СИНХРОННЫЙ ЭЛЕКТРОДВИГАТЕЛЬ Российский патент 2013 года по МПК H02K16/04 H02K21/26 H02K19/06 

Описание патента на изобретение RU2499343C1

Изобретение относится к электротехнике, а именно к синхронным электродвигателям с реактивным ротором, и может быть применено в электромеханических системах.

Известен синхронный электродвигатель, имеющий шихтованный магнитопровод статора с многофазной обмоткой и реактивный ферромагнитный ротор. Обмотка статора получает питание от инвертора частоты, вырабатывающего систему напряжений согласно требуемой скорости вращения (Г.Б. Онищенко «Электрический привод: учебник для студ. высш. учеб. заведений». 2-е изд., стер. - М.: Издательский центр «Академия», 2008. - 288 с.) - [1].

Его недостатком является сложность схемы питания и большой момент инерции ротора.

Наиболее близким к заявляемому техническому решению по конструкции и достигаемому эффекту является синхронный индукторный электродвигатель, имеющий шихтованный магнитопровод статора с многофазной обмоткой и реактивный ферромагнитный ротор с явно выраженными полюсами (Виноградов А.Б. Векторное управление электроприводами переменного тока / ГОУВПО «Ивановский государственный энергетический университет имени В.И. Ленина». - Иванове, 2008. - 298 с.) - [2].

Его недостатком являются низкие энергетические показатели, связанные с тем, что единственным источником магнитного поля является обмотка, в которой выделяется мощность электрических потерь.

Технический результат, на достижение которого направлено заявленное изобретение, заключается в повышении энергетических показателей синхронного электродвигателя и его динамических характеристик.

Технический результат достигается тем, что в синхронный электродвигатель, содержащий статор с шихтованным зубчатым магнитопроводом и многофазной обмоткой, реактивный ферромагнитный ротор с явно выраженными зубцами, введен внутренний магнитопровод статора с постоянными магнитами, расположенными напротив зубцов статора и имеющими чередующуюся полярность, а ротор выполнен в виде полого цилиндра с чередующимися ферромагнитными зубцами и немагнитными элементами.

Сущность технического решения поясняется чертежами, где

Фиг.1 - поперечное сечение электродвигателя;

Фиг.2 - продольное сечение электродвигателя;

Фиг.3 - графики магнитной индукции в рабочем зазоре.

На фиг.1-2 обозначено:

1 - корпус;

2 - магнитопровод статора;

3 - зубцы статора;

4 - обмотка статора;

5 - ротор с зубцами;

6 - постоянные магниты;

7 - внутренний магнитопровод статора;

8 - вал;

9 - немагнитный диск;

10 - немагнитная втулка.

Магнитопровод статора 2 с зубцами 3 выполнен из шихтованной электротехнической стали. Он закреплен на корпусе 1 и имеет трехфазную обмотку 4.

Ротор 5 выполнен в виде полого цилиндра и имеет ферромагнитные зубцы. С помощью немагнитного диска 9 ротор закреплен на валу 8. Внутренний магнитопровод 7 выполнен в виде полого цилиндра из шихтованной электротехнической стали. Он закреплен на корпусе 1 с помощью немагнитной втулки 10 и имеет на наружной поверхности постоянные магниты 6, намагниченные радиально и имеющие чередующуюся полярность.

Фазы обмотки статора A, B и C соединены в звезду без нейтрального провода и питаются от источника постоянного напряжения через импульсный полупроводниковый инвертор, выполненный по мостовой схеме с шестью силовыми ключами.

Синхронный электродвигатель работает следующим образом.

На фиг.1 показано положение ротора, когда к зажиму фазы A подведено напряжение U, а зажимы фаз B и C подключены к нулевому потенциалу. Через фазу A течет ток, в два раза превышающий токи фаз B и C. При этом фаза A оказывается включенной согласно с постоянным магнитом напротив нее, т.е. их магнитные потоки складываются. В то же время токи фаз B и C, создают магнитные потоки, направленные против потоков соответствующих постоянных магнитов. Они ослабляют друг друга. Поэтому ротор занимает положение, при котором его зубцы замыкают большие магнитные потоки фазы A.

