Изобретение относится к цифровой вычислительной технике, а именно к цифровым вычислительным системам для определения качества сравниваемых сложных систем, средств, изделий и различных объектов, описываемых значительным числом разнородных единичных показателей. При невозможности или большом затруднении установления важности свойств (характеристик) сравниваемых объектов или их вариантов и отсутствия обучающей выборки для формирования шкалы оценки предлагается использовать исходные данные самой оцениваемой выборки при определении предпочтительного объекта, средства.
Изобретение может быть использовано в военной отрасли - для планирования, разработки, создания и приема на вооружение более совершенных систем и средств вооружения, а в гражданской - более качественных и конкурентоспособных товаров и изделий.
Техническим результатом является расширение арсенала технических средств для повышения эффективности и качества объектов за счет использования способа и создания устройства выбора предпочтительного из ряда сравниваемых на разных этапах его жизненного цикла.
Выбор предпочтительного средства связан с решением многокритериальной задачи. Рассмотрим несколько известных способов ее решения.
1) Известен способ, основанный на использовании метода анализа иерархий [1] и его модификаций. Применение указанных способов предусматривает возможность установления соотношения характеристик сравниваемых средств:
- свойства или характеристики оцениваемых средств одинаково значимы и важны;
- одно свойство или характеристика несколько важнее другого;
- одно свойство или характеристика важнее другого;
- одно свойство или характеристика явно важнее других;
- одно свойство или характеристика абсолютно важнее других.
При возможности установления таких соотношений задача сводится к нахождению коэффициентов весомости Wj и объединению нормированных единичных показателей в комплексный Q=f(qj, Wj). Однако в случае наличия у рассматриваемых средств явно разнородных свойств (характеристик) становится невозможным использование метода иерархий и его модификаций.
2) Известны способы нахождения коэффициентов весомости с помощью методов ранжирования [2, 3] характеристик сравниваемых средств, ставящие в затруднение экспертов в случае разнородности свойств.
3) Известны экспертные способы оценки качества рассматриваемых средств [3-5], основанные на упрощении первых двух методов. Это способы, связанные с лексикографическим методом, с методом усреднения единичных показателей, максиминным методом оценки качества, методом идеальной точки и другие.
Всем рассмотренным способам выбора предпочтительного средства присущи погрешности экспертных систем, связанные с наличием «субъективизма».
4) Известен способ [6], основанный на формировании обучающей выборки для создании шкалы оценки качества, который позволяет сравнить изделия оцениваемой выборки. Его недостаток - требование наличия обучающей выборки.
5) Известны и другие изобретения [7-11] оценки качества объектов, не решающие сформулированную авторами задачу разработки способа выбора предпочтительного средства без привлечения высоко квалифицированных экспертов в условиях отсутствия обучающей выборки.
С целью повышения объективности и достоверности оценки качества рассматриваемых средств авторами предлагается использовать оцениваемую выборку, состоящую из нормированных единичных показателей качества, позволяющих создать два гипотетических эталона - соответственно худшего и лучшего качества. И на основе их использования из всей совокупности рассматриваемых средств выбрать объект, обладающий наилучшим обобщенным показателем качества.
1. Способ и устройство выбора предпочтительного средства защиты информации, заключающийся в том, что что коммутируют информацию о единичных показателях сравниваемых средств, записывают ее в первый блок памяти, отличающийся тем, что ее пересылают в блок формирования эталонов худшего и лучшего качества, образующих соответственно начало и конец прямой, определяющей шкалу оценки качества, проводят плоскости перпендикулярно к этой прямой через точки сравниваемых средств в пространстве единичных показателей, находят параметры точек пересечения плоскости со шкалой оценки, значения которых и образуют комплексные показатели качества сравниваемых средств, максимальная величина одного из них соответствует предпочтительному средству.
Сущность способа нагляднее всего проиллюстрировать на примере сравнения объектов, обладающих разнородными характеристиками. К таким относятся средства защиты информации (СЗИ), единичные показатели которых приведены в таблице 1.
