КОНТЕЙНЕР БИОДАТЧИКА С НАРУШЕННЫМ ПОЛНЫМ ВНУТРЕННИМ ОТРАЖЕНИЕМ Российский патент 2013 года по МПК G01N21/03 

Описание патента на изобретение RU2497100C2

Область техники, к которой относится изобретение

Настоящее изобретение относится к контейнеру для использования в биодатчике с нарушенным полным внутренним отражением (FTIR), а также к способу изготовления такого контейнера.

УРОВЕНЬ ТЕХНИКИ

В настоящее время возрастает спрос на биодатчики. Обычно биодатчики позволяют обнаруживать данную конкретную молекулу внутри анализируемого вещества, в котором количество данных молекул, как правило, мало. Например, можно измерить количество лекарственного препарата или сердечных маркеров в слюне или в крови. Поэтому используются целевые частицы, например, суперпарамагнитные шарики-метки, которые связываются только с конкретным связывающим участком или местом, если обнаруживаемая молекула присутствует в анализируемом веществе. Одним из известных способов обнаружения этих связанных со связывающим участком частиц-меток является FTIR. При этом свет попадает в образец под углом полного внутреннего отражения. Если рядом с поверхностью образца нет никаких частиц, то свет отражается полностью. Если же с упомянутой поверхностью связаны частицы-метки, то условия полного внутреннего отражения нарушаются, часть света рассеивается в образец, и, следовательно, количество отраженного света уменьшается. Измерением оптическим детектором интенсивности отраженного света можно подсчитать количество частиц, связанных с этой поверхностью. Это позволяет подсчитать количество конкретных интересующих молекул, присутствующих в анализируемом веществе или образце.

Поскольку ожидается, что эта техника станет стандартным биочувствительным инструментом, то наблюдается возрастающая потребность в контейнерах, которые могут быть использованы для FTIR. Так как биодатчики на основе иммунореакций должны быть одноразовыми, поскольку биохимический материал внутри контейнера во время эксперимента меняется, то существует, в частности, необходимость в дешевых одноразовых контейнерах для FTIR или для других способов обнаружения.

US 2005/0179901 А1 раскрывает устройство детектора, который содержит вращаемый микрожидкостной диск, а также спектрофотометрический детекторный блок. Устройство базируется на SPR, и способно производить измерения анализируемого вещества с детекторными микровпадинами, каждая из которых представляет собой часть целой структуры микроканалов.

В ЕР0949002 А2 раскрыт способ изготовления аналитического опорного средства с опорным слоем, на который накатан слой "дистанционного держателя".

US4849340 раскрывает элемент и способ для быстрого выполнения анализов жидких образцов. Для забора предопределенного объема жидкого образца в реактивную камеру, заряженную реагентом, в элементе используются капиллярные силы, при этом производится наблюдение за реакцией между жидким образцом и реагентом.

В US6607701 В1 раскрыт способ непрерывного производства одноразовых капиллярных пластмассовых микрокювет, включающий в себя этапы обеспечения первого и второго листа, выполнение по меньшей мере одного углубления, имеющего по меньшей мере на одном из листов предопределенную глубину в предопределенном месте, ввод в по меньшей мере одно углубление по меньшей мере одной примеси или реагента и соединение первого листа и второго листа для получения корпуса, содержащего по меньшей мере одну полость.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Таким образом, задачей настоящего изобретения является создание усовершенствованного контейнера для биодатчиков. Эта задача решается наличием признаков, указанных в независимых пунктах формулы изобретения.

Настоящее изобретение предлагает контейнер для биодатчика, содержащий нижнюю часть с углублением, приспособленным для размещения образца, при этом упомянутое углубление содержит поверхность датчика, и покрывающую часть для закрывания упомянутого углубления, при этом упомянутая нижняя часть приспособлена, для проникновения света вдоль первой оптической траектории для его отражения от поверхности датчика и выхода вдоль второй оптической траектории и при этом покрывающая часть содержит ленту или фольгу. На выбор, между нижней частью и покрывающей частью может быть обеспечен слой адгезива. Было бы предпочтительно, тем не менее, если бы слой адгезива прерывался возле углубления или над ним. Таким образом, предупреждается любое взаимодействие между образцом внутри углубления и адгезивом.