Через треть периода напряжение U подводится к зажиму фазы B, а зажимы фаз A и C подключены к нулевому потенциалу. Через фазу B течет ток, в два раза превышающий токи фаз A и C. При этом фаза B оказывается включенной согласно с постоянным магнитом напротив нее, т.е. их магнитные потоки складываются. В то же время токи фаз A и C создают магнитные потоки, направленные против потоков соответствующих постоянных магнитов. Они ослабляют друг друга. Поэтому ротор поворачивается в положение, при котором его зубцы замыкают большие магнитные потоки фазы B, и т.д.

Для рассмотрения эффективности применения постоянных магнитов примем, что постоянный магнит создает магнитодвижущую силу Fм=700 А, фаза A имеет МДС FА=1000 А, а фазы B и C - МДС FВ=FС=500 А.

В зазорах на оси фазы A действует МДС

FАΣ=FА+Fм=1700 А.

В зазорах на осях фаз B, C действуют МДС

FВΣ=FВ+Fм=200 А;

FСΣ=FС+Fм=200 A.

Электромагнитный момент определяется формулой

М = F А Σ 2 2 d Λ А d α + F В Σ 2 2 d Λ В d α + F С Σ 2 2 d Λ С d α ,

где ΛА, ΛВ, ΛС - магнитные проводимости по соответствующим осям.

Квадраты МДС имеют значения:

F А Σ 2 = 2.890.000  А 2 ; F В Σ 2 = 40.000  А 2 ; F С Σ 2 = 40.000  А 2 .

В предположении, что зубцы фаз В и С действуют в обратном направлении, получаем:

F А Σ 2 F В Σ 2 F С Σ 2 = 2.810.000  А 2 .

Для индукторного двигателя без постоянных магнитов, с той же обмоткой на статоре и мощностью потерь в ней имеем:

F А Σ 2 = 1.500.000  А 2 ; F В Σ 2 = 0  А 2 ; F С Σ 2 = 0  А 2 .

Отношение моментов составляет 1,873, т.е. введение постоянных магнитов увеличило момент на 87,3%.

На фиг.3 показаны графики МДС, созданной постоянными магнитами (фиг.3, а), обмоткой статора (фиг.3, б) и результирующей МДС (фиг.3, в).

Ротор представляет собой тонкостенный полый цилиндр с ферромагнитными зубцами и имеет малый момент инерции. Поэтому электродвигатель допускает большие угловые ускорения.

Благодаря введению внутреннего магнитопровода статора с постоянными магнитами, расположенными напротив зубцов статора и имеющими чередующуюся полярность, получен синхронный электродвигатель с повышенными энергетическими показателями и динамическими характеристиками.

Похожие патенты RU2499343C1

название год авторы номер документа
СИНХРОННЫЙ ЭЛЕКТРОДВИГАТЕЛЬ С МАГНИТНОЙ РЕДУКЦИЕЙ 2008
  • Афанасьев Анатолий Юрьевич
  • Давыдов Николай Владимирович
RU2375806C1
Синхронный электродвигатель с магнитной редукцией 2017
  • Афанасьев Анатолий Юрьевич
  • Макаров Валерий Геннадьевич
  • Березов Николай Алексеевич
  • Газизов Ильдар Фависович
RU2668817C1
СИНХРОННЫЙ ЭЛЕКТРОДВИГАТЕЛЬ С МАГНИТНОЙ РЕДУКЦИЕЙ 2013
  • Афанасьев Анатолий Юрьевич
  • Завгороднев Максим Юрьевич
  • Ефремов Дмитрий Олегович
RU2544835C1
МОТОР-КОЛЕСО 2017
  • Афанасьев Анатолий Юрьевич
  • Макаров Алексей Витальевич
  • Березов Николай Алексеевич
  • Газизов Ильдар Фависович
RU2673587C1
Синхронный электродвигатель с магнитной редукцией 2018
  • Афанасьев Анатолий Юрьевич
  • Березов Николай Алексеевич
  • Килиманов Константин Алексеевич
  • Макаров Валерий Геннадьевич
RU2704491C1
Мотор-колесо для самолета 2018
  • Афанасьев Анатолий Юрьевич
  • Каримов Артур Рафаэлевич
  • Студнева Евгения Евгеньевна
RU2703704C1
Синхронный электродвигатель 2021
  • Афанасьев Анатолий Юрьевич
  • Макаров Валерий Геннадьевич
  • Петров Алексей Андреевич
  • Игнаев Станислав Владимирович
RU2757459C1
ТОРЦЕВАЯ ЭЛЕКТРИЧЕСКАЯ МАШИНА (ВАРИАНТЫ) 2013
  • Захаренко Андрей Борисович
  • Мартынова Светлана Андреевна
RU2541427C1
СИНХРОННЫЙ ЭЛЕКТРОДВИГАТЕЛЬ 2013
  • Афанасьев Анатолий Юрьевич
  • Завгороднев Максим Юрьевич
  • Милосердов Василий Федорович
RU2545167C1
ЛИНЕЙНЫЙ ШАГОВЫЙ ЭЛЕКТРОДВИГАТЕЛЬ 2008
  • Афанасьев Анатолий Юрьевич
  • Давыдов Николай Владимирович
  • Герасименко Вадим Терентьевич
RU2366066C1

