Изобретение относится к способам получения углеродных сорбентов и может быть использовано в химической промышленности для очистки сточных вод от жидких углеводородов, при утилизации нефтяных отходов и в различных отраслях народного хозяйства для защиты окружающей среды.
Известен способ получения сорбентов на основе растительного сырья, а именно, полисахаридосодержащего сырья - отходов микробиологической промышленности и сельского хозяйства. Отходы измельчают и обрабатывают смесью, содержащей ортофосфорную кислоту, диметилформамид и мочевину при температуре 150°С в течение 2-4 часов. (Патент РФ №2077541 опубл. 20.04.1997 г.)
Недостатками данного способа являются использование токсичных продуктов - ортофосфорной кислоты и диметилформамида, являющегося канцерогеном, мочевины, а необходимость измельчения удорожает продукт.
Известен способ получения сорбентов на основе растительного сырья-скорлупы грецких орехов. Способ заключается в совмещении операций импрегнирования и обработки скорлупы концентрированной соляной кислотой, затем 33% раствором щелочи с последующим измельчением и сушкой при 100°C. (Патент РФ №2172209 опубл. 20.08.2001 г.)
Недостатками способа являются использование агрессивных, токсичных соединений кислоты и щелочи, наличие в составе сорбентов загрязнителя - хлористого калия, образующегося при нейтрализации соляной кислоты щелочью, необходимость измельчения отходов растительного сырья, а также коррозия оборудования.
Известен способ получения сорбента пиролизом отходов деревообработки в среде парогазовых продуктов пиролиза. (Патент РФ №2160632 от 15.12.1999 г.)
Недостатком данного способа является невысокая сорбционная емкость, малая плавучесть сорбента вследствие недостаточной гидрофобности, так как пиролиз осуществлен в среде, вызывающей гидрофильную активацию поверхности.
Наиболее близким техническим решением, взятым нами в качестве прототипа, является способ получения углеродного сорбента из лузги подсолнечной.
Способ получения углеродного адсорбента из отходов растительного сырья, а именно, из лузги подсолнечной, включающий химическое удаление балластных веществ, промывку водой и сушку при 100-120°C. Удаление балластных веществ осуществляют в две стадии: на первой химической стадии лузгу обрабатывают при 90-100°C, суспензией, содержащей следующие компоненты, мас.%: гидрооксид кальция 6,2-8,5; карбамид 5,3-7,5; вода 84,0-88,0; в соотношении суспензия: лузга подсолнечная, мас.ч., равном 1:(0,06-0,10) в течении 0,5-1,0 ч, на второй стадии термически карбонизуют обработанную лузгу подсолнечную, предварительно нагревая в токе азота при атмосферном давлении со скоростью 10-15°C/мин до температуры 300-400°C с последующей выдержкой в течении 0,25-0,5 ч, промывку и сушку осуществляют перед второй стадией, причем промытую лузгу сушат в токе азота в течение 0,3-0,5 ч. (Патент РФ №2395336 от 05.11.2008 г.)
Недостатками прототипа являются: многостадийность процесса, использование токсичных продуктов, повышенная общая длительность процесса, наличие сточных вод, требующих регенерации.
Задачей данного изобретения является: сокращение количества стадий процесса и его длительности, устранение токсичных компонентов, исключение регенерации сточных вод и тем самым сохранение благоприятной экологической обстановки окружающей среды.
Для достижения данного технического результата в способе получения углеродного сорбента из растительного сырья, включающем нагрев со скоростью 10-15°C/мин химически обработанного растительного сырья до температуры 300-400°C. с последующей временной выдержкой и его карбонизацию, в качестве растительного сырья используют отходы обмолота семян проса - оболочки семян проса, химическую обработку которых осуществляют водным раствором тетрафторбората аммония концентрации 25-35% в соотношении 1:1 одновременно с карбонизацией нагревом и временной выдержкой в течение 5 минут.
Таким образом, отличием предлагаемого способа от прототипа является: одностадийное получение сорбента карбонизацией нагревом от Т=300°C до 400°C со скоростью 10-15°C/мин. химически обработанных оболочек проса водным раствором тетрафторбората аммония концентрации 25-35% в соотношении 1:1 и выдержкой при 300°C-400°C в течение 5 минут.
При этом исключены стадии: нагрева суспензии для химической обработки отходов обмолота семян, измельчения отходов и отделения мелкой фракции, химической обработки в течение 0,5-1,0 ч, стадии промывки и сушки. Исключена подача токсичного азота, а выдержка после нагрева сокращена до 5 мин. Обработка тетрафторборатом аммония, способным катализировать процессы структурирования полисахаридов, обеспечивает при карбонизации увеличение выхода сорбента с 52,63% масс у прототипа до 70% масс у заявляемого способа и создание необходимого для поглощения нефти и нефтепродуктов размера пор сорбента.
