СПОСОБ ДИАГНОСТИРОВАНИЯ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ, СОДЕРЖАЩИХ АКТИВНОЕ СОПРОТИВЛЕНИЕ И ИНДУКТИВНОСТЬ Российский патент 2013 года по МПК G01R31/34 G01R27/14 G01M15/00 

Описание патента на изобретение RU2496115C1

Изобретение относится к технической диагностике и может быть использовано для диагностирования электрических цепей, содержащих активное сопротивление и индуктивность, в частности обмоток электрических машин и аппаратов.

Известным является способ диагностирования электрических цепей, в частности автомобильного электрооборудования, по наличию тока в электрической цепи при подключении к источнику напряжения [Сергеев А.Г., Ютт, В.Е. Диагностирование электрооборудование автомобилей. - М.: Транспорт, 1987. - 159 с., ил.].

Недостатком такого способа является невозможность диагностировать дефекты электрической цепи, в частности автомобильного электрооборудования, без разрыва электрической цепи.

Известен способ диагностирования, выбранный за прототип, использующий в качестве параметра диагностирования постоянную времени тока переходного процесса в цепи диагностируемого электрооборудования автомобиля [RU 2314432 C2]. При этом измеряют мгновенные значения тока в течение переходного процесса и определяют постоянную времени.

Недостатком указанного способа являются значительные ошибки в определении постоянной времени по экспоненте, возникающие, в частности, при неточностях в определении установившегося значения тока, а также при отклонениях величины постоянного напряжения, подаваемого на диагностируемую электрическую цепь, что, в конечном счете, приводит к снижению надежности диагностирования электрических цепей и достоверности диагностируемых параметров. К примеру, на фиг.1 показан переходный процесс - кривая 1 изменения выходной величины, в виде напряжения на выходе датчика тока, для принятых значений Tфакт=1c U у с т . ф а к т * = 1,

где Тфакт - фактическое значение постоянной времени,

U у с т . ф а к т * - установившееся значение указанной выходной величины в относительных единицах, определяемое по выражению

U у с т . ф а к т * = U у с т . ф а к т U с ,

где Uуст.факт - установившееся значение выходной величины в абсолютных единицах;

Uc - базовое значение входного, переменного напряжения промышленной частоты.

Установившемуся значению выходной величины на фиг.1 соответствует прямая 2. Для определения постоянной времени по графику переходного процесса обычно используется тот факт, что за время t=3T выходная величина достигает значения 0,95 от установившегося значения.

На фиг.1 прямой 3 соответствует значение 0,95 U у с т . ф а к т * для условий когда погрешности измерений отсутствуют. Из рисунка и проведенных расчетов следует, что значение 0,95 U у с т . ф а к т * достигается за время t=3 c, откуда измеренное значение постоянной времени совпадает с Tфакт=1 c.

Проанализируем ошибки в определении постоянной времени, возникающие при погрешностях в измерении установившегося значения выходной величины. Предположим, что установившееся значение измеряется с погрешностью -2%, т.е. измеренное значение выходной величины в относительных единицах, определяемое по выражению

U у с т . и з м 1 * = U у с т . и з м 1 * U c , ( 1 )

составляет U у с т . и з м 1 * = 0,98 . Тогда 0,95 U у с т . и з м 1 * = 0,931 , это значение соответствует прямой 4. Из чертежа и проведенных расчетов следует, что значение 0,931 будет достигаться за время tизм.1=3Tизм.1=2,66с. Тогда измеренное значение постоянной времени будет равно Тизм.1=0,887, следовательно ошибка измерения составит Δ%=11,3%.

Предположим, что установившееся значение выходной величины измеряется с погрешностью +2%, измеренное значение выходной величины в относительных единицах, определяемое по выражению (1), составляет U у с т . и з м 2 * = 1,02 . Тогда значение 0,95 U у с т . и з м 2 * = 0,969 , этому значению на фиг.1 соответствует прямая 5. Из чертежа и проведенных расчетов следует, что это значение будет достигаться за время tизм2=3Тизм.2=3,47 с. Тогда измеренное значение постоянной времени Тизм.2=1,157, а ошибка измерений составит Δ%=15,7%.

