Изобретение относится к измерительной технике, а именно к области измерения и контроля электрофизических параметров полупроводниковых приборов и может быть использовано для измерения емкости любого двухполюсника.
Емкость полупроводниковых приборов отражает их важнейшие электрофизические характеристики, такие как концентрация легирующих примесей, определение глубоких примесных центров, время жизни неосновных носителей и другие характеристики. Поэтому измерение емкости является одним из самых востребованных методов контроля характеристик полупроводниковых МДП-структур,p-n переходов, диодов Шоттки.
Специфика измерения емкости полупроводниковых приборов состоит в том, что к исследуемому прибору помимо малого тестового сигнала измерения емкости, прикладывается постоянное смещение и протекает постоянный ток. Поэтому измеряемая емкость шунтируется генератором постоянного тока, причем постоянный ток может быть намного больше переменного емкостного тока.
Принцип работы измерителя емкости следующий - на один зажим подается тестовый сигнал переменного тока, со второго зажима снимается и измеряется емкостной ток, далее, зная частоту и амплитуду тестового сигнала, вычисляется емкость. Методы измерения могут быть разные - мостовые, компенсационные.
Известно устройство для измерения емкости полупроводников содержащий генератор переменного тестового напряжения, прикладываемое к измеряемому конденсатору Сх, C-V преобразователь, генерирующий напряжение пропорциональное Сх, ключи, усилитель, преобразователь переменного напряжения в постоянное, аналого-цифровой преобразователь (патент Японии №3044568, приоритет 1991-02-26, МПК G01R 27/26, «Direct-reading precision digital capacity meter»). В устройстве для исключения ошибок, вызванных паразитной емкостью на землю и индуктивностью выводов измеряемого конденсатора, на вход C-V преобразователя включена компенсационная R-C цепочка.
Недостатком известного устройства является то, что оно не обеспечивает измерение емкости полупроводниковых приборов с ошибкой менее 20%, в случаях, когда наряду с емкостью через измеряемый прибор протекает постоянный ток, причем постоянный ток превышает емкостной переменный ток в 103-106 раз.
Известно техническое решение для измерения характеристик полупроводников содержащее синхронный детектор, генератор и усилитель, в котором введены блоки, позволяющие подавать на вторую клемму испытуемого МДП-конденсатора противофазное напряжение постоянной амплитуды и осуществлять аналоговую обработку сигналов в режиме компенсации (патент РФ №2007739, приоритет от 07.12.1989, МПК G01R 31/26 «Устройство для измерения характеристик полупроводников»). Это позволило повысить устойчивость работы контура обратной связи, поддерживающего постоянный ток через измеряемую емкость полупроводника и уменьшить тестовое напряжение на измеряемой емкости.
Недостатком известного технического решения является то, что оно не обеспечивает измерение емкости полупроводниковых приборов с ошибкой менее 20%, в случаях, когда наряду с емкостью через измеряемый прибор протекает постоянный ток, причем постоянный ток превышает емкостной переменный ток в 103-106 раз.
Известно устройство для измерения емкости в котором для повышения стабильности результатов измерения емкости дополнительно включены усилитель с управляемым усилением, компаратор, промежуточный усилитель, детектор и ключ. (патент Украины №78068, приоритет 2007-02-15, МПК G01R 27/26, «Device for measuring capacity»). Дополнительные элементы позволили исключить зависимость выходного сигнала от параметров высокочастотного усилителя и генератора.
Недостатком известного устройства является то, что оно не обеспечивает измерение емкости полупроводниковых приборов с ошибкой менее 20%, в случаях, когда наряду с емкостью через измеряемый прибор протекает постоянный ток, причем постоянный ток превышает емкостной переменный ток в 103-106 раз.
Известно устройство для измерения емкости, содержащее генератор переменного тестового напряжения, прикладываемое к измеряемому конденсатору Сх, C-V преобразователь, генерирующий напряжение пропорциональное Сх, полупроводниковые ключи, периодически подключающие на вход усилителя измеряемый и образцовый сигналы, усилитель, аналого-цифровой преобразователь и дисплей (патент JP №63205573, приоритет 1988-08- 25, МПК G01R 27/26, «Direct-reading accurate digital capacity meter»), выбранное в качестве прототипа. В устройстве для исключения ошибок, вызванных дрейфом элементов измерительных цепей, поочередно измеряется сигнал с выхода C-V преобразователя и напряжение тестового сигнала.
Недостатком известного устройства является то, что оно не обеспечивает измерение емкости полупроводниковых приборов с ошибкой менее 20%, в случаях, когда наряду с емкостью через измеряемый прибор протекает постоянный ток, причем постоянный ток превышает емкостной переменный ток в 103-106 раз.
