Изобретение относится к технической диагностике и может быть использовано для диагностирования автомобильного электрооборудования в условиях массового промышленного производства и на станциях технического обслуживания автомобилей.
Общеизвестным является способ диагностирования изделий автомобильного электрооборудования по наличию тока в электрической цепи при подключении указанного изделия к источнику напряжения [Ютт В.Е. Электрооборудование автомобилей. - М.: Транспорт, 2001. - 287 с., ил.].
Недостатком такого способа является невозможность диагностировать дефекты электрооборудования, не влекущие за собой разрыв электрической цепи.
Известен способ диагностирования, выбранный нами за прототип, использующий в качестве параметра диагностирования мощность, потребляемую изделием автомобильного электрооборудования, и реализованный в системах автоматической диагностики на базе современных ЭВМ ведущими в этой области производителями: "SovTest", "Bosch" [http://www.sovtest.ru/index.html?topic=76; http://diagnostic.bosch.ru/ languagel/catalogue/diagnostics-engine/scanner/scaner-kts520/index.html; http://diagnostic.bosch.ru/languagel/catalogue/diagnostics-engine/scanner/scaner-kts650/index.html;]. При этом измеряют установившееся значение тока в электрической цепи изделия электрооборудования, а мощность рассчитывают исходя из постоянства напряжения в бортовой сети автомобиля.
Недостатком указанного способа является зависимость напряжения в бортовой сети автомобиля от степени разряженности аккумуляторной батареи и отсутствие корректировки получаемого значения мощности при изменении напряжения в бортовой сети, что влечет за собой снижение эффективности диагностирования изделий автомобильного электрооборудования.
Для повышения эффективности диагностирования предлагается использовать в качестве диагностического параметра постоянную времени тока переходного процесса при подаче постоянного напряжения в электрическую цепь изделий электрооборудования. Поскольку постоянная времени тока переходного процесса зависит только от параметров диагностируемого электрооборудования, колебания уровня напряжения на ее значение не влияют [Бессонов Л.А. Теоретические основы электротехники. Изд. 6-е, переработанное и доп. Учебник для студентов энергетических и электротехнических вузов. - М.: Высшая школа, 1973, 752 с. с ил.].
Особенностью способа диагностирования автомобильного электрооборудования, при котором подают на электрооборудование постоянное напряжение и сравнивают измеряемый параметр с предельно допустимыми значениями по величине, является то, что в качестве параметра диагностирования используют постоянную времени тока переходного процесса в цепи диагностируемого электрооборудования автомобиля.
Предлагаемый способ иллюстрируется чертежами. Для примера на фиг.1 представлена схема измерения тока переходного процесса в модуле зажигания автомобиля ВАЗ-1118 (LADA-KALINA). На фиг.2 представлены полученные осциллограммы тока переходного процесса при подаче постоянного напряжения на модуль зажигания.
Схема измерения (фиг.1) состоит из последовательно соединенных источника постоянного напряжения 1 (аккумуляторная батарея), коммутирующего устройства 2, измерительного модуля 3, выход которого соединен с входом регистрирующего устройства 4, на базе ЭВМ, и изделия электрооборудования 5. На фиг.2 сплошная кривая 6 обозначает зависимость тока от времени в исправном изделии электрооборудования 5 (модуле зажигания) при нормальном напряжении в бортовой сети автомобиля; сплошная кривая 7 - то же при пониженном напряжении. Штрихпунктирная кривая 8 обозначает зависимость тока от времени в модуле зажигания, имеющем дефект, при нормальном напряжении в бортовой сети автомобиля; штрихпунктирная кривая 9 - то же при пониженном напряжении.
Измерения производят следующим образом. С помощью коммутирующего устройства 2 изделие электрооборудования 5 подключают к источнику постоянного напряжения 1. При этом измерительный модуль 3 производит высокоточные измерения мгновенных значений тока, которые передаются на регистрирующее устройство 4, где обрабатываются и сохраняются. Результаты измерений тока переходного процесса представлены на фиг.2 кривыми: 6 - при подаче постоянного напряжения U1=13,2 В на исправный модуль зажигания автомобиля ВАЗ-1118 (LADA-KALINA); 8 - при подаче постоянного напряжения U1=13,2 В на модуль зажигания, имеющего дефект (короткозамкнутый виток в первичной обмотке); 7 - при подаче постоянного напряжения U2=11,6 В на исправный модуль зажигания; 9 - при подаче постоянного напряжения U2=11,6 В на модуль зажигания, имеющего дефект. Как видно из осциллограмм (фиг.2), значение установившегося тока Iуст изменяется в зависимости от уровня напряжения питания и практически не изменяется при наличии дефекта в изделии электрооборудования (для кривых и для кривых ). Таким образом, диагностировать такой дефект с помощью измерения установившегося значения тока не представляется возможным.
