Изобретение относится к медицине, а именно, к фармакологии и может быть использовано для получения средства из природного сырья, обладающего кардиопротекторным действием.
Известны средства, обладающие кардиопротекторным действием на основе экстрактов биологически активных веществ природного происхождения на основе листьев какалии копьевидной [1], экстракта растения Serratula coronata L.[2], экстракта листьев липы Folia Tilia [3].
Однако при экстракции биологически активных веществ (БАВ) органическими растворителями недостатком является невысокая чистота целевого продукта, следовательно, опасность попадания в организм вредных веществ. Кроме того, биологическая доступность таких БАВ не всегда удовлетворительна.
Известен способ получения БАВ [4], основанный на получении водорастворимых ассоциатов биологически активных компонентов со структурно дифильными вспомогательными веществами. Способ основан на приготовлении молекулярных ассоциатов между БАВ и вспомогательным дифильным компонентом - метод молекулярного капсулирования. Стабилизация комплекса осуществляется за счет взаимодействия между гидрофобной частью молекулы дифильного вспомогательного вещества и молекулами БАВ с развитой гидрофобной частью. Типичным примером такой системы является ассоциация между молекулами витаминов жирорастворимой группы и ПАВ. Водорастворимость такого стабильного молекулярного ассоциата зависит от природы полярной части молекулы ПАВ. Необходимым условием реализации такого процесса является предварительный перевод исходных компонентов в молекулярно-дисперсное состояние. В способе по патенту этот процесс реализуется за счет приготовления «горячего» раствора БАВ в расплаве вспомогательных компонент, причем температура приготовления такого раствора выбирается таким образом, чтобы при смешении компонент происходило плавление второй компоненты с получением гомогенного молекулярного раствора. Как правило, рабочая температура должна быть близка к температуре плавления второй компоненты - БАВ. Основной недостаток этого способа состоит в том, что не только молекулы вспомогательного вещества, но и молекулы БАВ должны быть структурно дифильными или вообще не иметь полярных групп (например бета-каротин), что существенно ограничивает классы БАВ, пригодные для молекулярного капсулирования. Кроме того, проведение процесса при высоких температурах часто сопровождается термодеструкцией и/или процессами окисления.
Из существующего уровня техники известно средство - лекарственный препарат «Гистохром» для лечения острого инфаркта миокарда и ишемической болезни сердца, представляющий собой представляет собой водный раствор ди- и три-натриевых солей эхинохрома, которые получают при взаимодействии эхинохрома с карбонатом натрия - наиболее близкий аналог [5]. Гистохром является высокоэффективным кардиотропным препаратом, уменьшает зону некроза на 57% у больных острым инфарктом миокарда, восстанавливает сократительную способность левого желудочка, уменьшает частоту реперфузионных желудочковых аритмий и проявляет антиаритмическое действие, подавляет агрегацию эритроцитов и тромбоцитов, благоприятно влияет на клиническое течение заболевания, уменьшает частоту осложнений и летальных исходов при остром инфаркте миокарда, хорошо переносится больными.
Эхинохром также является активной субстанцией для производства биологически активных добавок «Тимарин», «Хитохром-С», «Золотой рог», предназначенных для профилактики атеросклероза, коронарной болезни сердца, улучшения липидного статуса крови, обеспечения антиоксидантной защиты организма.
Эхинохром-2,3,5,6,8-пентагидрокси-7-этил-1,4-нафтохинон получают из природного источника (плоских морских ежей) или синтетическим путем. Эхинохром А обладает способностью прерывать в организме патологические процессы свободнорадикального окисления, связанные с появлением таких опасных радикалов как АФК-активных форм кислорода. Эхинохром А способен связывать и выводить из биохимических реакций наиболее опасные свободные микроэлементы (Fe++, Fe++, Cu++). Падение уровня АФК под воздействием эхинохрома А снижает риск появления многих наиболее опасных заболеваний человека, стабилизирует мембраны клеток, подавляя перекисное окисление липидов, способствует продлению активного образа жизни и долголетию.