Такой вариант возникает при измерении емкости полупроводниковых приборов, например диодов Шоттки и МДП-структур, через которые при подаче напряжения смещения может протекать постоянный ток до 1 мА, а емкостной ток имеет диапазон (1-1000) нА. Такое соотношение токов получается при следующих параметрах режима измерения: частота тестового сигнала 1 кГц, амплитуда тестового сигнала 10 мВ, диапазон измеряемых емкостей (10-5000) пФ. Применять для разделения постоянного и переменного токов обычные фильтры не удается, так как для этого надо предварительно линейно преобразовать токи в напряжение (например, с помощью резистора). После этого выделить и измерить переменный емкостной ток на фоне большого постоянного тока с ошибкой менее 20% не удается, т.к. для этого нужен измеритель (аналоге-цифровой преобразователь - АЦП) с динамическим диапазоном более 140 дб. Посколько обычно интерес представляет изменения емкости при подаче внешнего воздействия (например, при измерении вольт-фарадной характеристики полупроводниковых приборов), то минимальная скорость измерения составляет 50 Гц. Такие АЦП автору неизвестны.
Перед авторами ставилась задача разработать устройство, позволяющее измерять емкость полупроводникового прибора при следующих параметрах измерения: частота тестового сигнала измерения емкости 1 кГц, амплитуда тестового сигнала 10 мВ, диапазон измеряемых емкостей 10-5000 пФ, постоянный ток через измеряемый полупроводниковый прибор до 1 мА, минимальная частота измерений 50 Гц.
Измерение емкости малым тестовым сигналом дает наиболее правильную информацию об электрофизических характеристиках полупроводниковых приборов.
При названных условиях постоянный ток превышает емкостной ток в 103-106 раз. Измерять надо очень маленький сигнал переменного тока на фоне большой постоянной составляющей. Выделить переменную составляющую тока обычными фильтрами не удается, так как для этого ток надо предварительно преобразовать в напряжение (например, резистором или усилителем в трансимпедансном включении), после такого преобразования переменная составляющая напряжения на выходе цепи будет в 103-106 раз меньше постоянной составляющей и измерить ее с ошибкой менее 20% не удается. Для этого нужен АЦП с динамическим диапазоном более 140 дБ, такие АЦП автору неизвестны.
Поставленная задача решается тем, что в устройство для измерения емкости полупроводникового прибора, содержащее полупроводниковый прибор, преобразователь емкость-напряжение, первый аналого-цифровой преобразователь дополнительно включен измеритель фазового сдвига, блок вычисления, блок управления, а преобразователь емкость-напряжение выполнен в виде гиратора электрического импеданса выполняющего преобразование емкости в фазовый сдвиг напряжения, первый аналого-цифровой преобразователь расположен в измерителе фазового сдвига, причем измеритель фазового сдвига выполнен содержащим два синхронных детектора, два фильтра нижних частот, первый аналого-цифровой преобразователь, второй аналого-цифровой преобразователь.
Технический эффект заявляемого технического решения заключается в уменьшении погрешности измерения емкости полупроводникового прибора до 2% при частоте тестового сигнала 1 кГц, амплитуде тестового сигнала 10 мВ, диапазоне измеряемых емкостей 10-5000 пФ и постоянном токе через измеряемый полупроводниковый прибор до 1 мА, минимальная частота измерений 50 Гц.
На фиг.1 представлена блок-схема, поясняющая работу заявляемого устройства для измерения емкости полупроводникового прибора, где 1 - полупроводниковый прибор, 2 - гиратор электрического импеданса, 3, 4 - синхронные детекторы, 5, 6 - фильтры нижних частот, 7 - первый аналого-цифровой преобразователь 8 - второй аналого-цифровой преобразователь, 9 - блок вычисления, 10 - блок управления, 11 - измеритель фазового сдвига.
На фиг.2 представлена блок-схема гиратора электрического импеданса, где 12 - резистор, 13 - конденсатор, 14 - резистор, 15 - операционный усилитель.
Заявляемое устройство для измерения емкости полупроводникового прибора работает следующим образом:
Для измерения емкости Сх полупроводникового прибора 1 с блока управления 10 на вход исследуемого полупроводникового прибора 1, подается постоянное напряжение смещения Е и переменное напряжение тестового сигнала измерения емкости с частотой Ft и амплитудой Vt. Протекающий через исследуемый полупроводниковый прибор 1 постоянный и переменный токи поступают на вход гиратора 2 электрического импеданса. Гиратор электрического импеданса - это полупроводниковый эквивалент большой индуктивности, имеющей значение до 1000 Гн и более. Такое значение индуктивности в виде катушки индуктивности физически нереализуемо. Гиратор 2 электрического импеданса содержит резистор 12 и конденсатор 13, соединенные первыми выводами с входом гиратора 2 электрического импеданса, второй вывод резистора 12 соединен с инвертитующим входом и выходом операционного усилителя 15, второй вывод конденсатора 13 соединен с неинвертирующим входом операционного усилителя 15 и первым выводом резистора 14, второй вывод которого соединен с нулевой шиной питания, выход операционного усилителя 15 соединен с выходом гиратора 2 электрического импеданса.