Таким образом, в способе, принятым за прототип неточности определения установившегося значения тока, а также отклонения величины постоянного напряжения, подаваемого на диагностируемую электрическую цепь, могут приводить к значительным ошибкам в определении значения диагностируемого параметра, что, в итоге, приводит к снижению надежности диагностирования электрических цепей и достоверности диагностируемых параметров.

Техническим результатом предлагаемого способа диагностирования электрических цепей, содержащих активное сопротивление и индуктивность, является повышение надежности диагностирования параметров электрических цепей и достоверности диагностируемых параметров.

Технический результат достигается тем, что в способе диагностирования электрических цепей, содержащих активное сопротивление и индуктивность, в частности обмоток электрических машин и аппаратов, в диагностируемую электрическую цепь дополнительно последовательно подключают конденсатор, на вход цепи подают переменное напряжение промышленной частоты и в режиме установившихся гармонических колебаний измеряют амплитуду и фазовый сдвиг напряжения на конденсаторе относительно поданного напряжения, вычисляют относительную амплитуду напряжения в виде отношения амплитуды напряжения на конденсаторе к амплитуде подаваемого напряжения и в качестве диагностируемых параметров принимают значение фазового сдвига и вычисленное значение относительной амплитуды, причем значение емкости конденсатора выбирается из условия резонанса по выражению C = 1 ω C 2 L Н О М , где LНОМ - индуктивность цепи с номинальными значениями электрических параметров, ωC - частота подаваемого напряжения.

Кроме того, отклонение относительной амплитуды U m Д * напряжения в диагностируемой электрической цепи по сравнению с относительной амплитудой U m Н * напряжения в цепи с номинальными электрическими параметрами определяют по выражению

Δ 1 = U m Н * U m Д * U m Н * 100 % . ( 2 )

Кроме того, отклонение фазового сдвига φД в диагностируемой электрической цепи по сравнению с фазовым сдвигом φНОМ в цепи с номинальными электрическими параметрами определяют по выражению

Δ 2 = ϕ Н О М ϕ Д ϕ Н О М 100 % . ( 3 )

Повышение надежности диагностирования достигается благодаря высокой чувствительности принятых параметров диагностирования к изменению электрических параметров цепи, вызванных, в частности, витковыми замыканиями в обмотках электрических машин и аппаратов.

Использование в изобретении в качестве диагностируемого параметра относительного значения амплитуды напряжения на конденсаторе позволяет исключить погрешности при отклонениях величины напряжения, подаваемого на диагностируемую электрическую цепь. В этом случае одновременно изменяются амплитуда подаваемого переменного напряжения и амплитуда напряжения на конденсаторе, а значение относительной амплитуды остается неизменным.

В изобретении диагностируемые параметры измеряются в режиме установившихся колебаний. Режим, близкий к установившемуся, в электрической цепи после подачи на нее переменного напряжения промышленной частоты наступает через время, равное (10…20)T, где T=R*C - постоянная времени электрической цепи [Бессонов, Л.А. Теоретические основы электротехники. - М.: «Высшая школа», 1996. - 623 с., ил.]

Значение относительной амплитуды напряжения в электрической цепи с номинальными электрическими параметрами определяется экспериментально или может быть вычислено по выражению [Бессонов Л.А. Теоретические основы электротехники. - М.: «Высшая школа», 1996. - 623 с., ил.]

U m Н * = 1 R H L H C .

Фазовый сдвиг напряжения на конденсаторе относительно подаваемого напряжения в электрической цепи с номинальными электрическими параметрами составляет φНОМ=-90 эл. град.

В качестве примера диагностируемой электрической цепи, содержащей активное сопротивление и индуктивность, взята фазовая обмотка статора автомобильного генератора 94.3701. Номинальные значения электрических параметров обмотки: число витков WФ=48, L=0,001447 Гн, R=0,0373 Ом.

