СТЕКЛОКРИСТАЛЛИЧЕСКИЙ МАТЕРИАЛ ДЛЯ СВЧ-ТЕХНИКИ Российский патент 2013 года по МПК C03C10/00 

Описание патента на изобретение RU2498953C1

Изобретение относится к области стеклокерамики, в частности к высокотемпературным радиопрозрачным стеклокристаллическим материалам (ситаллам) для СВЧ-техники, предназначенным для изготовления средств радиосопровождения в авиационно-космической и ракетной технике.

Из литературных данных известно, что для изготовления стеклокристаллического материала готовят шихту определенного химического и гранулометрического состава. Дисперсность входящих в шихту компонентов лежит в пределах 0,7-1,2 мм (Павлушкин Н.М. «Химическая технология стекла и ситаллов» М. «Стройиздат», 1983, стр.94).

Известно стекло для стеклокристаллического материала (Бережной А.И. «Ситаллы и фотоситаллы» издательство «Машиностроение», 1966 г., стр.163-166), включающие следующие компоненты, масс.%: SiO2 - 56,0; Al2O3 - 20,0; ТiO2 - 9,0; MgO -15,0. Данный материал обладает высоким значением предела прочности при центральном симметричном изгибе (21,84 кгс/мм2).

Недостатком данного материала является низкое значение диэлектрической проницаемости (≈5) и высокое значение коэффициента линейного теплового расширения (КЛТР)=56,0·10-7 К-1.

Известно стекло для стеклокристаллического материала (патент США №4304603, МПК С03С 10/04, публикация 1981 г.), содержащий следующие компоненты, масс.%: SiO2 - 48,0-53,0; Аl2O3 - 21,0-25,0; TiO2 -9,5-11,5; MgO - 15,0-18,0; As2O3 - 0-1,0.

Этот материал характеризуется низким значением тангенса угла диэлектрических потерь, но температура варки этих стекол около Т=1600°C, что затрудняет получение качественного стекла.

Наиболее близким к предлагаемому изобретению по химическому составу является стеклокристаллический материал (патент РФ №2393124, МПК С03С 10/04, публикация.2010 г.) следующего состава: SiO2 - 35,5-38,5; Аl2O3 - 22,8-25,5; ТiO2 - 16,2-18,8; MgO - 20-22,7.

Недостатком данного материала является высокий КЛТР, равный (45-60)·10-7 К-1 и низкое значение предела прочности при центральном симметричном изгибе (4-7 кгс/мм2).

Целью предлагаемого изобретения является снижение термического коэффициента линейного расширения стеклокристаллического материала, стабилизация диэлектрической проницаемости и тангенса угла диэлектрических потерь, повышение предела прочности материала при центрально-симметричном изгибе.

Это достигается тем, что стеклокристаллический материал, включающий SiO2, Аl2O3, ТiO2, MgO, дополнительно содержит SiO2 в виде плакированного ТiO2 аэросила, при следующем соотношении компонентов, масс.%: SiO2 - 35,5-38,3; SiO2, в виде плакированного ТiO2 аэросила - 0,1; Аl2O3 - 22,8-25,5; ТiO2 - 16,1-18,8; MgO - 20,0-22,8.

Авторами экспериментально установлено, что сочетание предложенных компонентов в заявленном количественном соотношении дает возможность получать стеклокристаллический материал с низким значением КЛТР, высоким пределом прочности на изгиб, а также позволяет поддерживать диэлектрическую проницаемость и тангенс угла диэлектрических потерь в необходимом диапазоне значений.

Установлено, что именно введение SiO2 в количестве 0,1 масс.% в виде плакированного ТiO2 аэросила, позволяет получить стеклокристаллический материал с тонкодисперсной структурой. Это происходит за счет максимально равномерного распределения ТiO2 по объему расплава, при этом температура варки стекла составляет: 1540±10°C, температура выработки заготовок: 1485±25°C, температура термообработки заготовок: 1205±35°C. Скорость нагрева заготовок до температуры термообработки составляет: 1,2-5°C/мин, выдержка при температуре термообработки 3-8 часов, скорость охлаждение заготовок до комнатной температуры: 1,3-3,3°C/мин.