Постоянный ток протекает через резистор 12 на выход операционного усилителя 15, а переменный ток - через последовательно соединенные конденсатор 13 и резистор 14. Эквивалентная индуктивность гиратора 2 электрического импеданса определяется по формуле:
где R12 - сопротивление резистора 12, R14 - сопротивление резистора 14, С13 - емкость конденсатора 13
Элементы гиратора 2 электрического импеданса выбираются таким образом, чтобы его индуктивное сопротивление ωt*L>>14, емкость С13>>Сх и R14>>R12, где ωt=круговая частота тестового сигнала, Сх - измеряемая емкость полупроводникового прибора 1. При выполнении этих условий весь переменный ток протекает по цепи конденсатор 13 - резистор 14, а емкость конденсатора 13 не влияет на фазовый сдвиг выходного сигнала гиратора 2 электрического импеданса. Фазовый сдвиг сигнала на выходе гиратора 2 электрического импеданса относительно фазы тестового сигнала определяется значениями измеряемой емкости Сх полупроводникового прибора 1 и постоянного сопротивления резистора 14. Для вычисления емкости Сх фазовый сдвиг на выходе гиратора 2 электрического импеданса измеряется измерителем 11 фазового сдвига. Измеритель 11 фазового сдвига выполнен содержащим синхронный детектор 3 и синхронный детектор 4, фильтр нижних частот 5 и фильтр нижних частот 6, первый аналого-цифровой преобразователь 7 и второй аналого-цифровой преобразователь 8.
На синхронный детектор 3 с блока управления 10 подается синфазный сигнал тестовой частоты, а на синхронный детектор 4 с блока управления 10 подается квадратурный сигнал (сдвинутый на 90 градусов) тестовой частоты. Выходные сигналы синхронного детектора 3 и синхронного детектора 4 фильтруются фильтром нижних частот 5 и фильтром нижних частот 6 соответственно. Выходные сигналы, поступающие с фильтра нижних частот 5 и фильтра нижних частот 6, преобразовываются в цифру цифровой сигнал первым аналого-цифровым преобразователем 7 и вторым аналого-цифровым преобразователем 8 соответственно. В результате на выходе первого аналого-цифрового преобразователя 7 получаем код реальной Re компоненты комплексного коэффициента передачи измерительной цепи Сх - резистор 14, имеющей нулевой фазовый сдвиг, на выходе второго аналого-цифрового преобразователя 8 получаем код мнимой Im компоненты комплексного коэффициента передачи измерительной цепи Сх - резистор 14, имеющей фазовый сдвиг 90 градусов. Сигналы с выходов первого аналого-цифрового преобразователя 7 и второго аналого-цифрового преобразователя 8 подаются на блок вычисления 9, который вычисляет емкость Сх полупроводникового прибора 1 исходя из следующих соотношений.
Фазовый сдвиг φ цепи Сх - резистор14, как звена фильтра верхних частот, определяется из соотношения:
где ωt - круговая частота тестового сигнала, Сх - измеряемая емкость полупроводникового прибора 1, R14 - сопротивление резистора 14.
Измеренный фазовый сдвиг вычисляется как:
где Im - мнимая, Re - реальная компоненты комплексного коэффициента передачи измерительной цепи Сх - резистор 14
Из (2) и (3) получаем формулу, по которой блок вычисления 9 вычисляет измеряемую емкость Сх полупроводникового прибора 1:
где Re - реальная, Im - мнимая компоненты комплексного коэффициента передачи измерительной цепи Сх - резистор 14, ωt - круговая частота тестового сигнала, R14 - сопротивление резистора 14.
Например, при Re=Im, фазовый сдвиг цепи Сх - резистор 14 равен 45 град. и при R13=1 Мом, Ft=1 КГц, значение Сх из (4) будет 159 пФ.
Выбрав значение С13=1 мкФ, R12=5 кОм, Р14=1 Мом, получаем эквивалентную индуктивность гиратора 2 электрического импеданса L=5000Гн, которая на частоте 1 кГц будет иметь индуктивный импеданс ωt*L=31.4 Мом. Это значение намного больше сопротивления резистора 14 и не будет влиять на работу измерительной цепи Сх - резистор 14. Постоянный ток исследуемого полупроводникового прибора 1 протекает через резистор 12 на выход операционного усилителя 15, выходное сопротивление которого близко к нулю.
