СПОСОБ РАЗДЕЛЕНИЯ ИЗОТОПОВ Российский патент 2013 года по МПК B01D59/00 

Описание патента на изобретение RU2500461C2

Изобретение относится к атомной, медицинской и другим отраслям промышленности и может быть использовано для получения требуемых изотопов, выделяемых из многокомпонентной смеси, для решения задач по обогащению различных стабильных и радиоактивных изотопов, для решения задач по дообогащению регенерированного топлива АЭС, а также для получения редких и дорогостоящих изотопов необходимых для ядерной медицины и т.п.

Большинство современных способов разделения изотопов и связанных с ними разработок многокомпонентных разделительных каскадов сводятся к стандартным схемам и методам, в которых используются трехпоточные разделительные элементы с одним входом - питанием и двумя выходами - отбором, обогащенным целевым компонентом, и отвалом, обедненным целевым компонентом. Их комбинация в противоточные каскады с использованием общего питания, отвала и отбора позволяет получить схему разделения многокомпонентной смеси, где на различных концах каскада получается обогащение крайних компонентов по молекулярной массе. Однако, разделительные каскады, построенные на таких элементах, требуют несколько циклов каскадного разделения для выделения изотопов с промежуточной молекулярной массой.

Известен способ разделения изотопов (Cohen К. The Theory of Isotope Separation as Applied to the Large Scale Production of U235. New York: McGraw-Hill, 1951. 165 p.), в котором предложены идеальные (без смешения потоков с различными концентрациями на входах в ступени) и прямоугольные каскады для разделения бинарных изотопных смесей. Однако известный способ не пригоден для разделения многокомпонентных изотопных смесей.

Известен способ разделения изотопов (De la Garza A., Garret G.A., Murphy J.E. Multicomponent Isotope Separation in cascades. Chem.Eng.Sci.:1961, v.15, p.188-209) с использованием разделительного каскада нового типа («R-каскад»), который характеризуется несмешением потоков с различными относительными концентрациями выбранных компонентов. Однако данный способ имеет существенный недостаток, так как «R-каскады» не обладают свойством оптимальности - они не обеспечивают минимальный суммарный поток питания ступеней. В известном способе также невозможно выделение всех изотопных компонентов в одном цикле разделения, поскольку «R-каскады» построены на трехпоточных элементах.

Известен способ разделения изотопов (Сазыкин А.А. Термодинамический подход к разделению изотопов. «Изотопы: свойства, получение, применение». Под редакцией В.Ю. Баранова. М.: ИздАТ, 2000. с.72-108), в котором предложены многокомпонентные квазиидеальные каскады, обобщающие «R-каскады». Разделительный каскад, основанный на данном способе разделения, обеспечивает одинаковые срезы парциальных потоков компонентов по всем ступеням. Однако такой каскад не обеспечивает минимальный суммарный поток питания ступеней. В данном способе также невозможно выделение всех изотопных компонентов в одном цикле разделения, поскольку предложенный каскад построен на трехпоточных элементах.

Известен способ разделения изотопов (Пат. №2331463 РФ. Способ разделения изотопов. В.Г. Афанасьев, В.В. Водолазских, П.М. Гаврилов, В.А. Журин, А.Л. Калашников, А.И. Колесников, В.М. Короткевич. МПК B01D 59/00, 59/20, заявл. 25.09.2006; опубл. 20.08.2008) с использованием промежуточного отбора в каскаде. Данный способ предусматривает применение в качестве метода разделения - центрифугирование, что делает его зависимым от вида рабочего вещества и извлекаемого изотопа.

Известен способ разделения изотопов и разделительный каскад на его основе (Палкин В.А., Сбитнев Н.А., Фролов Е.С. Расчет оптимальных параметров каскада для разделения многокомпонентной смеси изотопов. «Атомная энергия», 2002 г., т.92, вып.2, с.130-133), которые предназначены для разделения многокомпонентных смесей, обеспечивающие минимальный суммарный поток питания ступеней для заданных внешних концентраций целевого изотопа. Однако известный способ и разделительный каскад на его основе не обладают возможностью выделения всех изотопных компонентов в одном цикле разделения, поскольку они используют трехпоточные разделительные элементы для построения каскада.

Наиболее близким к заявляемому изобретению является способ разделения трехкомпонентной смеси изотопов (Александров О.Е. Построение трехкомпонентного разделительного каскада. Сб. докладов, 14-й Международной научной конференции «Физико-химические процессы при селекции атомов и молекул». Перспективные материалы, спец. выпуск №10. Звенигород, Россия, февраль, 2011, с.61-64), в котором предложена схема разделительного каскада, основанная на четырехпоточных разделительных элементах с одним входом и тремя выходами, в каждом из которых получается обогащение одного из компонентов.

Недостатком данного способа-прототипа является то, что в разделительном каскаде на его основе в разделительных ступенях происходит большое смешение потоков с разными концентрациями обогащенных компонентов, что приводит к потере работы разделения и как следствие, к снижению производительности каскада.

