Изобретение относится к электротехнике, а именно к синхронным электродвигателям с реактивным ротором, и может быть применено в электромеханических системах с большими скоростями вращения, например в компрессоростроении.
Известен синхронный электродвигатель, имеющий шихтованный магнитопровод статора с многофазной обмоткой и реактивный ферромагнитный ротор. Обмотка статора получает питание от инвертора частоты, вырабатывающего систему напряжений согласно требуемой скорости вращения (Г.Б. Онищенко. «Электрический привод: учебник для студ. высш. учеб. заведений». 2-е изд., стер. - М.: Издательский центр «Академия», 2008. - 288 с.) - [1].
Его недостатком является сложность схемы питания.
Наиболее близким к заявляемому техническому решению по конструкции и достигаемому эффекту является синхронный электродвигатель, имеющий П-образные магнитопроводы статора с сосредоточенной многофазной обмоткой и реактивный ферромагнитный ротор с явно выраженными полюсами (патент №2159494, H02K 19/06, H02K 1/06, опубл. 20.11.2000) - [2].
Его недостатком является низкая скорость вращения. Например, при частоте питания 50 Гц, трех П-образных магнитопроводах статора и двух полюсах на роторе скорость вращения ротора составляет 1500 об/мин.
Технический результат, на достижение которого направлено заявленное изобретение, заключается в получении повышенной скорости вращения ротора электродвигателя при питании от многофазной сети.
Технический результат достигается тем, что синхронный электродвигатель, имеющий П-образные шихтованные магнитопроводы статора с многофазной сосредоточенной обмоткой, ферромагнитный ротор, имеет напряжения питания фаз обмоток сдвинутых по фазе на угол, меньший пространственного сдвига П-образных магнитопроводов, а ротор содержит два зубца, смещенных по оси и имеющих одинаковое угловое положение.
Сущность технического решения поясняется фиг.1-10, где
Фиг.1 - поперечное сечение электродвигателя;
Фиг.2 - продольное сечение электродвигателя;
Фиг.3 - фиг.9 - графики магнитной индукции в рабочем зазоре в различные моменты времени, соответствующие изменению фаз напряжений питания на угол π/6 и положению ротора через угол π/3;
Фиг.10 - векторная диаграмма фазных напряжений 6-фазного синхронного электродвигателя при питании от трехфазной сети.
На фиг.1-2 обозначено:
1 - П-образный магнитопровод статора;
2 - обмотка статора;
3 - кольца статора;
4 - ротор;
5 - вал.
П-образные элементы 1 магнитопровода статора выполнены шихтованными из электротехнической стали и объединены в единую конструкцию с помощью двух колец 3, выполненных из немагнитного материала. На каждом П-образном магнитопроводе 1 имеется фаза 2 обмотки статора. Ротор 4 выполнен из ферромагнитного материала. Он имеет форму цилиндра с двумя зубцами, смещенными по оси и имеющими одинаковое угловое положение.
Синхронный электродвигатель работает следующим образом.
На шесть фаз обмотки статора подаются переменные напряжения, сдвинутые по фазе на угол π/6. В рабочих воздушных зазорах возникает волна магнитной индукции, соответствующая углу π. За время, соответствующее половине периода синусоидального напряжения, волна магнитной индукции поворачивается на угол 2π.
На фиг.3 показан график магнитной индукции, соответствующий положительной волне. При этом ротор в отсутствии момента нагрузки занимает положение, при котором его магнитный поток максимален. Здесь угол поворота ротора α=π.
На фиг.4 показан график магнитной индукции, соответствующий изменению фазы напряжений на угол π/6. При этом ротор в отсутствии момента нагрузки занимает положение, при котором его магнитный поток максимален, т.е. α=4π/3. Изменение положения ротора на угол π/3 соответствует угловому смещению П-образных магнитопроводов разных фаз на этот угол.
На фиг.5 показан график магнитной индукции, соответствующий изменению фазы напряжений еще на угол π/6. При этом ротор в отсутствии момента нагрузки занимает положение, при котором его магнитный поток максимален, т.е. α=5π/3, и т.д.
На фиг.9 показан график магнитной индукции, соответствующий изменению фазы напряжений питания по сравнению с фиг.3 на угол π. Однако ротор повернулся относительно фиг.3 на угол 2π. Следовательно, за полный период напряжений питания ротор сделает два оборота.
Например, при частоте питания 50 Гц скорость вращения ротора составит 6000 об/мин, т.е. в четыре раза больше, чем у прототипа.
На фиг.10 показана векторная диаграмма фазных напряжений в случае, когда 1-я, 3-я и 5-я фазы питаются фазными напряжениями, а 2-я, 4-я и 6-я фазы питаются линейными напряжениями при соединении обмотки генератора в звезду с нейтральным проводом. Отметим, что в этом случае число витков четных фаз должно быть в
Для статической балансировки ротора центр его масс должен быть на оси вращения, для чего может быть применен балансный элемент - груз (на фиг.1-2 не показан).