Итак, новое устройство позволяет измерять с ошибкой до 2% емкость полупроводникового прибора (и двухполюсников вообще), на низких частотах порядка 1 кГц и постоянном токе через исследуемый полупроводниковый прибор до 1 мА. Наличие постоянного тока параллельно измеряемой емкости характерно для полупроводниковых приборов, поскольку в рабочем режиме на них всегда подается постоянное смещение.
название | год | авторы | номер документа |
---|---|---|---|
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ АКТИВНОЙ И ЕМКОСТНОЙ СОСТАВЛЯЮЩИХ ИМПЕДАНСА БИОЛОГИЧЕСКИХ ТКАНЕЙ | 2000 |
|
RU2196504C2 |
Измеритель параметров комплексных сопротивлений | 1989 |
|
SU1751690A1 |
СПОСОБ ДИАГНОСТИКИ СОСТОЯНИЯ БИОЛОГИЧЕСКОЙ ТКАНИ (ВАРИАНТЫ) И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2003 |
|
RU2251969C2 |
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ИМПЕДАНСА БИОЛОГИЧЕСКИХ ТКАНЕЙ | 2008 |
|
RU2366360C1 |
УСТРОЙСТВО ИЗМЕРЕНИЯ ПРОВОДИМОСТИ И ИМПЕДАНСА ПЛАЗМЫ ТЛЕЮЩЕГО ГАЗОВОГО РАЗРЯДА ПОСТОЯННОГО ТОКА | 2021 |
|
RU2808957C2 |
Устройство для измерения полного сопротивления параметрических датчиков | 2018 |
|
RU2705179C1 |
Способ измерения параметров подстилающей среды и устройство для его осуществления | 2017 |
|
RU2671299C9 |
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ИМПЕДАНСА БИОЛОГИЧЕСКИХ СРЕД | 2011 |
|
RU2462185C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ПОЛНЫХ ВХОДНЫХ СОПРОТИВЛЕНИЙ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2005 |
|
RU2301425C1 |
УСТРОЙСТВО ДЛЯ КОНТРОЛЯ АНИЗОТРОПИИ ЭЛЕКТРИЧЕСКОЙ ПРОВОДИМОСТИ БИОТКАНЕЙ | 2012 |
|
RU2504328C1 |
Изобретение относится к измерительной технике, а именно к области измерения и контроля электрофизических параметров полупроводниковых приборов, и может быть использовано для измерения емкости любого двухполюсника. Технический результат заявляемого изобретения заключается в уменьшении погрешности измерения емкости полупроводникового прибора до 2% при частоте тестового сигнала 1 кГц, амплитуде тестового сигнала 10 мВ и постоянном токе через полупроводниковый прибор до 1 мА. Технический результат достигается благодаря тому, что устройство для измерения емкости полупроводникового прибора содержит полупроводниковый прибор, преобразователь емкость-напряжение, первый аналого-цифровой преобразователь, а также в него дополнительно включены измеритель фазового сдвига, блок вычисления и блок управления, при этом преобразователь емкость-напряжение выполнен в виде гиратора электрического импеданса, выполняющего преобразование емкости в фазовый сдвиг напряжения, и первый аналого-цифровой преобразователь расположен в измерителе фазового сдвига. 1 з.п. ф-лы, 2 ил.
1. Устройство для измерения емкости полупроводникового прибора, содержащее полупроводниковый прибор, преобразователь емкость-напряжение, первый аналого-цифровой преобразователь отличающееся тем, что дополнительно содержит измеритель фазового сдвига, блок вычисления и блок управления, а преобразователь емкость - напряжение выполнен в виде гиратора электрического импеданса, выполняющего преобразование емкости в фазовый сдвиг напряжения, первый аналого-цифровой преобразователь расположен в измерителе фазового сдвига.
2. Устройство по п.1, отличающееся тем, что измеритель фазового сдвига выполнен содержащим два синхронных детектора, два фильтра нижних частот, первый аналого-цифровой преобразователь, второй аналого-цифровой преобразователь.
JP 0063205573 A, 25.08.1988 | |||
Устройство для измерения емкости полупроводниковых приборов | 1977 |
|
SU699455A1 |
СПОСОБ ИЗМЕРЕНИЯ ПАРАМЕТРОВ ТРЕХЭЛЕМЕНТНЫХ ДВУХПОЛЮСНИКОВ ЧАСТОТНО-НЕЗАВИСИМЫМИ МОСТАМИ ПЕРЕМЕННОГО ТОКА | 1998 |
|
RU2144196C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ХАРАКТЕРИСТИК НЕЛИНЕЙНЫХ УСТРОЙСТВ | 2004 |
|
RU2265859C1 |
US 7327148 B2, 05.02.2008. |
Авторы
Даты
2013-11-10—Публикация
2012-03-21—Подача