Для реализации способа диагностирования электрических цепей, содержащих активное сопротивление и индуктивность, к обмотке фазы статора дополнительно последовательно подключен конденсатор C, величина емкости которого выбрана из условия резонанса по выражению C = 1 ω C 2 L Н О М , где LНОМ - индуктивность цепи с номинальными значениями электрических параметров, ωc - частота подаваемого напряжения.

Значения диагностируемых параметров фазовой обмотки статора с номинальными электрическими параметрами, полученные расчетным путем и моделированием приведены во втором столбце таблицы.

Диагностируемый параметр Значение диагностируемого параметра Отклонение параметра диагностирования, % в электрической цепи с номинальными электрическими параметрами в электрической цепи с межвитковым замыканием 1 2 3 4 Относительная амплитуда напряжения на конденсаторе 12,2 4,21 65,5 Фазовый сдвиг, эл. град -90 -17 81,1

В результате экспериментальных исследований установлено, что при дефекте в виде межвиткового замыкания 5 витков фазы статора индуктивность и активное сопротивление диагностируемой цепи имеют значения: L=0,00112 Гн, R=0,0318 Ом.

Значения диагностируемых параметров фазовой обмотки статора с указанным повреждением витков обмотки, полученные экспериментально и путем моделирования, приведены в 3-м столбце таблицы.

Отклонения значений диагностируемых параметров, вычисленные по выражениям (2), (3) приведены в 4-м столбце таблицы.

Полученные результаты свидетельствуют о высокой чувствительности используемых в предлагаемом способе параметров диагностирования к изменению электрических параметров диагностируемой электрической цепи, вызванных, в частности межвитковыми замыканиями. Для рассматриваемого в примере повреждения обмотки фазы статора изменение относительной амплитуды составляет 65,5%, изменение фазового сдвига 81,1%.

Схема измерения фиг.2 состоит из последовательно соединенных источника переменного напряжения промышленной частоты 1, коммутирующего устройства 2, диагностируемой электрической цепи 3 с дополнительно последовательно включенным конденсатором, измерительно-вычислительного устройства 4, вход которого соединен с выходом коммутирующего устройства 2 и регистрирующего устройства 5 на базе ПК.

Измерения производятся следующим образом. С помощью коммутирующего устройства 2 диагностируемую электрическую цепь 3 подключают к источнику 1 переменного напряжения промышленной частоты. С помощью измерительно-вычислительного устройства 4 после подачи переменного напряжения обеспечивается выдержка времени, равная (10…20)R*C для наступления установившегося режима, в режиме установившихся гармонических колебаний производится измерение мгновенных значений напряжения на конденсаторе, определяются значения диагностируемых параметров и по выражениям (2), (3) вычисляются отклонения диагностируемых параметров от их номинальных значений. Полученные отклонения диагностируемых параметров передаются и хранятся в регистрирующем устройстве 5.

Как показали экспериментальные и расчетные результаты, значения принятых параметров диагностирования существенно изменяются при наличии дефекта в диагностируемой электрической цепи, что позволяет обеспечить высокую надежность диагностирования.