Задача изобретения - создание средства на основе 2,3,5,6,8-пентагидрокси-7-этил-1,4-нафтохинона (Эхинохрома) из плоских морских ежей и способа его получения, что должно привести к повышению биоусвояемости и повышению коэффициента кардиопротекторного действия.
Эхинохром структурно принципиально отличается от дифильных молекул, пригодных для получения гидрофобных ассоциатов. Эхинохром нерастворим в неполярных углеводородных растворителях и воде (растворимость в воде ~1 mM) и при концентрировании основная масса растворенного вещества переходит в осадок. Эффект стабилизации за счет введения полимеров носит временный характер. Растворы переходят из однородного в двухфазное состояние с образованием осадка.
Технический результат получают благодаря тому, что средство, обладающее кардиопротекторным действием, представляет собой молекулярно-капсулированную форму (МКФ) Эхинохрома из плоских морских ежей, получаемую за счет создания условий при молекулярном капсулировании, при которых происходит связывание Эхинохрома с полярной частью молекул ПАВ, позволяющее стабилизировать Эхинохром в водной среде при концентрации до 0,5% и более.
Сущность предлагаемого способа получения молекулярно-капсулированной водорастворимой формы Эхинохрома, позволяющего устранить выше перечисленные недостатки прототипа и стабилизировать Эхинохром в водной среде состоит в том, что выбирают условия проведения процесса, в которых Эхинохром образует ассоциаты с полярной частью наночастиц из самопроизвольно образующихся агрегатов дифильных ПАВ в водной фазе.
В качестве ПАВ выбирают структурно дифильные поверхностно-активные вещества, а именно Cremophor RH-40 - Peg gliceryl trihydroxystearate (полиэтиленгликоль глицерил тригидроксистеарат - PEG-40), Cremophor EL - PEG glyceryl tricinooleat (polyethylene glycol-35glyceril triricinoleat, polyoxyl-35 castor oil - PEG-35), Cremophor® A 25 - Macrogol 25 cetostearyl ether (Полиэтиленгликоля и цетостеарилового спирта эфир), Cremophor® А 6 - Macrogol 6 cetostearyl ether (Полиэтиленгликоля и цетостеарилового спирта эфир), Soluplus® - polyvinyl caprolactam - polyvinyl acetate - polyethylene glycol graft copolymer (привитый сополимер поливинилкапролактама, поливинилацетата и Полиэтиленгликоля) Tween - 80 (Полисорбат -80, полиэтилен гликоль сорбит моноолеат) или смеси мономерных и полимерных ПАВ. ПАВ из приведенного списка отличаются строением молекул, но имеют общий признак: значение гидрофильно-липофильного баланса (ГЛБ) для этих ПАВ находится в диапазоне 12-18. В качестве дополнительной стабилизации - для предотвращения преждевременного окисления активной компоненты, допускается присутствие структурно-дифильной добавки - антиоксиданта (например, аскорбиновой кислоты, аскорбилпальмитата).
Примеры конкретного выполнения.
Пример 1. Способ получения МКФ эхинохрома.
1.1 Способ получения МКФ эхинохрома через раствор в общем растворителе.
Навески ПАВ и эхинохрома в соотношении 1:4 растворяют в очищенном этаноле до полного растворения и переводят спиртовой раствор в воду, а затем проводят упаривание в роторном испарителе при температуре 30-40°C до заданной концентрации, оценивая количество испаренной воды. Готовую форму фильтруют сначала через префильтр для удаления возможных крупных примесей, а затем через стерилизующий фильтр 0,22 мкм и расфасовывают в стерильную тару.
1.2 Поступают по п.1.1, используя вместо воды боратный буферный раствор (0,1 М, pH=7,6).
1.3 Способ получения МКФ эхинохрома со стабилизирующими добавками.
Поступают по п.1.1, добавляя в раствор готовой молекулярно-капсулированной формы аскорбиновую кислоту в соотношении эхинохром:аскорбиновая кислота 1:0,1.