Настоящее изобретение предлагает также способ изготовления контейнера, содержащий этапы, на которых:

a) обеспечивают нижнюю часть из первого материала с углублением, приспособленным для размещения образца;

b) обеспечивают рулон или лист из второго материала;

c) наносят реагент и/или частицы-метки на определенные места на рулоне или листе;

d) разрезают рулон или лист на покрывающие части, при этом каждая покрывающая часть содержит реагент и/или частицы-метки; и

e) прикрепляют покрывающую часть к нижней части таким образом, что реагент и/или частицы-метки оказываются закрытыми в углублении.

Нижняя часть упомянутого контейнера может быть выполнена из пластмассы, предпочтительно, литая. На выбор, между нижней частью и покрывающей частью может быть обеспечен слой адгезива. Было бы предпочтительно, тем не менее, если бы слой адгезива прерывался возле углубления или над ним. Таким образом предупреждается любое взаимодействие между образцом внутри углубления и адгезивом.

В предпочтительном варианте исполнения углубление содержит канал. Углубление может иметь большую ширину и глубину, чем канал, но возможно также, чтобы все углубление состояло из канала. Контейнер дополнительно содержит, по меньшей мере, один проход или отверстие для подачи образца в углубление. Это может быть, например, канавка в нижней части или прорезь в покрывающей части. Возможно также, чтобы канал на одном или на обоих концах был открыт.

В соответствии с предпочтительным вариантом исполнения нижняя часть контейнера содержит выемку для размещения средства для обеспечения магнитного поля, например, катушки. Дополнительно нижняя часть может содержать входную оптическую поверхность и выходную оптическую поверхность на первой и второй оптических траекториях соответственно. Предпочтительно, чтобы эти поверхности были перпендикулярны первой и второй оптическим траекториям.

Дополнительно углубление может содержать реагент или комбинацию из нескольких реагентов и частиц-меток. В предпочтительном варианте исполнения эти реагенты расположены в специальных местах связывания на поверхности датчика. В соответствии с другим вариантом исполнения эти реагенты и/или частицы-метки обеспечены на покрывающей части. Например, они могут быть напечатаны на пленку, образующую покрывающую часть.

Частицы-метки могут быть покрыты молекулами захвата и могут, дополнительно, содержать магнитные частицы. Например, предпочтительно, чтобы частицы-метки были суперпарамагнитными.

Настоящее изобретение, как описано выше, относится также к способу изготовления контейнера. В соответствии с упомянутым способом обеспечивают нижнюю часть из первого материала с углублением, приспособленным для размещения образца. Далее, обеспечивают рулон или лист из второго материала. После этого на определенные места на рулоне или листе наносят реагент и/или частицы-метки и этот рулон или лист разрезают на покрывающие части, при этом каждая покрывающая часть содержит реагент и/или частицы-метки. Наконец, покрывающую часть прикрепляют к нижней части таким образом, что реагент и/или частицы-метки оказываются закрытыми в углублении. На выбор, данный способ содержит этап нанесения слоя адгезива на нижнюю часть и/или рулон или лист из второго материала.

Эти и другие аспекты данного изобретения будут очевидны и понятны с помощью описанных далее вариантов исполнения.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Фиг. 1а условно показывает поперечное сечение контейнера в соответствии с настоящим изобретением.

Фиг. 1b условно показывает вид сверху нижней части контейнера в соответствии с настоящим изобретением.

Фиг. 1с условно показывает вид сверху нижней части другого контейнера в соответствии с настоящим изобретением.

