СПОСОБ ДИАГНОСТИРОВАНИЯ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ, СОДЕРЖАЩИХ АКТИВНОЕ СОПРОТИВЛЕНИЕ И ИНДУКТИВНОСТЬ Российский патент 2014 года по МПК G01R31/00 

Описание патента на изобретение RU2511599C2

Изобретение относится к технической диагностике и может быть использовано для диагностирования электрических цепей, содержащих активное сопротивление и индуктивность, в частности обмоток электрических машин и аппаратов.

Известным является способ диагностирования электрических цепей, в частности, автомобильного электрооборудования по наличию тока в электрической цепи при подключении к источнику напряжения [Ютт В.Е. Электрооборудование автомобилей. - М.: Транспорт, 2001. - 287 с., ил.].

Недостатком такого способа является невозможность диагностировать дефекты электрической цепи, в частности, автомобильного электрооборудования, не влекущие за собой разрыв электрической цепи.

Известен способ диагностирования, выбранный за прототип, использующий в качестве параметра диагностирования постоянную времени тока переходного процесса в диагностируемой электрической цепи [RU 2314432 C2]. При этом измеряют мгновенные значения тока в течение переходного процесса при подаче постоянного напряжения на автомобильное электрооборудование и рассчитывают постоянную времени.

Недостатком указанного способа является погрешности определения постоянной времени по экспоненте, которая является плавной кривой, что приводит к существенным ошибкам. К примеру на фиг.1 показан переходный процесс кривая 1 для принятых значений Тфакт.=1 с и Uyст.факт.=1, где Тфакт. - фактическое значение постоянной времени, Uуст.факт. - установившееся значение выходной величины в относительных единицах; установившееся значение выходной величины показано прямой 2. Прямой 3 показано значение 0,95Uуст. факт. Из чертежа и проведенных расчетов следует, что значение 0,95 достигается при t=3Тфакт.=3 с, где Тфакт.=1 с.

Если установившееся значение измеряется с погрешностью -2%, т.е. измеренное значение составляет Uуст.изм.1=0,98, тогда 0,95Uуст.изм.1=0,931, это значение показано прямой 4. Из чертежа и проведенных расчетов следует, что значение 0,931 будет достигаться за время tизм.1=3Tизм.1=2,66 с, тогда значение постоянной времени будет равно Тизм.1=0,887, следовательно, погрешность измерения составит Δ%=11,3%.

Если установившееся значение измеряется с погрешностью +2%, т.е. измеренное значение составляет Uуст.изм.2=1,02, тогда значение 0.95Uуст.изм.1=0,969, это значение показано прямой 5. Из чертежа и проведенных расчетов следует, что это значение будет достигаться за время tизм.2=3Тизм.2=3,47 с, тогда значение постоянной времени Тизм.2=1,157, а погрешность оценки составит Δ%=15,7%.

Техническим результатом является повышение информативности параметров диагностирования.

Технический результат достигается тем, что в способе диагностирования электрических цепей, содержащих активное сопротивление и индуктивность, в частности обмоток электрических машин и аппаратов, в электрическую цепь дополнительно последовательно подключают конденсатор, подают на электрическую цепь гармоническое напряжение фиксированных частот и в режиме установившихся гармонических колебаний измеряют амплитуду и фазовый сдвиг напряжения на конденсаторе относительно подаваемого напряжения, вычисляют отношение амплитуды напряжения на конденсаторе к амплитуде подаваемого напряжения и в качестве диагностируемых параметров принимают значение фазового сдвига и вычисленное значение отношения амплитуд, причем значение емкости конденсатора выбирается из условия С 2 ξ 2 L R 2 , где L - индуктивность цепи, R - активное сопротивление цепи, ξ - коэффициент демпфирования (выбирается из диапазона от 0,05 до 0,1).

На фиг.3 представлена функциональная схема возможного варианта технической реализации способа диагностирования электрических цепей, содержащих активное сопротивление и индуктивность, где в качестве диагностируемого электрооборудования взята фазовая обмотка статора автомобильного генератора 94.3701 с параметрами L=0,001447 Гн, R=0,0373 Ом, а к одной из фаз статора дополнительно последовательно подключена емкость С=2000 мкФ, величина которой выбрана из условия С 2 ξ 2 L R 2 , где ξ =0,05. На фиг.2 представлены амплитудные частотные и фазовые частотные характеристики диагностируемых электрических цепей: 1 - амплитудные частотные и фазовые частотные характеристики диагностируемой электрической цепи с номинальными параметрами, 2 - амплитудные частотные и фазовые частотные характеристики диагностируемой цепи с дефектом, индексом «н» обозначены номинальные значения параметров диагностируемой электрической цепи, индексом «д» - значения параметров диагностируемой электрической цепи, содержащей дефект.

Схема измерения фиг.3 состоит из последовательно соединенных источника гармонического напряжения фиксированных частот 1 (генератор гармонических колебаний), коммутирующего устройства 2, диагностируемой электрической цепи 3, дополненной последовательно включенным конденсатором, измерительного устройства 4, вход которого соединен с выходом коммутирующего устройства 2, и регистрирующего устройства 5 на базе ЭВМ.