Похожие патенты RU2496115C1

название год авторы номер документа
СПОСОБ ДИАГНОСТИРОВАНИЯ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ, СОДЕРЖАЩИХ АКТИВНОЕ СОПРОТИВЛЕНИЕ И ИНДУКТИВНОСТЬ 2010
  • Абакумов Александр Михайлович
  • Овсянников Владимир Николаевич
  • Петинов Олег Всеволодович
  • Рандин Дмитрий Геннадьевич
  • Харымова Евгения Юрьевна
RU2511599C2
СПОСОБ ДИАГНОСТИРОВАНИЯ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ, СОДЕРЖАЩИХ АКТИВНОЕ СОПРОТИВЛЕНИЕ И ИНДУКТИВНОСТЬ 2010
  • Абакумов Александр Михайлович
  • Овсянников Владимир Николаевич
  • Петинов Олег Всеволодович
  • Харымова Евгения Юрьевна
RU2451943C2
ИЗМЕРИТЕЛЬНЫЙ ПРЕОБРАЗОВАТЕЛЬ ТОКА ОБРАТНОЙ ПОСЛЕДОВАТЕЛЬНОСТИ ДЛЯ ТРЕХФАЗНОЙ ТРЕХПРОВОДНОЙ ЦЕПИ 2013
  • Астафоров Иван Константинович
  • Козлов Александр Николаевич
  • Кувшинов Геннадий Евграфович
  • Ханнанов Андрей Мусавирович
RU2536784C1
ИЗМЕРИТЕЛЬНЫЙ ПРЕОБРАЗОВАТЕЛЬ ТОКА ОБРАТНОЙ ПОСЛЕДОВАТЕЛЬНОСТИ 2012
  • Козлова Татьяна Сергеевна
  • Кувшинов Геннадий Евграфович
  • Савина Наталья Викторовна
  • Соловьёв Денис Борисович
RU2510514C1
СПОСОБ РАБОЧЕГО ДИАГНОСТИРОВАНИЯ ИОНИЗАЦИОННОЙ КАМЕРЫ СИСТЕМЫ УПРАВЛЕНИЯ И ЗАЩИТЫ ЯДЕРНОГО РЕАКТОРА 1998
  • Панкин А.М.
  • Башарин С.А.
  • Даниленко В.П.
  • Борисов В.Ф.
RU2145427C1
ПАЗОННЫЙ СПОСОБ МОДЕЛИРОВАНИЯ ЭЛЕКТРИЧЕСКИХ МАШИН И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1998
  • Бондаренко Михаил Федорович
  • Куценко Юрий Васильевич
  • Чередников Илья Павлович
  • Чередников Павел Ильич
RU2137286C1
Способ индикации резонансной частоты измерительной цепи 1987
  • Скрипник Юрий Алексеевич
  • Алексашин Александр Васильевич
  • Шевченко Константин Леонидович
  • Богуславский Дмитрий Айзикович
SU1506372A1
СПОСОБ ДИАГНОСТИКИ ВЫСОКОВОЛЬТНОГО ОБОРУДОВАНИЯ ПО ПАРАМЕТРАМ ЧАСТИЧНЫХ РАЗРЯДОВ 2013
  • Шахнин Вадим Анатольевич
  • Мироненко Ярослав Владимирович
  • Чебрякова Юлия Сергеевна
RU2536795C1
УСТРОЙСТВО ДЛЯ ПРОВЕРКИ ПОДЛИННОСТИ МОНЕТ, ЖЕТОНОВ И ДРУГИХ ПЛОСКИХ МЕТАЛЛИЧЕСКИХ ПРЕДМЕТОВ 1997
  • Зайц Томас
  • Рюэфф Джозеф
RU2186422C2
Устройство для измерения напряжений прямой и обратной последовательностей трехфазной сети 1982
  • Брайко Вольдмир Васильевич
  • Карасинский Олег Леонович
  • Таранов Сергей Глебович
  • Тесик Юрий Федорович
SU1045173A1

Иллюстрации к изобретению RU 2 496 115 C1

Реферат патента 2013 года СПОСОБ ДИАГНОСТИРОВАНИЯ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ, СОДЕРЖАЩИХ АКТИВНОЕ СОПРОТИВЛЕНИЕ И ИНДУКТИВНОСТЬ

Изобретение относится к технической диагностике и может быть использовано для диагностирования электрических цепей, содержащих активное сопротивление и индуктивность, в частности обмоток электрических машин и аппаратов. Техническим результатом является повышение надежности диагностирования электрических цепей и достоверности диагностируемых параметров. В способе диагностирования электрических цепей, содержащих активное сопротивление и индуктивность, в частности обмоток электрических машин и аппаратов, в диагностируемую электрическую цепь дополнительно последовательно подключают конденсатор, на вход цепи подают переменное напряжение промышленной частоты и в режиме установившихся гармонических колебаний измеряют амплитуду и фазовый сдвиг напряжения на конденсаторе относительно поданного напряжения, вычисляют относительную амплитуду в виде отношения амплитуды напряжения на конденсаторе к амплитуде подаваемого напряжения и в качестве диагностируемых параметров принимают значение фазового сдвига и вычисленное значение относительной амплитуды. 2 з.п. ф-лы, 2 ил., 1 табл.