Сырьевые материалы, применяемые для варки стекла должны соответствовать следующим условиям: содержание СaО≤0,2 масс.%, (Na2O+K2O+Li2O)≤0,20 масс.%, Fe2O3≤0,2 масс.%. Аэросил, марки «А-175», с размером частиц SiO2=15-30 нм., имеющий удельную поверхность 175±25 м2/г, с содержанием Fe2O3≤0,003 масс.%., производства Калушского ОЭН НАН Украины, ТУ У24.6-05540209-003-2003, плакированный вакуумно-дуговым способом пленкой ТiO2, толщиной 5-20 нм.

В таблице 1 приведены примеры конкретного выполнения составов стеклокристаллического материала масс.%:

Таблица 1 Наименование компонента Номер стекла 1 2 3 SiO2, масс.% 35,5 36,9 38,3 Al2O3, масс.% 22,8 24,3 25,5 MgO, масс.% 22,8 21,2 20,0 TiO2, масс.% 18,8 17,5 16,1 SiO2, аэросил, плакированный TiO2, масс.% 0,1 0,1 0,1

Сочетание приведенного состава и выбранного режима термообработки заготовок при Т=1205±35°C позволило снизить КЛТР и повысить предел прочности на изгиб. При этом удалось добиться стабильных значений диэлектрической проницаемости и тангенса угла диэлектрических потерь за счет равномерной тонкодисперсной структуры получаемого стеклокристаллического материала.

В таблице 2 приведены свойства синтезированных стеклокристаллических материалов.

Таблица 2 Наименование показателя Обозначение и единицы измерения 1 2 3 Прототип (материал по патенту РФ №2393124) 1 2 3 4 5 6 Диэлектрическая проницаемость при 1010 Гц ε 7,4 7,25 7,15 7-7,5 Тангенс угла диэлектрических потерь при 1010 Гц tgα·104 3 2 1,9 ≤3 Коэффициент теплового линейного расширения (КЛТР) при 20-300°С α·107, K-1 38 36 40 55-70 Предел прочности при изгибе σи, кгс/мм 11,5 11,0 10,0 4-7

Из приведенных в таблице 2 данных видно, что предлагаемый состав стеклокристаллического материала позволяет значительно снизить температурный коэффициент линейного расширения, повысить предел прочности на изгиб, а также добиться стабилизации диэлектрической проницаемости получаемого стеклокристаллического материала при невысоких значениях тангенса угла диэлектрических потерь.

Похожие патенты RU2498953C1

название год авторы номер документа
СТЕКЛОКРИСТАЛЛИЧЕСКИЙ МАТЕРИАЛ ДЛЯ СВЧ-ТЕХНИКИ 2015
  • Ашурбейли Руслан Игоревич
  • Быховцева Надежда Семеновна
RU2577563C1
СТЕКЛОКРИСТАЛЛИЧЕСКИЙ МАТЕРИАЛ ДЛЯ СВЧ-ТЕХНИКИ 2009
  • Ашурбейли Игорь Рауфович
  • Быховцева Надежда Семёновна
  • Мороз Александр Иванович
  • Никулин Виктор Христофорович
  • Орешин Вячеслав Николаевич
  • Рыжик Яков Лазаревич
RU2393124C1
РАДИОПРОЗРАЧНЫЙ СТЕКЛОКРИСТАЛЛИЧЕСКИЙ МАТЕРИАЛ ДЛЯ АВИАЦИОННОЙ ТЕХНИКИ 2010
  • Саркисов Павел Джибраелович
  • Орлова Людмила Алексеевна
  • Попович Наталья Васильевна
  • Михайленко Наталья Юрьевна
  • Уварова Наталья Евгеньевна
RU2440936C1
СТЕКЛОКРИСТАЛЛИЧЕСКИЙ МАТЕРИАЛ 2008
  • Алексеева Людмила Александровна
  • Келина Роза Петровна
  • Самсонов Вячеслав Иванович
RU2374190C1
Стеклокристаллический материал с высоким модулем упругости и способ его получения 2017
  • Жилин Александр Александрович
  • Дымшиц Ольга Сергеевна
  • Хубецов Александр Андреевич
RU2660672C1
СТЕКЛОКРИСТАЛЛИЧЕСКИЙ МАТЕРИАЛ 2015
  • Воропаева Марина Владимировна
  • Алексеева Людмила Александровна
  • Орлова Людмила Алексеевна
  • Строганова Елена Евгеньевна
  • Северенков Иван Александрович
RU2597905C1
СТЕКЛО ДЛЯ СТЕКЛОКРИСТАЛЛИЧЕСКОГО ДИЭЛЕКТРИКА ДЛЯ СТРУКТУР КРЕМНИЙ-НА-ИЗОЛЯТОРЕ 1995
  • Кошелев Н.И.
  • Ермолаева А.И.
  • Петрова В.З.
RU2083515C1
ЗАЩИТНОЕ СТЕКЛОКРИСТАЛЛИЧЕСКОЕ ПОКРЫТИЕ ДЛЯ СТАЛИ 2010
  • Красникова Оксана Сергеевна
  • Яценко Елена Альфредовна
  • Смолий Виктория Александровна
  • Рябова Анна Владимировна
  • Косарев Андрей Александрович
  • Грушко Ирина Сергеевна
  • Копица Вадим Валерьевич
RU2453512C1
ВЫСОКОПРОЧНЫЙ СИТАЛЛ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2000
  • Халилев В.Д.
  • Андроханов А.А.
  • Меркулов Ю.Ю.
  • Королева М.В.
RU2169712C1
Низкотемпературный стеклокерамический материал и способ его изготовления 2018
  • Челноков Евгений Иванович
RU2712840C1