Способ осуществляют следующим образом:
Готовят водный раствор тетрафторбората аммония. Смешивают 100 г оболочек проса и 100 г приготовленного раствора, обеспечивая соотношение 1:1. Влажная смесь помещается в печь с программным управлением скорости подъема температуры в печи. Карбонизуют при достижении заданной температуры от 300°C до 400°C с выдержкой в течение 5 минут. Структурные показатели оболочки оценивали на приборе NOVA 1200 е.
Эксплуатационные характеристики сорбента - эффективность сорбента - нефтеемкость, водопоглощение, плавучесть определяли по ТУ 214-10942238-03-95. В испытаниях использовали нефть грозненскую и моторное масло.
Более подробно сущность заявляемого изобретения описывается следующими примерами таблица 1.
Пример 1
Готовят 25% водный раствор тетрафторбората аммония (в 750 г воды вводится 250 г тетрафторбората аммония). Поднимают температуру в печи со скоростью 10°C/мин. до 300°C и выдерживают в течение 5 минут. Сорбент имеет удельную площадь поверхности 17 м2/г, объем пор 0,07 см3/г, радиус пор 15 А, водопоглощение 20%, выход сорбента составляет 70%.
Пример 2
Способ осуществляют по примеру 1.
Готовят 30% водный раствор тетрафторбората аммония.
Поднимают температуру в печи до 350°C. со скоростью 10°C/мин.
Выход сорбента составляет 65%, водопоглощение 5%. Структурные показатели: удельная площадь поверхности сорбента - 77 м2/г, объем пор - 0,74 см3/г, радиус пор - 80 А.
Пример 3
Способ осуществляют по примеру 1.
Готовят 30% водный раствор тетрафторбората аммония.
Поднимают температуру в печи со скоростью 15°C/мин. до 350°C.
Выход сорбента составляет 60%, водопоглощение 10%. Структурные показатели: удельная площадь поверхности 25 м2/г, объем пор - 0,54 см3/г, радиус пор - 25 А.
Пример 4
Способ осуществляют по примеру 1. Готовят 35% водный раствор тетрафторбората аммония. Поднимают температуру в печи со скоростью 12°C/мин. до 400°C. Выход сорбента составляет 60%, водопоглощение - 12%. Структурные показатели: удельная площадь поверхности сорбента - 21 м2/г., объем пор - 0,52 см3/г, радиус пор - 60 А.
Выбор времени выдержки при карбонизации обусловлен тем, что при выдержке менее 5 минут не происходит карбонизации всей массы сорбента, и он получается неоднородным. При времени выдержки более 5 минут происходит разрушение карбонизованной структуры, разрушаются необходимые для сорбции поры. Таким образом, оптимальное время выдержки 5 минут.
Выбор температуры карбонизации связан с особенностью протекания химических процессов в целлюлозосодержащихся полимерах при нагреве.
При термораспаде полисахаридов в результате разрыва кислородо-углеродных связей происходят три основных процесса: дегидратация, деполимеризация и затем глубокая деструкция. В результате дегидратации образуются сопряженные ненасыщенные структуры, формирующие при пиролизе карбонизованный остаток. Тетрафторборат аммония вследствие наличия в нем атомов фтора и бора, относится к соединением, катализирующим процесс дегидратации, обеспечивая при этом поведение выхода углеродных структур до 60%, а в то же время тетрафторборат аммония в процессе карбонизации в интервале температур 300-330°C полностью разлагается. Пары воды и газы, выделяющиеся при разложении тетрафторбората аммония, разрушают структуру оболочки проса, способствуя повышению пористости и созданию необходимой удельной поверхности и радиуса пор сорбента.
Экспериментом установлено, что подъем температуры со скоростью выше 15°C/мин увеличивает скорость разложения оболочки проса, тетрафторбората аммония и испарения воды и приводят к интенсификации выделения летучих продуктов, что стимулирует увеличение радиуса пор до 8000 нм, а также снижается механическая прочность сорбента, растет водопоглащение.
При медленном нагреве 5-9 град/мин увеличивается продолжительность процесса и уменьшается количество пор, способных к поглощению достаточно больших молекул нефти (А), что приводит к снижению нефтеемкости. Продолжительность термовоздействия составляет 5 минут так при этом обеспечивается создание оптимальной структуры сорбента. По окончании термообработки в изотермических условиях снижается температура до 60°C.
Таким образом, использование предлагаемого способа позволяет:
- уменьшить количество технологических операций с 5 до 2;
- сократить время термического воздействия в 5 раз;
- сократить общую продолжительность процесса.
Перечисленные преимущества приводят к уменьшению затрат сырья и энергии, повышению экологической безопасности производства сорбентов вследствие отсутствия стадии промывки, соответственно, отсутствия сточных вод и процесса их регенерации. Энергоемкость процесса снижается за счет исключения стадии процесса сушки и сокращения времени термообработки в 5 раз.