Фиг. 2 условно показывает принцип работы FTIR.

Фиг. 3а условно показывает рулон материала для использования его в качестве покрывающих участков.

Фиг. 3b условно показывает лист материала для использования его в качестве покрывающих участков.

Фиг. 4 условно показывает вид сбоку альтернативной конструкции контейнера.

ПОДРОБНОЕ ОПИСАНИЕ ВАРИАНТОВ ИСПОЛНЕНИЯ

Фиг. 1а условно показывает вид сбоку поперечного сечения контейнера 11 в качестве примера осуществления настоящего изобретения. Контейнер 11 содержит нижнюю часть 1 с углублением 2 и покрывающую часть 3. Углубление 2 приспособлено для заполнения образцом и закрыто или покрыто покрывающей частью 3. Снизу углубление 2 ограничено поверхностью 4 датчика. Свет проникает в нижнюю часть 1 возле оптической входной поверхности 5а вдоль первой оптической траектории 5, отражается от упомянутой поверхности 4 датчика и выходит из нижней части 1 возле оптической выходной поверхности 6а вдоль второй оптической траектории 6. Нижняя часть 1 образует далее выемку 7, которая приспособлена для размещения средства для обеспечения магнитного поля с целью приложения магнитных сил на магнитные частицы-метки 8. Это делается для достижения связывания между реагентом и частицами-метками 8 в процессе так называемой активации. Углубление 2 содержит реагент (не показан) и частицы-метки 8.

Как можно видеть на фиг. 1b, условно показывающей вид сверху нижней части 1 контейнера 11, углубление 2 может дополнительно содержать канал 9. Все углубление 2 может также состоять из канала, как показано на фиг. 1с. На концах канал 9 содержит проход или отверстие 10 для подачи образца в углубление 2. Это может быть, например, канавка в нижней части, как показано не фиг. 1b или 1с, или прорезь в покрывающей части 3.

Заполнение углубления 2, таким образом, может быть достигнуто капиллярными силами: если капля образца касается прохода или отверстия 10, она затягивается в углубление 2, если размеры канала 9 выбраны достаточно малыми. В этом случае, очевидно, необходимо образовать второй канал или отверстие 10, чтобы позволить воздуху выходить из углубления 2. Однако углубление 2 можно также заполнять, прикладывая давление, например, с помощью шприца или подобного инструмента.

Фиг. 2 условно показывает принцип функционирования FTIR в качестве примера способа обнаружения, используемого с контейнером 11. Как только углубление 2 заполняется или снабжается жидким образцом, подлежащим обнаружению в соответствии с вышеприведенным описанием, в раствор диспергируются частицы-метки 8, которые были поставлены в сухом виде. С помощью магнита 13 суперпарамагнитные частицы-метки 8 могут быть ускорены в направлении поверхности 4 датчика, где они могут связываться с поверхностью, если в образце присутствуют конкретные подлежащие обнаружению молекулы. Спустя некоторое время, достаточное для связывания, с помощью магнита 14 можно удалить с упомянутой поверхности частицы-метки 8, которые не связались с поверхностью 4 датчика. После этого этапа "вымывания" поверхность 4 датчика освещается лазером или светодиодом 16. Свет отражается от поверхности 4 датчика и обнаруживается детектором 12, который может быть фотодиодом или ПЗС-камерой. Обычно оптический элемент или детектор 12 в процессе проведения анализа постоянно считывается, описанный выше процесс связывания и весь ход процесса связывания постоянно наблюдается. Но, альтернативно, может быть просто получено изображение до начала анализа и одно изображение после анализа и затем может быть проведено сравнение на предмет выявления разницы. Оптическая траектория 5 входящего света выбирается таким образом, чтобы выполнялось условие полного внутреннего отражения. В этом случае генерируется «рассеянное оптическое поле», которое типично "проникает" в углубление 2 всего лишь на 50-100 нм. Таким образом, только если частицы-метки 8 находятся вблизи поверхности 4 датчика, происходит возмущение "рассеянного оптического поля", что приводит к уменьшению интенсивности отраженного света.