Измерения производятся следующим образом: с помощью коммутирующего устройства 2 диагностируемую электрическую цепь 3 подключают к источнику гармонического напряжения фиксированных частот 1, при этом измерительный модуль 4 в режиме установившихся гармонических колебаний производит измерения мгновенных значений напряжения на конденсаторе, которые передаются на регистрирующее устройство 5, где обрабатываются и хранятся. Результаты измерений амплитудных частотных и фазовых частотных характеристик диагностируемых электрических цепей представлены на фиг.2.

В регистрирующем устройстве 5 обрабатываются мгновенные значения напряжения и вычисляются указанные параметры диагностирования. В таблице 1 приведены численные значения параметров диагностирования для диагностируемой электрической цепи с номинальными значениями параметров и для диагностируемой электрической цепи с дефектом (межвитковое замыкание витков фазы статора). Как показали вычисления, значения указанных параметров диагностирования существенно изменяются при наличии дефекта в диагностируемой электрической цепи. Так, например, отношение максимального значения относительной амплитуды напряжения в диагностируемой электрической цепи с дефектом к максимальному значению относительной амплитуды напряжения в диагностируемой электрической цепи с номинальными значениями параметров A * = A М Д А М Н равно 0,93 (или 93%), а фазовый сдвиг напряжения в электрической цепи, содержащей дефект, соответствующий частоте, при которой достигает максимума относительная амплитуда напряжения в диагностируемой электрической цепи с номинальными значениями параметров φДН), составил -162 градуса.

Таким образом, указанные параметры диагностирования существенно зависят от параметров диагностируемой электрической цепи, что доказывает целесообразность их использования.

Таблица 1 № пп Параметр диагностирования Значение параметра диагностирования 1. АВХ - амплитудное значение входного гармонического напряжения, В 220 2. АМН - максимальное значение относительной амплитуды напряжения в диагностируемой электрической цепи с номинальными значениями параметров 18,8 3. АМД - максимальное значение относительной амплитуды напряжения в диагностируемой электрической цепи с дефектом 17,5 4. A * = A М Д А М Н - отношение максимального значения относительной амплитуды напряжения в диагностируемой электрической цепи с дефектом к максимальному значению относительной амплитуды напряжения в диагностируемой электрической цепи с номинальными значениями параметров 0,93 5. φНД) - фазовый сдвиг напряжения в электрической цепи с номинальными значениями параметров, соответствующий частоте, при которой достигает максимума относительная амплитуда напряжения в диагностируемой электрической цепи с номинальными значениями параметров, град. -90 6. φДН) - фазовый сдвиг напряжения в электрической цепи с дефектом, соответствующий частоте, при которой достигает максимума относительная амплитуда напряжения в диагностируемой электрической цепи с номинальными значениями параметров, град. -162

Похожие патенты RU2511599C2

название год авторы номер документа
СПОСОБ ДИАГНОСТИРОВАНИЯ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ, СОДЕРЖАЩИХ АКТИВНОЕ СОПРОТИВЛЕНИЕ И ИНДУКТИВНОСТЬ 2012
  • Абакумов Александр Михайлович
  • Чеботков Эдуард Галактионович
  • Рандин Дмитрий Геннадьевич
RU2496115C1
СПОСОБ ДИАГНОСТИРОВАНИЯ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ, СОДЕРЖАЩИХ АКТИВНОЕ СОПРОТИВЛЕНИЕ И ИНДУКТИВНОСТЬ 2010
  • Абакумов Александр Михайлович
  • Овсянников Владимир Николаевич
  • Петинов Олег Всеволодович
  • Харымова Евгения Юрьевна
RU2451943C2
Способ диагностирования электрической изоляции в процессе дистанционного компьютерного мониторинга технологического оборудования 2018
  • Костюков Алексей Владимирович
  • Бойченко Сергей Николаевич
  • Бурда Евгений Александрович
  • Жильцов Валерий Васильевич
RU2709604C1
СПОСОБ И УСТРОЙСТВО ДЛЯ ИНТЕЛЛЕКТУАЛЬНОЙ ДИАГНОСТИКИ СБОЕВ АВТОМОБИЛЬНЫХ ДАТЧИКОВ 2004
  • Дианов Вячеслав Николаевич
  • Саркисов Армаис Абрикович
  • Власов Дмитрий Валерьевич
RU2292578C2
СПОСОБ ИЗМЕРЕНИЯ РАСПРЕДЕЛЕННЫХ ПАРАМЕТРОВ ФИЗИКО-МЕХАНИЧЕСКИХ ВЕЛИЧИН 2020
  • Паньков Андрей Анатольевич
RU2733093C1
СПОСОБ ФИЛЬТРАЦИИ ИЗМЕРИТЕЛЬНЫХ СИГНАЛОВ 2003
  • Шевеленко В.Д.
  • Кутузов В.И.
  • Шевеленко Д.В.
  • Квитек Е.В.
RU2251791C2
СПОСОБ ДИАГНОСТИКИ МЕХАНИЗМОВ И СИСТЕМ С ЭЛЕКТРИЧЕСКИМ ПРИВОДОМ 2009
  • Кузеев Искандер Рустемович
  • Баширов Мусса Гумерович
  • Прахов Иван Викторович
  • Баширова Эльмира Муссаевна
  • Самородов Алексей Викторович
RU2431152C2
СПОСОБ ОЦЕНКИ ТЕХНИЧЕСКОГО СОСТОЯНИЯ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ 2003
  • Атрощенко В.А.
  • Шевцов Ю.Д.
  • Лысенко М.П.
  • Кокорев В.В.
  • Василенко Н.В.
  • Дьяченко Р.Л.
RU2259549C1
Способ определения технического состояния электрических и гидравлических приводов 2022
  • Круглова Татьяна Николаевна
RU2799489C1
ИЗМЕРИТЕЛЬНЫЙ ПРЕОБРАЗОВАТЕЛЬ ТОКА ОБРАТНОЙ ПОСЛЕДОВАТЕЛЬНОСТИ 2012
  • Козлова Татьяна Сергеевна
  • Кувшинов Геннадий Евграфович
  • Савина Наталья Викторовна
  • Соловьёв Денис Борисович
RU2510514C1