В качестве обучающей выборки (ОбВ) используем саму оцениваемую выборку (ОцВ). Для проведения оценки качества разнородные показатели СЗИ в таблице 1 приводим к безразмерному виду. После нормирования
они принимают значения, указанные в таблице 2. Обязательным условием нормирования является рост комплексного показателя качества (КПК) с ростом его единичных показателей (ЕП).
Для удобства определения предпочтительного СЗИ из ряда альтернативных разобьем процесс оценки на ряд этапов:
1. Геометрический смысл оценки качества средств защиты информации. Выбор КПК осуществляется в формировании шкалы оценки качества в виде прямой ЭхЭл, соединяющей точки худшего Эх и лучшего Эл эталонов качества в пространстве оцениваемых ЕП qj, j=1, …, k (см. фиг.1 для k=2). Если придать начальным Эх и конечным Эл значениям прямой величины, равные Q(Эх)=0 и Q(Эл)=1, то прямая ЭхЭл будет представлять шкалу оценки качества.
Через точку С1 в пространстве ЕП первого СЗИ проведем плоскость Р1 перпендикулярно прямой ЭхЭл. Точка пересечения K1 этой плоскости с указанной прямой будет определять меру качества Q(K1) первого СЗИ1.
Осуществив аналогичную операцию со следующим оцениваемым СЗИ2 (точка С2), определяем другую точку K2. Из фиг.1 видно неравенство
которое свидетельствует о предпочтительности по качеству второго средства СЗИ2 по отношению к первому
2. Формирование шкалы оценки СЗИ в пространстве ЕП qj, j=1, k лучшего Эл и худшего Эх эталонов согласно таблице 2 упрощается по причине возрастания КПК с ростом ЕП. Поэтому лучшему СЗИл придаются значения их наибольших величин, а худшему - наименьших, как показано в таблице 3 для количества показателей k=10. Достоинством способа служит неограниченность как в количестве показателей, так ив числе сравниваемых средств.
В последней строке таблицы 3 Направление прямой Δqj(ЭхЭл) шкалы оценки качества в пространстве ЕП описываются уравнениями
3. Уравнения прямой в пространстве ЕП. Геометрический смысл построения шкалы оценки заключается в построении прямой, проходящей через точки Эх и Эл, как показано на фиг.1 в двумерном пространстве ЕП. ОбВ, сформированная из двух эталонов, описывается симметричными (каноническими) [12] уравнениями
Переход с введением параметра Q к параметрической форме описания прямой в многомерном k≥3 пространстве ЕП описывается к уравнениями
Согласно значениям ЕП таблицы 3 конкретизация формулы (3) будет выглядеть следующим образом
Нетрудно заметить, что при Q=0 уравнения (3а) составляют в пространстве ЕП координаты qj(Эx) худшего гипотетического средства СЗИx точки Эх (см. 1-ю строку таблицы 3). При Q=1 уравнения (3а) представляют в пространстве ЕП координаты qj(Эл) лучшего гипотетического средства СЗИл точки Эл (см. 2-ю строку таблицы 3).
4. Уравнение плоскости P1 в пространстве ЕП, проходящей через точку C1 записывается в виде
Требование прохождения плоскости P1 перпендикулярно прямой ЭxЭл через точку C1, требует, во-первых, в уравнении (4) введения qj(C1) их значений в параметрической форме
во-вторых, равенства Δqj=qлj-qxj и, в-третьих, замены в формуле (3а) параметра Q на Q1
5. Определение пересечения плоскости P1 с прямой ЭxЭл связано с преобразованием уравнения (4а) и нахождения значения Q1
Анализ уравнения (5) показывает:
1) точка K1 пересечения плоскости P1 с прямой ЭxЭл, проходящая через точку C1, характеризуется величиной Q1, определяемое ЕП q1j(C1);
2) при блуждании точки K1 вдоль прямой ЭxЭл значение Q1 находится в пределах от нуля до единицы 0=Q1(Эx)≤Q1(K1)≤Q1(Эл)=1. В начальной точке шкалы оценки, когда K1→Эх, q1j=qxj и, как следует из формулы (5) Q1(K1)=Q1(Эx)=0 только в случае q1j-qxj=0. В конечной точке шкалы оценки, когда K1→Эл, q1j=qлj и, как следует из формулы (5), Q1(K1)=Q1(Эл)=1 только в случае qлj-qxj=Δqj;
3) отсюда следует важный вывод, что прямая ЭxЭл может служить шкалой оценки качества, а величина Q1(K1) - мерой качества, т.е. комплексным показателем качества (КПК) Q.