Настоящее изобретение относится также к способу изготовления контейнера 11, как описано ранее. В соответствии с упомянутым способом обеспечивают нижнюю часть 1 из первого материала с углублением 2, приспособленным для размещения образца. Упомянутый первый материал предпочтительно представляет собой пластмассовый материал, например, полистирен, поликарбонат, цикло-олефин-полимер (СОР или ZeonexTM) или ПЭФ (полиэтиленфталат). Нижняя часть 1 может быть литой, то есть, литой под давлением из упомянутого первого материала. Однако могут также использоваться другие методы формования нижней части 1.

Дополнительно обеспечивают рулон 15 или лист 18 из второго материала, как показано на фиг. 3а, где изображен рулон 15, или на фиг. 3b, где изображен лист 18. Упомянутый рулон 15 или лист 18 может содержать фольгу или ленту, например, из полиэстера. Если рулон 15 или лист 18 содержит фольгу, то на нее для того, чтобы она могла прилипнуть к контейнеру 11, может быть нанесен слой адгезива. В некоторых вариантах исполнения упомянутый слой адгезива может покрывать рулон 15 или лист 18 лишь частично.

После этого на определенные места на рулоне 15 или листе 18 наносят реагент и/или частицы-метки 8, и рулон 15 или лист 18 разрезается на покрывающие части 3, при этом каждая покрывающая часть 3 содержит реагент и/или частицы-метки 8. Наконец, покрывающую часть 3 прикрепляют к нижней части 1 контейнера 11 таким образом, что реагент и/или частицы-метки 8 оказываются закрытыми в углублении 2. Если на рулоне 15 или листе 18 нет никакого адгезива, то могут быть использованы другие методы крепления покрывающей части 3 к нижней части 1, например, методы теплового связывания, такие как ультразвуковая сварка или лазерная сварка.

Реагент альтернативно может быть нанесен на поверхность 4 датчика в углублении 2. Это особенно предпочтительно в том случае, когда необходимо обеспечить несколько определенных участков связывания реагента с поверхностью 4 датчика. Кроме того, реагенты на различных участках связывания, могут отличаться друг от друга с тем, чтобы в анализируемом образце обеспечить специальные участки связывания для различных молекул. Эти молекулы могут быть, например, антителами или конъюгированными молекулами анализируемого вещества (например, в случае проверки на ингибирование).

Фиг. 4 условно показывает условное боковое сечение другого примера контейнера 11, подобного показанному на фиг. 1а. Нижняя часть 1 подобна нижней части, показанной на фиг. 1а, например, отлита из пластмассы. Имеется оптическая входная поверхность 5а для входа светового луча вдоль оптической траектории 5 и оптическая выходная поверхность 6а для выхода светового луча вдоль оптической траектории 6. Углубление 2, сформированное в нижней части 1, закрыто покрывающей частью 3 и таким образом встроено, образуя замкнутое пространство. Различие между примером, показанным на фиг. 4, и примером, показанным на фиг. 1а, состоит в том, что поверхность 4 датчика не является, по существу, плоской поверхностью, а имеет шероховатую структуру. Наличие структуры в виде, по меньшей мере, одного клина на поверхности 4 датчика приводит к изменению направления светового луча, падающего на поверхность 4 датчика. Обычно, направление светового луча претерпевает отражение от ниспадающей грани, тем самым большая часть света пропускается этой гранью, причем, свет отражается в сторону противоположной наклонной грани, тем самым ниспадающая грань и наклонная грань поверхности 4 датчика образуют выемку, подобную равным сторонам равнобедренного треугольника. От второй ниспадающей грани свет снова отражается от углубления 2 в направлении оптической выходной поверхности 6а вдоль второй оптической траектории, как показано на фиг. 4. Подлежащий обнаружению образец с реагентами и/или частицами-метками 8 (здесь не показаны) снова размещают на поверхности 4 датчика, по существу между клинообразными гранями. Принцип обнаружения состоит в том, что свет по существу блокирован частицами-метками 8, связанными с молекулами образца. Подсчетом разницы между светом, входящим вдоль первой оптической траектории 5, и светом, выходящим вдоль второй оптической траектории 6, может быть сделано заключение относительно количества молекул в образце.