Иллюстрации к изобретению RU 2 511 599 C2

Реферат патента 2014 года СПОСОБ ДИАГНОСТИРОВАНИЯ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ, СОДЕРЖАЩИХ АКТИВНОЕ СОПРОТИВЛЕНИЕ И ИНДУКТИВНОСТЬ

Изобретение относится к технической диагностике и может быть использовано для диагностирования электрических цепей, содержащих активное сопротивление и индуктивность, в частности обмоток электрических машин и аппаратов. Техническим результатом является повышение чувствительности к изменению параметров диагностирования, что достигается путем использования в качестве параметров диагностирования амплитудно-частотных и фазово-частотных характеристик, обладающих высокой чувствительностью к изменению параметров электрической цепи. Технический результат достигается благодаря тому, что способ диагностирования заключается в том, что в электрическую цепь дополнительно последовательно подключают конденсатор, подают на электрическую цепь гармоническое напряжение фиксированных частот и в режиме установившихся гармонических колебаний измеряют амплитуду и фазовый сдвиг напряжения на конденсаторе относительно подаваемого напряжения, вычисляют отношение амплитуды напряжения на конденсаторе к амплитуде подаваемого напряжения и в качестве диагностируемых параметров принимают значение фазового сдвига и вычисленное значение отношения амплитуд. Анализируя и сравнивая между собой значения измеряемых диагностируемых параметров с номинальными значениями диагностируемых параметров, можно судить о наличии дефектов. 3 ил., 1 табл.

Формула изобретения RU 2 511 599 C2

Способ диагностирования электрических цепей, содержащих активное сопротивление и индуктивность, в частности обмоток электрических машин и аппаратов, путем подачи на электрическую цепь напряжения и сравнения значений измеряемых диагностируемых параметров с номинальными значениями диагностируемых параметров, отличающийся тем, что в электрическую цепь дополнительно последовательно подключают конденсатор, подают на электрическую цепь гармоническое напряжение фиксированных частот, в режиме установившихся гармонических колебаний измеряют амплитуду и фазовый сдвиг напряжения на конденсаторе относительно подаваемого напряжения, вычисляют отношение амплитуды напряжения на конденсаторе к амплитуде подаваемого напряжения и в качестве диагностируемых параметров принимают значение фазового сдвига и вычисленное значение отношения амплитуд, причем значение емкости конденсатора выбирается из условия С 2 ξ 2 L R 2 , где L - индуктивность цепи, R - активное сопротивление цепи, ξ - коэффициент демпфирования (выбирается из диапазона от 0,05 до 0,1).

Документы, цитированные в отчете о поиске Патент 2014 года RU2511599C2

СПОСОБ ДИАГНОСТИРОВАНИЯ АВТОМОБИЛЬНОГО ЭЛЕКТРООБОРУДОВАНИЯ 2006
  • Петинов Юрий Олегович
  • Пьянов Михаил Александрович
RU2314432C2
Устройство для контроля параметров комплексных сопротивлений 1976
  • Голоцуков Владимир Михайлович
  • Дасевич Степан Иванович
  • Добров Евгений Евгеньевич
  • Чорноус Виктор Николаевич
  • Штамбергер Генрих Абрамович
SU664121A1
Способ фазового детектирования 1990
  • Березницкий Леопольд Михайлович
SU1800385A1
WO 2002039642 A3, 16.05.2002
DE 19850990 A1, 18.05.2000

RU 2 511 599 C2

Авторы

Абакумов Александр Михайлович

Овсянников Владимир Николаевич

Петинов Олег Всеволодович

Рандин Дмитрий Геннадьевич

Харымова Евгения Юрьевна

Даты

2014-04-10Публикация

2010-11-30Подача