Формула изобретения RU 2 496 115 C1

1. Способ диагностирования электрических цепей, содержащих активное сопротивление и индуктивность, в частности, обмоток электрических машин и аппаратов, путем подачи на электрическую цепь напряжения и сравнения значений измеряемых диагностируемых параметров в диагностируемой электрической цепи и цепи с номинальными значениями электрических параметров, отличающийся тем, что в диагностируемую электрическую цепь дополнительно последовательно подключают конденсатор, на вход цепи подают переменное напряжение промышленной частоты и в режиме установившихся гармонических колебаний измеряют амплитуду и фазовый сдвиг напряжения на конденсаторе относительно поданного напряжения, вычисляют относительную амплитуду в виде отношения амплитуды напряжения на конденсаторе к амплитуде подаваемого напряжения и в качестве диагностируемых параметров принимают значение фазового сдвига и вычисленное значение относительной амплитуды, причем значение емкости конденсатора выбирается из условия резонанса по выражению C = 1 ω C 2 L Н О М , где LНОМ - индуктивность цепи с номинальными значениями электрических параметров, ωC - частота подаваемого напряжения.

2. Способ по п.1, отличающийся тем, что отклонение относительной амплитуды U m Д * напряжения в диагностируемой электрической цепи по сравнению с относительной амплитудой U m Н * напряжения в цепи с номинальными электрическими параметрами определяют по выражению
Δ 1 = U m Н * U m Д * U m Н * 100 % .

3. Способ по п.1, отличающийся тем, что отклонение фазового сдвига φД в диагностируемой электрической цепи по сравнению с фазовым сдвигом φНОМ в цепи с номинальными электрическими параметрами определяют по выражению
Δ 2 = φ Н О М φ Д φ Н О М 100 % .

Документы, цитированные в отчете о поиске Патент 2013 года RU2496115C1

СПОСОБ ДИАГНОСТИРОВАНИЯ АВТОМОБИЛЬНОГО ЭЛЕКТРООБОРУДОВАНИЯ 2006
  • Петинов Юрий Олегович
  • Пьянов Михаил Александрович
RU2314432C2
СПОСОБ ДИАГНОСТИРОВАНИЯ ИЗДЕЛИЙ АВТОМОБИЛЬНОГО ЭЛЕКТРООБОРУДОВАНИЯ 2008
  • Шлегель Олег Александрович
  • Северин Александр Александрович
  • Пьянов Михаил Александрович
RU2422840C2
СПОСОБ ТЕХНИЧЕСКОГО ДИАГНОСТИРОВАНИЯ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ, ИХ ЭЛЕМЕНТОВ, МАТЕРИАЛОВ И ВЕЩЕСТВ, ВХОДЯЩИХ В ИХ СОСТАВ 2008
  • Козулин Владимир Тимофеевич
RU2390788C1
СПОСОБ ДИАГНОСТИКИ ИНДУКТИВНЫХ ОБМОТОК 2010
  • Богданов Валентин Иванович
  • Богданов Николай Иванович
  • Калмыков Борис Юрьевич
RU2426140C1
US 20070290691 A1, 22.12.2007
US 6591200 B1, 08.07.2003
EP 1088237 B1, 28.07.2011.

RU 2 496 115 C1

Авторы

Абакумов Александр Михайлович

Чеботков Эдуард Галактионович

Рандин Дмитрий Геннадьевич

Даты

2013-10-20Публикация

2012-03-11Подача