Важный аспект настоящего изобретения, как описано, состоит в том, что контейнер 11 состоит из нижней части 1, включающей углубление 2 для размещения образца, и одной покрывающей части 3, покрывающей углубление 2 и представляющей собой ленту или фольгу. Такая конструкция делает контейнер 11 дешевым и позволяет использовать его в качестве одноразового элемента в биодатчиках. В этой связи лента определяется как приклеиваемая к одной стороне и выполненная в виде плоского и гибкого элемента из различных обыкновенных материалов. В этой связи фольга определяется как не приклеиваемая и сформированная в виде плоского и гибкого элемента из различных обыкновенных материалов. В последнем случае слой адгезива обеспечен между нижней частью 1 и фольгой. Ленты и фольга прикладываются к нижней части 1 в полосках, которые по краям нижней части 1 обрезаются.

В то время как настоящее изобретение было подробно проиллюстрировано и описано в чертежах и вышеприведенном описании, такую иллюстрацию и описание следует рассматривать как иллюстративные или примерные, но не ограничивающие; это изобретение не ограничено раскрытыми вариантами исполнения настоящего изобретения. К описанным здесь вариантам исполнения специалистами в данной области, которые занимаются практической реализацией заявленного изобретения, после изучения чертежей, описания и приложенных пунктов формулы изобретения могут быть добавлены другие видоизменения. В формуле изобретения слово "содержащий" не исключает другие элементы или этапы, а признаки единственного числа не исключают множественности. Один процессор может выполнять функции нескольких элементов, описанных в формуле изобретения. Простой факт, что некоторые измерения упоминаются во взаимно различных пунктах формулы изобретения, не говорит о том, что комбинация этих измерений не может быть использована для извлечения определенной выгоды. Номера ссылки в формуле изобретения не должны истолковываться как ограничивающие объем настоящего изобретения.