Иллюстрации к изобретению RU 2 499 343 C1

Реферат патента 2013 года СИНХРОННЫЙ ЭЛЕКТРОДВИГАТЕЛЬ

Изобретение относится к области электротехники, а именно к синхронным электродвигателям с реактивным ротором, и может быть применено в электромеханических системах. Предлагаемый синхронный электродвигатель содержит магнитопровод статора (2) с зубцами (3), выполненный из шихтованной электротехнической стали и опирающийся на корпус (1) и имеющей трехфазную обмотку (4). Ротор (5) выполнен в виде полого цилиндра и имеет ферромагнитные зубцы. С помощью немагнитного диска (9) ротор закреплен на валу (8). Внутренний магнитопровод (7) статора (2) выполнен в виде полого цилиндра из шихтованной электротехнической стали, который закреплен на корпусе (1) с помощью немагнитной втулки (10) и имеет на наружной поверхности радиально намагниченные постоянные магниты (6), расположенные напротив зубцов (3) статора (2) и имеющие чередующуюся полярность. Благодаря выполнению ротора (5) в виде полого цилиндра и введению дополнительного магнитопровода (7) статора с постоянными магнитами (6), расположенными напротив зубцов (3) статора, при использовании настоящего изобретения достигается технический результат, заключающийся в повышении энергетических показателей синхронного электродвигателя и его динамических характеристик. 3 ил.

Формула изобретения RU 2 499 343 C1

Синхронный электродвигатель, содержащий статор с шихтованным зубчатым магнитопроводом и многофазной обмоткой, реактивный ферромагнитный ротор с явно выраженными зубцами, отличающийся тем, что введен внутренний магнитопровод статора с постоянными магнитами, расположенными напротив зубцов статора и имеющими чередующуюся полярность, а ротор выполнен в виде полого цилиндра с чередующимися ферромагнитными зубцами и немагнитными элементами.

Документы, цитированные в отчете о поиске Патент 2013 года RU2499343C1

Приспособление к автоматическим двухчелночным ткацким станкам для смены челночных коробок 1950
  • Ким А.Х.
  • Липшиц Н.В.
  • Маркин В.Ф.
SU95195A1
ЭЛЕКТРОДВИГАТЕЛЬ 2003
  • Шкондин В.В.
RU2248657C1
ПРИВОДНОЕ УСТРОЙСТВО 1998
  • Шкондин В.В.
RU2129965C1
ВЕНТИЛЬНЫЙ ЭЛЕКТРОДВИГАТЕЛЬ С ПОСТОЯННЫМИ МАГНИТАМИ 2008
  • Сеньков Алексей Петрович
  • Михайлов Валерий Михайлович
  • Шишова Ольга Юрьевна
RU2375807C1
Пресс для выдавливания из деревянных дисков заготовок для ниточных катушек 1923
  • Григорьев П.Н.
SU2007A1
Высоковольтный автогазовый выключатель 1972
  • Збарский Борис Абрамович
SU463168A1
US 3729642 A, 24.04.1973.

RU 2 499 343 C1

Авторы

Афанасьев Анатолий Юрьевич

Давыдов Николай Владимирович

Кривошеев Сергей Валентинович

Завгороднев Максим Юрьевич

Даты

2013-11-20Публикация

2012-04-16Подача