Реферат патента 2013 года СТЕКЛОКРИСТАЛЛИЧЕСКИЙ МАТЕРИАЛ ДЛЯ СВЧ-ТЕХНИКИ

Изобретение относится к области стеклокерамики, в частности к высокотемпературным радиопрозрачным стеклокристаллическим материалам (ситаллам) для СВЧ-техники, предназначенным для изготовления средств радиосопровождения в авиационно-космической и ракетной технике. Техническим результатом изобретения является снижение термического коэффициента линейного расширения, стабилизация диэлектрической проницаемости и тангенса угла диэлектрических потерь, повышение предела прочности при центрально-симметричном изгибе. Стеклокристаллический материал для СВЧ-техники включает SiO2, Al2O3, TiO2, MgO и SiO2 в виде плакированного TiO2 аэросила, при следующем соотношении компонентов, мас.%: SiO2 - 35,5-38,3; SiO2 в виде плакированного TiO2 аэросила - 0,1; Al2O3 - 22,8-25,5; TiO2 - 16,1-18,8; MgO - 20,0-22,8. 2 табл.

Формула изобретения RU 2 498 953 C1

Стеклокристаллический материал для СВЧ-техники, включающий SiO2, Al2O3, TiO2, MgO, отличающийся тем, что в состав дополнительно вводят SiO2 в виде плакированного TiO2 аэросила, при следующем соотношении компонентов, мас.%:
SiO2 35,5-38,3 SiO2 в виде плакированного TiO2 аэросила 0,1 Al2O3 22,8-25,5 TiO2 16,1-18,8 MgO 20,0-22,8

Документы, цитированные в отчете о поиске Патент 2013 года RU2498953C1

СТЕКЛОКРИСТАЛЛИЧЕСКИЙ МАТЕРИАЛ ДЛЯ СВЧ-ТЕХНИКИ 2009
  • Ашурбейли Игорь Рауфович
  • Быховцева Надежда Семёновна
  • Мороз Александр Иванович
  • Никулин Виктор Христофорович
  • Орешин Вячеслав Николаевич
  • Рыжик Яков Лазаревич
RU2393124C1
RU 2006144190 A, 20.06.2008
CN 101148323 A, 26.03.2008
US 7300896 B2, 27.11.2007
Способ регенерации неподвижного слоя катализатора дегидрирования углеводородов 1977
  • Абаев Генрих Николаевич
  • Кузнецов Юрий Иванович
  • Румянцев Владимир Геннадьевич
  • Слинько Михаил Гаврилович
  • Островский Николай Михайлович
SU710627A1

RU 2 498 953 C1

Авторы

Гавриленко Игорь Борисович

Ерузин Александр Анатольевич

Газов Борис Константинович

Ларионова Василина Николаевна

Даты

2013-11-20Публикация

2012-04-11Подача