Определение остальных КПК СЗИ2, СЗИ3 происходит аналогично вычислению КПК СЗИ1 путем повторения этапов 4, 5 с применением указанных в них формул (4)÷(5).
6. Вывление предпочтительного СЗИ осуществляется путем ранжирования полученных значений комплексных показателей качества Qi в ряд
Q3>Q1>Q2→0.748>0.51>0.469,
из которого в соответствии с формулой (1б) - этапа 1 следует
СЗИ3>CЗИ1>СЗИ2
предпочтительность СЗИ3.
В качестве альтернативы предлагаемому способу в таблице 4 приведены результаты способа оценки качества СЗИ на основе идеальной точки [3], предусматривающего «близость» к идеальному эталону сравниваемых средств.
Из таблицы 4 виден недостаток способа идеальной точки: хотя ранжирование по качеству СЗИi осуществлено правильно, но нет нормирования меры (от 0 до 1) качества удаления от идеальной точки.
2. Устройство для реализации способа по п.1, изображенное на фиг.2, содержащее коммутатор 1 и первый блок 2 памяти, отличающееся тем, что в его состав введены блок 3 формирования эталонов, блок 4 определения комплексных показателей качества, второй блок 5 памяти, блок 6 визуализации и блок 7 управления, при этом выход коммутатора 1 подключен к информативному входу первого блока 2 памяти, выход 8 которого соединен с первым входом 8 блока 3 формирования эталонов и первым входом 8 блока 4 определения комплексных показателей качества, второй вход 9 которого подключен к выходу 9 блока 3 формирования эталонов, выход 10 блока 4 определения комплексных показателей качества подсоединен к первому входу 10 второго блока памяти и второму входу 10 блока 3 формирования эталонов, соединенного своим вторым выходом 11 со вторым входом 11 второго блока памяти, подключенного своим выходом ко входу блока 6 визуализации, управляющие выходы блока 7 управления подключены к управляющим входам всех блоков 1-6.
Работа устройства происходит следующим образом. В соответствии с фиг.2 значения исходных нормированных единичных показателей (ЕП) qij, j=1,k сравниваемых средств СЗИi, i=1,I поступают на вход коммутатора 1 и по управляющей команде с блока 7 управления записываются в 1-й блок 2 памяти. По команде с блока 7 управления информация об qij поступает в блок 3 формирования двух эталонов худшего Эх и лучшего Эл качества. Для получения ЕП qj(Эx) блок 3 работает в режиме блока выбора минимума. В соответствии с таблицей 2 (первая строка ЕПО значения вектора qi1=[q11=1, q21=0.8, q31=0.6] сравниваемых qi1(i=1, 2, 3) поступают на вход блока выбора минимума. Минимальным является q31=0.6. Во второй строке таблицы 2 минимальными будут q12=q22=0.2. В конечном итоге формируется вторая строка таблицы 3 qj(Эx).
Формирование третьей строки qi(Эл) таблицы 3 осуществляется аналогичным образом, но блок 3 функционирует как блок выбора мамсимума. В блоке 3 определяется и 4-я строка - разность Δqj(ЭхЭл) между лучшими и худшими ЕП (см. формулу (2)). Значения строк 2, 3, 4 таблицы 3 с выхода 9 блока 3 формирования эталонов передаются на второй вход 9 блока 4 определения комплексных показателей качества. Значения ЕП сравниваемых СЗИi поступает на вход 8 блока 4, в котором по формуле (5) осуществляется определение КПК Q1, Q2, Q3 оцениваемых средств. Определенные значения КПК Q1, Q2, Q3 с выхода 10 блока расчета записываются во втором блоке 2 памяти.