Похожие патенты RU2497100C2

название год авторы номер документа
ОБРАБОТКА ТЕКУЧИХ СРЕД, СОДЕРЖАЩИХ МЕШАЮЩИЕ ЧАСТИЦЫ 2013
  • Эверс Тун Хендрик
  • Ван Лисхаут Рон Мартинус Лаурентиус
  • Ван Зон Йоаннес Баптист Адрианус Дионисиус
RU2644252C2
КАРТРИДЖ ДЛЯ АНАЛИЗОВ С ПОМОЩЬЮ МАГНИТНЫХ ЧАСТИЦ 2009
  • Сийберс Мара Й.Й.
  • Ван Ланквелт Петрус Й.В.
  • Де Тейе Фемке К.
  • Ниевенейс Йерун Х.
RU2505816C2
УСТРОЙСТВО ДАТЧИКА ДЛЯ ЦЕЛЕВЫХ ЧАСТИЦ В ПРОБЕ 2008
  • Версюрен Кун А.
  • Калман Йозефус А.Х.М.
  • Имминк Альберт Х.Й.
  • Мегенс Миса
  • Вен Йерун
  • Де Бур Барт М.
  • Янсен Теодорус П.Х.Г.
RU2476858C2
УСТРОЙСТВО ДЛЯ БЫСТРОГО ДЕТЕКТИРОВАНИЯ ИНФЕКЦИОННЫХ АГЕНТОВ 2012
  • Уилльямс Марвин Р.
  • Макбрэрти Чарльз
  • Пфаутц Дэниел В.
  • Зупанчик Томас Дж.
  • Цзэн Линчунь
  • Уэйман Эндрю
  • Броди Ричард С.
  • Киттл Джозеф
  • Траскотт Энтони
  • Барановски Роберт
RU2600812C2
ПРОТОКОЛ СМЕШАННОГО ВОЗБУЖДЕНИЯ ДЛЯ УСТРОЙСТВА МАГНИТНОГО БИОДАТЧИКА 2009
  • Ван Зон Ханс
  • Овсянко Михайло
RU2491540C2
СИСТЕМА И СПОСОБ ОБНАРУЖЕНИЯ С ПОМОЩЬЮ МАГНИТНОЙ И/ИЛИ ЭЛЕКТРИЧЕСКОЙ МЕТКИ 2007
  • Диттмер Уэнди У.
  • Принс Менно В. Й.
RU2456618C2
МИКРОЭЛЕКТРОННОЕ СЕНСОРНОЕ УСТРОЙСТВО ДЛЯ ОБНАРУЖЕНИЯ ЧАСТИЦ-МЕТОК 2007
  • Версюрен Кун Адрианус
  • Брюльс Доминик Мария
  • Имминк Андрэ Альберт Хендрик Ян
  • Де Тейе Фемке Карина
  • Ван Дер Вейк Теа
  • Ван Дер Ле Александер Марк
  • Схлейпен Йоханнес Йозеф Хьюбертина Барбара
RU2487338C2
БИОСЕНСОР С КВАДРУПОЛЬНОЙ МАГНИТНОЙ СИСТЕМОЙ ВОЗДЕЙСТВИЯ 2009
  • Овсянко Михаил М.
  • Янссен Ксандер Й. А.
  • Де Клерк Бен
RU2519017C2
БЫСТРЫЙ БИОСЕНСОР СО СЛОЕМ РЕАГЕНТА 2007
  • Принс Менно В. Й.
  • Ван Дер Вейк Теа
RU2482495C2
ЗАЩИЩЕННЫЙ ЛИСТ ИЛИ ДОКУМЕНТ, ИМЕЮЩИЙ ОДИН ИЛИ НЕСКОЛЬКО УСИЛЕННЫХ ВОДЯНЫХ ЗНАКОВ 2014
  • Блаке Вильям
  • Бооды Джеффрей
  • Бригхам Краиг М.
  • Каллахан Джеймс
  • Коте Паул Ф.
  • Даррос Михаел
  • Яин Маниш
  • Морк Хамилтон Карин
  • Претт Гилес Д.
RU2680329C9

Иллюстрации к изобретению RU 2 497 100 C2

Реферат патента 2013 года КОНТЕЙНЕР БИОДАТЧИКА С НАРУШЕННЫМ ПОЛНЫМ ВНУТРЕННИМ ОТРАЖЕНИЕМ

Изобретение относится к биодатчику для обнаружения конкретной молекулы внутри анализируемого вещества. Контейнер (11) биодатчика содержит нижнюю часть (1) с углублением (2), приспособленным для размещения жидкого образца, и покрывающую часть (3) для закрывания упомянутого углубления (2). Углубление (2) содержит поверхность (4) датчика. Нижняя часть (1) приспособлена, чтобы допускать проникновение света вдоль первой оптической траектории (5) для его отражения от поверхности (4) датчика и выход вдоль второй оптической траектории (6). Изобретение обеспечивает точность определения количества конкретных молекул в образце. 2 н. и 13 з.п. ф-лы, 4 ил.