1.4 Поступают по п.1.1, добавляя в раствор готовой молекулярно-капсулированной формы вводят аскорбиновую кислоту в соотношении эхинохром:аскорбиновая кислота 1:0,3.
1.5 Способ получения МКФ Эхинохрома через раствор в расплаве ПАВ.
Готовят навески ПАВ и Эхинохрома так, чтобы весовые отношения ПАВ к эхинохрому составляли пропорцию 4:1. Отмеренную дозу ПАВ разогревают до температуры перехода в вязко-текучее состояние (40-60°C) (расплав) и постепенно добавляют при перемешивании навеску эхинохрома до получения прозрачного однородного раствора. Полученный вязкий раствор постепенно при перемешивании вливают в воду, разогретую до 60°C. Количество воды выбирается в зависимости от навески эхинохрома так, чтобы получить раствор по эхинохрому 0,05-0,1%. Полученный раствор упаривают на роторном испарителе при температуре 30-40°C до заданной концентрации, оценивая количество испаренной воды. Готовую форму фильтруют сначала через префильтр для удаления возможных крупных примесей, а затем через стерилизующий фильтр 0,22 мкм и расфасовывают в стерильную тару.
1.6 Способ получения МКФ Эхинохрома через раствор в расплаве ПАВ.
Готовят навески ПАВ и Эхинохрома так, чтобы весовые отношения ПАВ к эхинохрому составляли пропорцию 5:1. Отмеренную дозу ПАВ разогревают до температуры перехода в вязко-текучее состояние (40-60°C) (расплав) и постепенно добавляют при перемешивании навеску эхинохрома до получения прозрачного однородного раствора. Полученный вязкий раствор постепенно при перемешивании вливают в воду, разогретую до 60°C. Количество воды выбирается в зависимости от навески эхинохрома так, чтобы получить раствор по эхинохрому 0,05-0,1%. Полученный раствор упаривают на роторном испарителе при температуре 30-40°C до заданной концентрации, оценивая количество испаренной воды. Готовую форму фильтруют сначала через префильтр для удаления возможных крупных примесей, а затем через стерилизующий фильтр 0,22 мкм и расфасовывают в стерильную тару.
1.7 Способ получения МКФ эхинохрома со стабилизирующими добавками.
Готовят навески ПАВ и эхинохрома в соотношении по пп.1.5-1.6 и навеску стабилизирующей добавки - аскорбилпальмитата в количестве 0,2% от эхинохрома. Аскорбилпальмитат растворяют в расплаве ПАВ при 40-60°C, а затем вводят в раствор навеску эхинохрома. Далее поступают по п.1.5.
1.8 Способ получения МКФ с применением в качестве ПАВ Cremophor RH 40.
Поступают по п.1.1-1.8, выбирая в качестве ПАВ Cremophor RH 40.
1.9 Способ получения МКФ с применением в качестве ПАВ Твин - 80. Поступают по п.1.1-1.8, выбирая в качестве ПАВ Твин - 80.
1.10 Способ получения МКФ с применением в качестве ПАВ Soluplus. Поступают по п.1.1-1.4, выбирая в качестве ПАВ Soluplus.
1.11 Способ получения МКФ с применением в качестве ПАВ Cremophor EL.
Поступают по п.1.5-1.7, выбирая в качестве ПАВ Cremophor EL в соотношении ПАВ:эхинохром 5:1.
1.12 Способ получения МКФ с применением в качестве ПАВ Cremophor A25
Поступают по п.1.5-1.7, выбирая в качестве ПАВ Cremophor A25 в соотношении ПАВ:эхинохром 5:1.
1.13 Способ получения МКФ с применением в качестве ПАВ Cremophor A6.
Поступают по п.1.5-1.7, выбирая в качестве ПАВ Cremophor A6 в соотношении ПАВ:эхинохром 5:1.
Литература
1. Патент РФ 2240814 A61K 35/78, 2004.
2. Патент РФ 2321420 A61K 36/28, 2008.
3. Патент РФ 2213570 A61K 35/78, 2003.
4. Патент РФ №2139935 C12P 23/00, 1999.