Задачей изобретения является разработка способа разделения изотопов трехкомпонентной смеси, который предполагает использование разделительного каскада на основе четырехпоточных элементов и в отличие от способа-прототипа обладает более высокой производительностью получения требуемых концентраций изотопов, и, соответственно, более низкой стоимостью изотопной продукции, за счет более рациональной схемы соединения ступеней в каскад, пригодный для различных типов применяемых методов разделения и видов извлекаемого изотопа.

Разделительным элементом разделительного каскада является наименьшая часть разделительной установки, в которой питающая этот элемент смесь разделяется на три «обогащенных фракции», в каждой из которых получается обогащение соответствующего концентрируемого компонента, при обеднении двух других компонентов. Несколько разделительных элементов, соединенных параллельно, образуют разделительную ступень (единичный разделительный элемент также может являться разделительной ступенью). Во всех элементах одной ступени питающая смесь характеризуется одним и тем же изотопным составом, причем это справедливо и в отношении любой «обогащенной фракции». Требуемая концентрация выделяемых изотопов может достигаться путем последовательного соединения нескольких ступеней; в этом случае совокупность ступеней образует разделительный каскад.

Поставленная задача в заявляемом изобретении решается за счет того, что в способе разделения изотопов с использованием разделительного каскада, содержащего разделительные ступени, способные разделять многокомпонентную смесь на три части в одном акте разделения, имеющего потоки отбора выделяемых компонентов и один или несколько потоков питания разделительного каскада, поток отбора по произвольному компоненту разделительной ступени разделительного каскада (условно обозначенный - поток отбора «G») поступает на питание ступени, имеющей количество обогащений по соответствующему потоку отбора «G» компоненту на единицу больше, при равных обогащениях по другим компонентам, причем, реализуя в каскаде последовательно три акта обогащения по разным компонентам, начиная с произвольной разделительной ступени (условно обозначенной - ступень «А»), последний поток отбора поступает на питание этой ступени «А».

При этом поток отбора по некоторому компоненту (условно обозначенный - компонент «К») крайней произвольной разделительной ступени (условно обозначенной - ступень «В»), который не является потоком отбора каскада и не соединен последовательно с другой ступенью, направляют на питание разделительной ступени (условно обозначенной - ступень «С»), поток отбора которой по другому компоненту (условно обозначенный - компонент «L») поступает на питание ступени «В».

При этом поток отбора по некоторому компоненту (условно обозначенный - поток отбора «G1») крайней произвольной разделительной ступени «В», который не является потоком отбора каскада и не соединен последовательно с другой ступенью, может быть направлен на питание разделительной ступени (условно обозначенной - ступень «D»), поток отбора которой по другому компоненту (условно обозначенный - поток отбора «G2»), который не является потоком отбора каскада и не соединен последовательно с другой ступенью, имеет такое же количество обогащений по любому из компонентов, как и поток отбора «G1», при этом поток отбора «G2» направляют на питание ступени «В».

При этом, если для потока отбора по некоторому компоненту «G1» крайней произвольной разделительной ступени «В», невозможно найти разделительную ступень «D», поток отбора которой по другому компоненту имеет такое же количество обогащений по любому из компонентов, как и поток отбора «G1», то поток отбора «G1» направляют на питание разделительной ступени (условно обозначенной - ступень «Е»), поток отбора которой по другому компоненту поступает на питание ступени «В».

При этом поток отбора произвольной разделительной ступени (условно обозначенной - ступень «F»), полностью или частично может быть направлен на питание этой ступени «F».

При этом поток отбора разделительного каскада по произвольному компоненту (условно обозначенный - компонент «М») может быть направлен на питание дополнительной разделительной ступени (условно обозначенной - ступень «Н»), которая становится крайней разделительной ступенью и приобретает все их свойства и принципы соединения, поток отбора по компоненту «М» дополнительной разделительной ступени «Н» становится потоком отбора разделительного каскада по компоненту «М».

Разделительная ступень разделительного каскада, все потоки отбора которой поступают на питание ступеней, имеющих количество обогащений по соответствующему потоку отбора компоненту на единицу больше, при равных обогащениях по другим компонентам, условно называется разделительной ступенью внутри каскада. Разделительная ступень, хотя бы для одного потока отбора которой это не выполняется, условно называется крайней разделительной ступенью каскада или разделительной ступенью на «краю» каскада.

На Фиг.1 представлена схема возможного варианта разделительного каскада, основанного на предлагаемом способе разделения изотопов. На Фиг.2 представлен принцип соединения между собою трехкомпонентных разделительных ступеней внутри разделительного каскада. На Фиг.3 поясняются различные варианты соединения крайних разделительных ступеней разделительного каскада, в соответствии с пунктами формулы. На Фиг.4 представлены известные схемы соединения: вверху - схема соединения каскада на основе прототипа, внизу - схема соединения каскада под условным названием «звезда». На Фиг.5 представлены таблицы результатов сравнения различных схем разделительных каскадов.