В регистрирующем устройстве 4 обрабатывают мгновенные значения тока и вычисляют с помощью известных зависимостей постоянную времени тока переходного процесса в диагностируемом изделии. Для приведенного конкретного примера постоянная времени исправного модуля зажигания τu оказалась равна 17 мс, постоянная времени модуля зажигания, имеющего дефект, τ∂ оказалась равна 19 мс. Как показали вычисления, колебания уровня напряжения на влияют на значения постоянной времени тока переходного процесса. Однако значение постоянной времени существенно изменяется при наличии дефекта в изделии автомобильного электрооборудования.
Таким образом, постоянная времени тока переходного процесса существенно зависит от параметров диагностируемого электрооборудования, что позволяет выявить дефект, и может служить достоверным диагностическим параметром. Кроме того, на ее значения не влияют колебания уровня напряжения в бортовой сети автомобиля.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ДИАГНОСТИРОВАНИЯ ИЗДЕЛИЙ АВТОМОБИЛЬНОГО ЭЛЕКТРООБОРУДОВАНИЯ | 2008 |
|
RU2422840C2 |
СПОСОБ ДИАГНОСТИРОВАНИЯ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ, СОДЕРЖАЩИХ АКТИВНОЕ СОПРОТИВЛЕНИЕ И ИНДУКТИВНОСТЬ | 2010 |
|
RU2451943C2 |
СПОСОБ ДИАГНОСТИРОВАНИЯ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ, СОДЕРЖАЩИХ АКТИВНОЕ СОПРОТИВЛЕНИЕ И ИНДУКТИВНОСТЬ | 2010 |
|
RU2511599C2 |
СПОСОБ ДИАГНОСТИРОВАНИЯ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ, СОДЕРЖАЩИХ АКТИВНОЕ СОПРОТИВЛЕНИЕ И ИНДУКТИВНОСТЬ | 2012 |
|
RU2496115C1 |
СИСТЕМА ЭЛЕКТРОСТАРТЕРНОГО ПУСКА | 2010 |
|
RU2447314C1 |
Способ дистанционной диагностики механического транспортного средства | 2015 |
|
RU2615806C1 |
УСТРОЙСТВО ДЛЯ ДИАГНОСТИРОВАНИЯ ЭЛЕКТРОННЫХ ПРИБОРОВ СИСТЕМ ЭЛЕКТРООБОРУДОВАНИЯ АВТОМОБИЛЕЙ | 1997 |
|
RU2146376C1 |
СПОСОБ ДЛЯ КОМПЛЕКСНОГО И ПОЭЛЕМЕНТНОГО ДИАГНОСТИРОВАНИЯ ДВИГАТЕЛЕЙ ВНУТРЕННЕГО СГОРАНИЯ И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2013 |
|
RU2538003C2 |
Прибор встроенного автоматического диагностирования автомобилей и тракторов | 2021 |
|
RU2825499C2 |
Способ диагностирования технического состояния электрических двигателей в режиме реального времени | 2024 |
|
RU2826152C1 |
Изобретение относится к технической диагностике и может быть использовано для диагностирования автомобильного электрооборудования в условиях массового промышленного производства и на станциях технического обслуживания автомобилей. Способ диагностирования заключается в измерении мгновенных значений тока в течение переходного процесса при подаче постоянного напряжения на автомобильное электрооборудование и расчете постоянной времени по результатам измерений. Анализируя полученное значение и сравнивая его с предельно допустимыми значениями, можно судить о наличии дефектов в изделии автомобильного электрооборудования. Техническим результатом является повышение эффективности диагностирования путем использования в качестве диагностического параметра постоянной времени тока переходного процесса при подаче постоянного напряжения в электрическую цепь изделий электрооборудования, так как она зависит только от параметров диагностируемого электрооборудования. 2 ил.
Способ диагностирования автомобильного электрооборудования путем подачи на него постоянного напряжения и сравнения измеряемого параметра с предельно допустимыми значениями по величине, отличающийся тем, что в качестве параметра диагностирования используют постоянную времени тока переходного процесса в цепи диагностируемого электрооборудования автомобиля.
US 2003197511 A, 23.10.2003 | |||
Способ ускоренных ресурсных испытаний дизеля | 1986 |
|
SU1511616A1 |
Искробезопасный источник переменного тока | 1977 |
|
SU729369A1 |
US 4757463 B1, 12.07.1988 | |||
DE 19850990 A, 18.05.2000 | |||
СПОСОБ ГАЗОПИТАНИЯ И РЕГУЛИРОВАНИЯ ПОРШНЕВОГО ДВИГАТЕЛЯ В ДИНАМИЧЕСКИХ РЕЖИМАХ | 2004 |
|
RU2269020C2 |
JP 2005251185 A, 15.09.2005. |
Авторы
Даты
2008-01-10—Публикация
2006-02-13—Подача