ра
тип
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНОГО АДСОРБЕНТА ИЗ ЛУЗГИ ПОДСОЛНЕЧНОЙ | 2008 |
|
RU2395336C1 |
Композиционный магнитосорбент для удаления нефти, нефтепродуктов и масел с поверхности воды | 2020 |
|
RU2757811C2 |
Порошкообразный магнитный сорбент для сбора нефти | 2022 |
|
RU2805655C1 |
Способ получения углеродного сорбента в форме сферических гранул | 2020 |
|
RU2747918C1 |
СПОСОБ ПОЛУЧЕНИЯ ГРАНУЛИРОВАННОГО АДСОРБЕНТА ИЗ ЛУЗГИ ПОДСОЛНЕЧНОЙ | 2009 |
|
RU2411080C1 |
Способ получения биочара из осадков сточных вод и древесных опилок для восстановления почв от гербицидов | 2022 |
|
RU2779460C1 |
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНОГО СОРБЕНТА ДЛЯ ОЧИСТКИ СТОЧНЫХ ВОД ОТ НЕФТЕПРОДУКТОВ | 2020 |
|
RU2735837C1 |
СПОСОБ ПОЛУЧЕНИЯ ПЛАВАЮЩЕГО УГЛЕРОДНОГО СОРБЕНТА ДЛЯ ОЧИСТКИ ГИДРОСФЕРЫ ОТ НЕФТЕПРОДУКТОВ | 2012 |
|
RU2527095C2 |
Порошкообразный магнитный сорбент для сбора нефти | 2018 |
|
RU2710334C2 |
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННОГО СОРБЕНТА НА ОСНОВЕ МИНЕРАЛЬНОГО И РАСТИТЕЛЬНОГО УГЛЕРОДСОДЕРЖАЩЕГО СЫРЬЯ | 2015 |
|
RU2597400C1 |
Изобретение относится к способам получения углеродных сорбентов. Способ получения углеродного сорбента из растительного сырья включает нагрев со скоростью 10-15°C/мин химически обработанного растительного сырья до температуры 300-400°C. В качестве растительного сырья используют оболочки семян проса. Химическую обработку сырья осуществляют водным раствором тетрафторбората аммония одновременно с карбонизацией и временной выдержкой в течение 5 минут. Изобретение позволяет упростить процесс и сократить время его проведения. 1 табл.
Способ получения углеродного сорбента из растительного сырья, включающий нагрев со скоростью 10-15°C/мин химически обработанного растительного сырья до температуры 300-400°C с последующей временной выдержкой и его карбонизацию, отличающийся тем, что в качестве растительного сырья используют оболочки семян проса, химическую обработку которых осуществляют водным раствором тетрафторбората аммония концентрации 25-35% в соотношении 1:1 одновременно с карбонизацией, нагревом и временной выдержкой в течение 5 мин.
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНОГО АДСОРБЕНТА ИЗ ЛУЗГИ ПОДСОЛНЕЧНОЙ | 2008 |
|
RU2395336C1 |
СПОСОБ ПОЛУЧЕНИЯ ГРАНУЛИРОВАННОГО АДСОРБЕНТА ИЗ ЛУЗГИ ПОДСОЛНЕЧНОЙ | 2009 |
|
RU2411080C1 |
СПОСОБ ПОЛУЧЕНИЯ СОРБЕНТА ИЗ РАСТИТЕЛЬНОГО СЫРЬЯ | 2003 |
|
RU2240864C1 |
СПОСОБ ПОЛУЧЕНИЯ ПИЩЕВОГО СОРБЕНТА ИЗ РАСТИТЕЛЬНОГО СЫРЬЯ | 2003 |
|
RU2255803C1 |
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНО-МИНЕРАЛЬНОГО АДСОРБЕНТА | 1998 |
|
RU2151638C1 |
СОСТАВ ДЛЯ ОЧИСТКИ ПОЧВЫ И ВОДЫ ОТ НЕФТЯНЫХ ЗАГРЯЗНЕНИЙ И СПОСОБ ОЧИСТКИ ВОДЫ ОТ НЕФТЯНЫХ ЗАГРЯЗНЕНИЙ | 2006 |
|
RU2333161C2 |
СПОСОБ ОКИСЛИТЕЛЬНОЙ ТЕРМОХИМИЧЕСКОЙ СУШКИ ДЛЯ ИЗМЕНЕНИЯ ГИДРОФИЛЬНЫХ/ГИДРОФОБНЫХ СВОЙСТВ НАТУРАЛЬНЫХ ОРГАНИЧЕСКИХ ВЕЩЕСТВ | 2001 |
|
RU2277967C2 |
Авторы
Даты
2013-09-27—Публикация
2012-05-04—Подача