максим Михайлович
  • Просвирнин Владимир Георгиевич
RU2792911C1
Тренажерное устройство имитации полета с виртуальной визуализацией 2021
  • Горбунов Иван Евгеньевич
  • Усов Олег Сергеевич
  • Тулынкин Олег Леонидович
RU2784513C1
СПОСОБ ПРОСТРАНСТВЕННОЙ ОРИЕНТАЦИИ ПИЛОТОВ ВОЗДУШНЫХ СУДОВ ПРИ ПОСАДКЕ 2011
  • Горбунов Андрей Леонидович
  • Елисеев Борис Петрович
  • Нечаев Евгений Евгеньевич
RU2585260C2
КОММУТАЦИОННЫЙ VR-ТРЕНАЖЕР И СПОСОБ ТРЕНИРОВКИ И ОЦЕНКИ ПРОФПРИГОДНОСТИ КАССИРОВ-КОНТРОЛЕРОВ С ЕГО ПОМОЩЬЮ 2019
  • Дьяконов Максим Юрьевич
  • Ларина Анастасия Юрьевна
  • Островская Татьяна Анатольевна
RU2715148C1
Способ подготовки парашютистов на тренажере воздушно-десантной подготовки и устройство его реализующее 2021
  • Кругликов Виктор Яковлевич
  • Марков Максим Михайлович
  • Просвирнин Владимир Георгиевич
  • Коларски Владимир Цветомиров
RU2769481C1
КОМПЛЕКСНАЯ ОБУЧАЮЩАЯ СИСТЕМА ДЛЯ АВИАЦИОННЫХ СПЕЦИАЛИСТОВ 2002
  • Елисеев Александр Викторович
RU2267163C2

Реферат патента 2013 года СПОСОБ ОБУЧЕНИЯ АВИАДИСПЕТЧЕРОВ ДИСПЕТЧЕРСКИХ ПУНКТОВ РУЛЕНИЯ, СТАРТА И ПОСАДКИ НА РЕАЛЬНОМ ЛЕТНОМ ПОЛЕ

Изобретение относится к способам обучения с использованием тренажеров. Способ обучения авиадиспетчеров диспетчерских пунктов руления, старта и посадки на реальном летном поле включает формирование стереоизображений трехмерных виртуальных объектов и наложение их на видеоизображение реального летного поля с использованием тренажера на базе технологии комбинированной реальности. Указанный тренажер содержит шлем виртуальной реальности, снабженный двумя микродисплеями и двумя видеокамерами, систему позиционирования, включающую средство определения трех линейных и трех угловых координат положения шлема виртуальной реальности в пространстве, и компьютер, генерирующий пару стереоизображений для микродисплеев шлема виртуальной реальности. Измерительный преобразователь системы позиционирования размещен на шлеме виртуальной реальности. В результате обеспечивается возможность обучения авиадиспетчеров диспетчерских пунктов руления, старта и посадки на реальном летном поле.

Формула изобретения RU 2 493 606 C2

Способ обучения авиадиспетчеров диспетчерских пунктов руления, старта и посадки на реальном летном поле, включающий формирование стереоизображений трехмерных виртуальных объектов и наложение их на видеоизображение реального летного поля с использованием тренажера на базе технологии комбинированной реальности, содержащего шлем виртуальной реальности, снабженный двумя микродисплеями и двумя видеокамерами, систему позиционирования, включающую средство определения трех линейных и трех угловых координат положения шлема виртуальной реальности в пространстве, и компьютер, генерирующий пару стереоизображений для микродисплеев шлема виртуальной реальности, причем измерительный преобразователь системы позиционирования размещен на шлеме виртуальной реальности.

Документы, цитированные в отчете о поиске Патент 2013 года RU2493606C2

RU 80602 U1, 10.02.2009
КОРОНКА ДЛЯ ВРАЩАТЕЛЬНОГО БУРЕНИЯ СКВАЖИН 1966
  • Симилейский М.Г.
  • Михайловский С.И.
  • Демченко Э.А.
  • Шамшин В.Н.
  • Сорокин А.Е.
  • Чеботарев П.В.
  • Дульцев И.М.
SU214460A1
Приспособление для суммирования отрезков прямых линий 1923
  • Иванцов Г.П.
SU2010A1
Устройство для деформирования заготовки под сварку 1980
  • Жуков Михаил Борисович
  • Морозова Тамара Васильевна
  • Горячев Виктор Павлович
  • Редчиц Валерий Владимирович
SU889346A1
Устройство для печатания этикетки, например, на поверхности стеклянной цилиндрической тары 1957
  • Баранов А.С.
  • Шевченко Ю.А.
SU111703A1

RU 2 493 606 C2

Авторы

Горбунов Андрей Леонидович

Елисеев Борис Петрович

Нечаев Евгений Евгеньевич

Даты

2013-09-20Публикация

2011-02-08Подача