Формула изобретения RU 2 497 100 C2

1. Контейнер (11) для биодатчика с нарушенным полным внутренним отражением (FTIR), содержащий нижнюю часть (1) с углублением (2), приспособленным для размещения образца, при этом упомянутое углубление (2) содержит поверхность (4) датчика и покрывающую часть (3) для закрывания упомянутого углубления (2), при этом упомянутая нижняя часть (1) приспособлена для проникновения света вдоль первой оптической траектории (5) для его отражения от поверхности (4) датчика и выхода вдоль второй оптической траектории (6), и при этом покрывающая часть (3) состоит из гибкой ленты или гибкой фольги, и углубление (2) содержит реагент или комбинацию из нескольких реагентов и/или частиц-меток (8), при этом этот реагент или эта комбинация из нескольких реагентов и/или частиц-меток расположена в местах связывания на поверхности (4) датчика.

2. Контейнер (11) по п.1, в котором нижняя часть (1) выполнена из пластмассы и/или нижняя часть (1) литая.

3. Контейнер (11) по п.1, в котором углубление (2) содержит канал (9).

4. Контейнер (11) по п.1, дополнительно содержащий слой адгезива между нижней частью (1) и покрывающей частью (3), которая прерывается возле углубления (2).

5. Контейнер (11) по п.1, в котором частицы-метки (8) покрыты молекулами захвата.

6. Контейнер (11) по п.5, в котором частицы-метки (8) являются магнитными частицами.

7. Контейнер (11) по п.1, дополнительно содержащий, по меньшей мере, один проход или отверстие (10) для подачи образца в углубление (2).

8. Контейнер (11) по п.7, в котором, по меньшей мере, один проход или отверстие (10) представляет собой канавку в нижней части (1).

9. Контейнер (11) по п.7, в котором, по меньшей мере, один проход или отверстие (10) представляет собой прорезь в покрывающей части (3).

10. Контейнер (11) по п.1, в котором нижняя часть (1) содержит выемку (7) для размещения средства (13) для обеспечения магнитного поля.

11. Контейнер (11) по п.1, в котором нижняя часть (1) содержит оптическую входную поверхность (5а) и оптическую выходную поверхность (6а) на первой и второй оптических траекториях (5, 6) соответственно.

12. Контейнер (11) по п.11, в котором поверхности (5а, 6а) перпендикулярны оптическим траекториям (5, 6).

13. Контейнер (11) по п.1, в котором покрывающая часть (3) содержит печатный ярлык с производственной информацией и/или идентификацией.

14. Способ изготовления контейнера (11) по п.1, содержащий этапы, на которых:
a) обеспечивают нижнюю часть (1) из первого материала с углублением (2), приспособленным для размещения образца;
b) обеспечивают рулон (15) или лист (18) из второго материала;
c) наносят реагент и/или частицы-метки (8) на определенные места на рулоне (15) или листе (18);
d) разрезают рулон (15) или лист (18) на покрывающие части (3), при этом каждая покрывающая часть (3) содержит реагент и/или частицы-метки (8); и
e) прикрепляют покрывающую часть (3) к нижней части (1) таким образом, что реагент и/или частицы-метки (8) оказываются закрытыми в углублении (2).

15. Способ по п.14, дополнительно содержащий этап нанесения слоя адгезива на нижнюю часть (1) и/или рулон (15) или лист (18) из второго материала.

Документы, цитированные в отчете о поиске Патент 2013 года RU2497100C2

Способ обработки целлюлозных материалов, с целью тонкого измельчения или переведения в коллоидальный раствор 1923
  • Петров Г.С.
SU2005A1
US 6207000 B1, 27.03.2001
US 4849340 A, 18.07.1989
US 6607701 B1, 19.08.2003
US 6176962 B1, 23.01.2001
БИОЧИП ДЛЯ ФЛУОРЕСЦЕНТНОГО И ЛЮМИНЕСЦЕНТНОГО АНАЛИЗА 2005
  • Зимина Татьяна Михайловна
  • Лучинин Виктор Викторович
RU2280247C1
US 6956651 B2, 18.10.2005
JP 2002372490 A, 26.12.2002.

RU 2 497 100 C2

Авторы

Ниевенейс Йерун Х.

Даты

2013-10-27Публикация

2008-10-24Подача