При значительном числе сравниваемых средств возникает необходимость в выборе максимального значения из этого ряда. В этом случае значения КПК Q1, Q2, Q3 с выхода 10 блока 4 передаются на второй вход 10 блока 3 формирования эталонов, который определяет максимальное значение из ряда оцениваемых. Это значение со второго выхода 11 блока 3 формирования эталонов передается на второй вход 11 второго блока памяти. По управляющей команде с блока 7 управления значения КПК Q1, Q2, Q3 сравниваемых средств и предпочтительного из них поступают на блок визуализации. На блоке визуализации высвечивается информация: «Предпочтительное средство - СЗИ3», «Значения КПК: Q1=0.521; Q2=0.430; Q3=0.767».
Итак, при невозможности или большом затруднении установления важности свойств (характеристик) сравниваемых средств или их вариантов и отсутствия обучающей выборки для формирования шкалы оценки можно использовать исходные данные самой оцениваемой выборки при выборе предпочтительного изделия.
Достоинствами предлагаемого способа являются:
- возможность формирования шкалы оценки при наличии разнородных свойств (характеристик) оцениваемых средств,
- отсутствие требования наличия высоко квалифицированных экспертов для выявления важности свойств при назначении им коэффициентов весомости;
- отсутствие ограничений как на количество единичных показателей, так и на число сравниваемых средств;
- наличие легко программируемых формул, которое приводит к полной автоматизации процесса определения предпочтительного средства;
- возможность осуществления иерархической оценки сложных средств с разбивкой на группы свойств (показателей).
Реализация предлагаемого способа и устройства предполагается на первом этапе - в виде программного комплекса на ПЭВМ, на втором - в виде отдельного прибора.
Источники информации
1. Саати Т. Принятие решений при зависимостях и обратных связях: Аналитические сети. Пер. с англ. - М.: Книжный дом «ЛИБРОКОМ». 2009. - 360 с.
2. Черноруцкий И.Г. Методы принятия решений. - СПб. БХВ-Петербург, 2005 - 416 с.
3. Макаров И.Д. и др. Теория выбора и принятия решений. - М: НАУКА. Гл. ред. ФМЛ. 1992. - 328 с.
4. Подиновский В.В. Применение качественной информации о важности критериев для решения многокритериальных задач оптимизации. - М.: ВИОЛСА, 1977. - 36 с.
5. Денисов А.А., Колесников Д.Н. Теория больших систем управления. - Л.: Энергоиздат, 1982. - 287 с.
6. Черноскутов А.И. (RU) и др. Устройство для оценки качества изделий. Авторское свидетельство на изобретение №1597883, G06F 15/46, 1982.
7. Черноскутов А.И. (RU) и др. Устройство для оценки качества изделий. Авторское свидетельство на изобретение №1485274, G06F 15/46, 1987.
8. Казаков И.В. (RU) и др. Устройство для решения задач оценки качества ВВТ. Заявка №95120833/09, МПК 6 G06F 17/00, 07.12.1995.
9. Махутов Н.А. (RU) и др. Способ определения качества изделия по достоверной и вероятностной частям остаточной дефектности. Патент №2243586, МПК 7 G05B 23/02, G06F 17/00, опубликовано: 27.12.2004.
10. Торовин A.H. (RU). Способ ранжирования результатов поиска. Заявка №2008152920/08, G06F 17/30, 31.12.2008.
11. Бурба A.A. (RU) и др. Устройство для оценки и сравнения эффективности функционирования однотипных организаций. Патент №2363042 (13) С1, МПК G06F 17/, G06F 7/02, G06N 1/00. Опубликовано: 27.07.2009.