Отметим, что П-образные магнитопроводы 1 статора могут выполняться витыми. Каждый П-образный магнитопровод вместе со своей фазой может собираться и транспортироваться отдельно, и лишь на месте эксплуатации все П-образные магнитопроводы 1 с фазами 2 обмотки статора объединяются в единую конструкцию с помощью колец 4, что важно при больших мощностях электродвигателей.
Таким образом, благодаря тому, что магнитопровод статора выполнен в виде П-образных магнитопроводов с фазами обмотки, а ротор содержит два зубца, смещенных по оси и имеющих одинаковое угловое положение, получен синхронный электродвигатель с повышенной скоростью вращения при питании от трехфазной сети.
название | год | авторы | номер документа |
---|---|---|---|
Синхронный электродвигатель | 2021 |
|
RU2757459C1 |
Синхронный электродвигатель | 2019 |
|
RU2704308C1 |
Синхронный электродвигатель | 2021 |
|
RU2757423C1 |
Синхронный электродвигатель | 2021 |
|
RU2761085C1 |
СИНХРОННЫЙ ЭЛЕКТРОДВИГАТЕЛЬ С МАГНИТНОЙ РЕДУКЦИЕЙ | 2013 |
|
RU2544835C1 |
ШАГОВЫЙ ЭЛЕКТРОДВИГАТЕЛЬ | 2013 |
|
RU2544836C1 |
СИНХРОННЫЙ ЭЛЕКТРОДВИГАТЕЛЬ | 2013 |
|
RU2545167C1 |
Синхронный электродвигатель с магнитной редукцией | 2018 |
|
RU2704491C1 |
Синхронный электродвигатель с магнитной редукцией | 2017 |
|
RU2668817C1 |
СИНХРОННЫЙ ЭЛЕКТРОДВИГАТЕЛЬ С МАГНИТНОЙ РЕДУКЦИЕЙ | 2015 |
|
RU2604058C1 |
Изобретение относится к области электротехники, а именно к синхронным электродвигателям с реактивным ротором, и может быть применено в электромеханических системах с большими скоростями вращения, например в компрессоростроении. В предлагаемом синхронном электродвигателе П-образные магнитопроводы (1) статора выполнены шихтованными из электротехнической стали и объединены в единую конструкцию с помощью двух колец (3), выполненных из немагнитного материала. На каждом П-образном магнитопроводе (1) имеется фаза (2) обмотки статора. Ротор (4) выполнен из ферромагнитного материала, установлен на валу (5) и имеет форму цилиндра с двумя зубцами, смещенными по оси и имеющими одинаковое угловое положение. При этом питание фаз обмотки статора осуществляется переменными напряжениями, сдвинутыми по фазе на угол, меньший пространственного сдвига П-образных магнитопроводов. Технический результат, достигаемый при использовании настоящего изобретения, заключается в получении повышенной скорости вращения ротора синхронного электродвигателя при питании от многофазной сети. 10 ил.
Синхронный электродвигатель, имеющий П-образные шихтованные магнитопроводы статора с многофазной сосредоточенной обмоткой, ферромагнитный ротор, отличающийся тем, что напряжения питания фаз обмоток сдвинуты по фазе на угол, меньший пространственного сдвига П-образных магнитопроводов, а ротор содержит два зубца, смещенных по оси и имеющих одинаковое угловое положение.
ВЕНТИЛЬНО-ИНДУКТОРНЫЙ РЕАКТИВНЫЙ ДВИГАТЕЛЬ | 1999 |
|
RU2159494C1 |
ИНДУКТОРНАЯ ЭЛЕКТРИЧЕСКАЯ МАШИНА | 1999 |
|
RU2159495C1 |
ИНДУКТОРНАЯ ЭЛЕКТРИЧЕСКАЯ МАШИНА | 1998 |
|
RU2139622C1 |
ЭЛЕКТРОДВИГАТЕЛЬ | 2003 |
|
RU2267855C2 |
DE 4400443 C1, 03.11.1994 | |||
Приспособление в пере для письма с целью увеличения на нем запаса чернил и уменьшения скорости их высыхания | 1917 |
|
SU96A1 |
ЭЛЕКТРОСТАТИЧЕСКИЙ ГЕНЕРАТОР | 2001 |
|
RU2231207C2 |
ОНИЩЕНКО Г.Б | |||
Электрический привод: учебник для студентов высших учебных заведений, 2-е изд | |||
- М.: Издательский центр «Академия», 2008, 288 с. |
Авторы
Даты
2013-11-20—Публикация
2012-04-16—Подача