5. Патент РФ №2137472 A61K 31/05, 1999.
название | год | авторы | номер документа |
---|---|---|---|
СРЕДСТВО, ОБЛАДАЮЩЕЕ ГЕПАТОЗАЩИТНЫМ ДЕЙСТВИЕМ, И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2010 |
|
RU2462259C2 |
СРЕДСТВО, ОБЛАДАЮЩЕЕ ГЕПАТОЗАЩИТНЫМ И ПРОТИВОВОСПАЛИТЕЛЬНЫМ ДЕЙСТВИЕМ, И СПОСОБЫ ЕГО ПОЛУЧЕНИЯ (ВАРИАНТЫ) | 2009 |
|
RU2406496C1 |
Новая лекарственная форма эхинохрома А, способ ее получения и применение | 2022 |
|
RU2800382C1 |
СПОСОБ ПОЛУЧЕНИЯ ВОДОРАСТВОРИМЫХ ФОРМ БИОЛОГИЧЕСКИ АКТИВНЫХ ВЕЩЕСТВ | 2007 |
|
RU2388491C2 |
СРЕДСТВО, ОБЛАДАЮЩЕЕ КАРДИОПРОТЕКТОРНОЙ АКТИВНОСТЬЮ | 2019 |
|
RU2699039C1 |
Лекарственная форма гистохрома для перорального введения и пролонгированного действия | 2017 |
|
RU2651042C1 |
СПОСОБ ПОЛУЧЕНИЯ 2,3,5,7,8-ПЕНТАГИДРОКСИ-6-ЭТИЛ-1,4-НАФТОХИНОНА | 2005 |
|
RU2283298C1 |
Композиция антиоксидантов, пригодная для перорального применения в терапии воспалительного процесса в легких | 2018 |
|
RU2684783C1 |
КОМПОЗИЦИЯ ДЛЯ КОРРЕКЦИИ ПАТОЛОГИЧЕСКИХ НАРУШЕНИЙ УГЛЕВОДНОГО, ЛИПИДНОГО ОБМЕНА И АНТИОКСИДАНТНОГО СТАТУСА ОРГАНИЗМА | 2008 |
|
RU2360683C1 |
СПОСОБ ПОЛУЧЕНИЯ ПЕНТАГИДРОКСИЭТИЛНАФТОХИНОНА (ЭХИНОХРОМА А) | 2015 |
|
RU2581055C1 |
Предложено кардиопротекторное средство на основе эхинохрома-2,3,5,6,8-пентагидрокси-7-этил-1,4-нафтохинона, который получают из природного источника (плоских морских ежей) или синтетическим путем, отличающееся тем, что оно представляет собой водный раствор эхинохрома в молекулярно капсулированной форме в виде водорастворимого ассоциата с дифильным поверхностно-активным веществом, имеющим значение гидрофильно-липофильного баланса в диапазоне 12-18, и способ его получения. Показано, что молекулярные ассоциаты, полученные по такому способу, легко растворимы в воде с образованием стабильных растворов. Заданное содержание кардиопротектора достигается путем концентрирования исходного рабочего раствора ассоциата. Это делает возможным создание кардиопротекторных водных препаратов на основе эхинохрома в виде концентрированных растворов или водорастворимых мазевых и таблетированных готовых форм, а также комплексных препаратов за счет обогащения дополнительно введенными компонентами через гидрофобную и/или водную фазу, увеличивая их биодоступность и биоэффективность. 2 н. и 11 з.п. ф-лы, 8 пр.
1. Средство, обладающее кардиопротекторным действием, на основе эхинохрома - 2,3,5,6,8-пентагидрокси-7-этил-1,4-нафтохинона, который получают из природного источника (плоских морских ежей) или синтетическим путем, отличающееся тем, что оно представляет собой водный раствор эхинохрома в молекулярно-капсулированной форме в виде водорастворимого ассоциата с дифильным поверхностно-активным веществом, имеющим значение гидрофильно-липофильного баланса в диапазоне 12-18.