12. Выгодский М.Я. Справочник по высшей математике. - М.: ВЕК, БОЛЬШАЯ МЕДВЕДИЦА, 1997. - 864 с.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ И УСТРОЙСТВО ВЫБОРА ПРЕДПОЧТИТЕЛЬНОГО СРЕДСТВА ЗАЩИТЫ ИНФОРМАЦИИ | 2013 |
|
RU2558238C2 |
УСТРОЙСТВО ВЫЯВЛЕНИЯ ПРЕДПОЧТИТЕЛЬНОГО СРЕДСТВА ЗАЩИТЫ ИНФОРМАЦИИ | 2015 |
|
RU2623902C2 |
УСТРОЙСТВО ВЫБОРА СРЕДСТВА ЗАЩИТЫ ИНФОРМАЦИИ | 2017 |
|
RU2696226C2 |
Устройство для управления трехфазным мостовым инвертором | 1988 |
|
SU1603509A1 |
СИСТЕМЫ И СПОСОБЫ ПРИМЕНЕНИЯ ФИЛЬТРОВ ДЕБЛОКИРОВАНИЯ К ВОССТАНОВЛЕННЫМ ВИДЕОДАННЫМ | 2019 |
|
RU2770650C1 |
КОДЕР, ДЕКОДЕР И СООТВЕТСТВУЮЩИЕ СПОСОБЫ О СИГНАЛИЗАЦИИ СИНТАКСИСА ВЫСОКОГО УРОВНЯ | 2021 |
|
RU2826547C1 |
СПОСОБ ПРОВЕДЕНИЯ ТЕЛЕВИЗИОННОЙ ИГРЫ | 2004 |
|
RU2268766C1 |
Пространственный фильтр | 1987 |
|
SU1543541A1 |
ЭЛЕКТРОПРИВОД РОБОТА | 2012 |
|
RU2488479C1 |
ЭЛЕКТРОПРИВОД РОБОТА | 2012 |
|
RU2488480C1 |
Изобретение относится к цифровой вычислительной технике, а именно к цифровым вычислительным системам для определения качества сравниваемых сложных систем, средств, изделий. Технический результат заключается в повышении защищенности устройств. Коммутируют информацию о единичных показателях сравниваемых средств, записывают ее в первый блок памяти, пересылают ее в блок формирования эталонов худшего и лучшего качества, образующих соответственно начало и конец прямой, определяющей шкалу оценки качества, проводят плоскости перпендикулярно к этой прямой через точки сравниваемых средств в пространстве единичных показателей, находят параметры точек пересечения со шкалой оценки, значения которых и образуют комплексные показатели качества сравниваемых средств, максимальная величина одного из них соответствует предпочтительному средству. 2 н.п. ф-лы, 2 ил.
1. Способ выбора предпочтительного средства защиты информации, заключающийся в том, что коммутируют информацию о единичных показателях сравниваемых средств, записывают ее в первый блок памяти, отличающийся тем, что ее пересылают в блок формирования эталонов худшего и лучшего качества, образующих соответственно начало и конец прямой, определяющей шкалу оценки качества, проводят плоскости перпендикулярно этой прямой через точки сравниваемых средств в пространстве единичных показателей, находят параметры точек пересечения плоскости со шкалой оценки, значения которых и образуют комплексные показатели качества сравниваемых средств, максимальная величина одного из них соответствует предпочтительному средству.
2. Устройство для реализации способа по п.1, содержащее коммутатор и первый блок памяти, отличающееся тем, что в его состав введены блок формирования эталонов, блок определения комплексных показателей качества, второй блок памяти, блок визуализации и блок управления, при этом выход коммутатора подключен к информативному входу первого блока памяти, выход которого соединен с первым входом блока формирования эталонов и первым входом блока определения комплексных показателей качества, второй вход которого подключен к первому выходу блока формирования эталонов, выход блока определения комплексных показателей качества подсоединен к первому входу второго блока памяти и второму входу блока формирования эталонов, соединенному своим вторым выходом со вторым входом второго блока памяти, подключенного своим выходом ко входу блока визуализации, управляющие выходы блока управления подключены к управляющим входам всех блоков.
Устройство для оценки качества изделий | 1988 |
|
SU1597883A1 |
Устройство для контроля узлов электронных вычислительных машин | 1976 |
|
SU667969A1 |
Устройство для тестового контроля цифровых блоков | 1986 |
|
SU1386999A1 |
Колосоуборка | 1923 |
|
SU2009A1 |
Авторы
Даты
2013-10-10—Публикация
2011-03-23—Подача