2. Способ получения средства, обладающего кардиопротекторным действием, на основе эхинохрома, отличающийся тем, что получение молекулярно-капсулированной формы водорастворимого ассоциата осуществляют путем гомогенизации эхинохрома и дифильного поверхностно-активного вещества, имеющего гидрофильно-липофильный баланс в диапазоне 12-18, в общем растворителе, например этаноле, с последующим переводом такого раствора в водную фазу и концентрированием путем испарения растворителя и воды.
3. Способ по п.2, отличающийся тем, что в раствор готовой молекулярно-капсулированной формы вводят стабилизирующие добавки.
4. Способ по п.2, отличающийся тем, что в качестве стабилизирующей добавки используют аскорбиновую кислоту.
5. Способ по п.2, отличающийся тем, что процесс осуществляют путем гомогенизации эхинохрома в расплаве поверхностно-активного вещества при соотношении поверхностно активного вещества к эхинохрому 4-5:1 в диапазоне температур 40-60°C.
6. Способ по п.2, отличающийся тем, что в расплав поверхностно-активного вещества дополнительно вводят добавки для стабилизации эхинохрома в форме молекулярно-капсулированного ассоциата в водной фазе.
7. Способ по п.2, отличающийся тем, что в качестве стабилизирующей добавки используют аскорбилпальмитат.
8. Способ по п.2, отличающийся тем, что в качестве поверхностно-активного вещества используют Cremophor PH 40.
9. Способ по п.2, отличающийся тем, что в качестве поверхностно-активного вещества используют Cremophor EL.
10. Способ по п.2, отличающийся тем, что в качестве поверхностно-активного вещества используют Cremophor A25.
11. Способ по п.2, отличающийся тем, что в качестве поверхностно-активного вещества используют Cremophor® A6.
12. Способ по п.2, отличающийся тем, что в качестве поверхностно-активного вещества используют Soluplus.
13. Способ по п.2, отличающийся тем, что в качестве поверхностно-активного вещества используют Твин-80.
ЛЕКАРСТВЕННЫЙ ПРЕПАРАТ "ГИСТОХРОМ" ДЛЯ ЛЕЧЕНИЯ ОСТРОГО ИНФАРКТА МИОКАРДА И ИШЕМИЧЕСКОЙ БОЛЕЗНИ СЕРДЦА | 1998 |
|
RU2137472C1 |
СПОСОБ ПОЛУЧЕНИЯ ВОДОРАСТВОРИМЫХ ФОРМ БИОЛОГИЧЕСКИ АКТИВНЫХ ВЕЩЕСТВ | 2007 |
|
RU2388491C2 |
КОМПОЗИЦИЯ ДЛЯ КОРРЕКЦИИ ПАТОЛОГИЧЕСКИХ НАРУШЕНИЙ УГЛЕВОДНОГО, ЛИПИДНОГО ОБМЕНА И АНТИОКСИДАНТНОГО СТАТУСА ОРГАНИЗМА | 2008 |
|
RU2360683C1 |
СПОСОБ ПОЛУЧЕНИЯ ВОДОРАСТВОРИМОГО ВИТАМИННОГО ПРЕПАРАТА И СПОСОБ ПОЛУЧЕНИЯ ВИТАМИННОГО ПРЕПАРАТА | 1997 |
|
RU2139935C1 |
ПОРИСТАЯ МАССА ДЛЯ НАПОЛНЕНИЯ СОСУДОВ, ПРЕДНАЗНАЧЕННЫХ ДЛЯ ХРАНЕНИЯ АЦЕТИЛЕНА И ДРУГИХ СЖАТЫХ ГАЗОВ | 1925 |
|
SU3994A1 |
MÜLLER RH et al | |||
Buparvaquone mucoadhesive nanosuspension: preparation, optimization and long-term stability | |||
Int.J.Pharm | |||
Топчак-трактор для канатной вспашки | 1923 |
|
SU2002A1 |
Приспособление для суммирования отрезков прямых линий | 1923 |
|
SU2010A1 |
Авторы
Даты
2013-12-10—Публикация
2010-10-20—Подача