Основными элементами на Фиг.1 - Фиг.4 являются разделительные ступени, способные разделять многокомпонентную смесь на три части в одном акте разделения. Разделительные ступени на рисунках изображены условно в виде треугольников. Они соединены между собою потоками отбора, обогащенными по соответствующему компоненту, которые на схемах (здесь и ниже условимся, что выбор номера компонента произволен) обозначены стрелками следующим образом:

- стрелка со сплошной линией - поток отбора 1-го компонента;

- стрелка с пунктирной линией - поток отбора 2-го компонента;

- стрелка с линией в виде точек - поток отбора 3-го компонента;

- стрелка с жирной линией - поток «закрутки» (перенаправление потоков с крайних разделительных ступеней на другие).

Каждой разделительной ступени разделительного каскада присвоим свой «номер» (i,j,k), где i - количество обогащений по 1-му компоненту, j - количество обогащений по 2-му компоненту, k - количество обогащений по 3-му компоненту (Фиг.1). Расчет показывают, что в каскаде со ступенями, соединенными по схеме, как на Фиг.1, могут приближенно выполняться условия несмешения потоков с различными концентрациями. Это означает, что относительные концентрации компонентов RN(i,j,k) (N=1,2,3 - номер компонента) в потоке питания (ij,k)-u разделительной ступени можно представить в виде:

{ R 1 ( i , j , k ) = α 11 i α 21 j α 31 k R 1 ( 0,0,0 ) , R 2 ( i , j , k ) = α 12 i α 22 j α 32 k R 2 ( 0,0,0 ) , R 3 ( i , j , k ) = α 13 i α 23 j α 33 k R 3 ( 0,0,0 ) , ( 1 )

где R1(0,0,0), R2(0,0,0), R3(0,0,0) - относительные концентрации компонентов в потоке питания разделительного каскада, которые могут быть выражены через массовые концентрации по известной формуле R = c 1 c .

Поток питания каскада подается в (0,0,0)-ступень. Также могут быть реализованы дополнительные потоки питания в ступени с концентрацией, соответствующей концентрации дополнительного потока питания.

Величины αMN - коэффициенты обогащения/обеднения по N-му компоненту в М-м потоке отбора, которые удобно записать в виде матрицы AMN:

A M N = ( α 11 α 12 α 13 α 21 α 22 α 23 α 31 α 32 α 33 ) . ( 2 )

В матрице AMN по главной диагонали стоят коэффициенты обогащения компонентов в одноименных потоках. Все остальные элементы -коэффициенты обеднения компонентов (по определению, коэффициенты обогащения больше единицы, коэффициенты обеднения меньше единицы).

Необходимыми условиями, накладываемыми на эти коэффициенты и обеспечивающими выполнение условий несмешения, являются соотношения вида:

α 1 N α 2 N α 3 N = 1, i = 1,3 ¯ . ( 3 )

В наиболее простом случае заявленный способ разделения предполагает использование ступеней с одинаковыми коэффициентами обогащения αMM, то есть α112233=α. При этом коэффициенты обеднения принимаются равными α1223311 и α1321322. Отсюда условие (3) переходит в равенство:

α β 1 β 2 = 1 ( 4 )

или в случае β12=β:

α β 2 = 1. ( 5 )

Выполнение условий (3)-(5) при определении относительных концентраций по формулам (1), предполагающим также малое отличие коэффициентов αMN от единицы, позволяет записать условия несмешения в виде:

R 1 ( i , j + 1, k + 1 ) 1 = R 1 ( i + 1, j , k + 1 ) 2 = R 1 ( i + 1, j + 1, k ) 3 = R 1 ( i , j , k ) , R 2 ( i , j + 1, k + 1 ) 1 = R 2 ( i + 1, j , k + 1 ) 2 = R 2 ( i + 1, j + 1, k ) 3 = R 2 ( i , j , k ) , R 3 ( i , j + 1, k + 1 ) 1 = R 3 ( i + 1, j , k + 1 ) 2 = R 3 ( i + 1, j + 1, k ) 3 = R 3 ( i , j , k ) , ( 6 )

где RN(i,j,k)M - относительная концентрация N-го компонента в М-м потоке отбора произвольной ступени.

Из (3)-(5) следует, что RN(i+1, j+1, k+1)=RN(i,j,k) и что, если какое-то из чисел i, j или k меньше двух других из них, к примеру, j<i, j<k, то RN(i,j,k)=RN(i-j,0,k-j). Фактически это означает, что это идентичные ступени: (i,j,k)-, (i+1, j+1, k+1)- и (i-j, 0, k-j) - ступени. Поэтому можно пронумеровать ступени в каскаде так, как показано на Фиг.1.

Проанализируем работу схемы разделительного каскада основанного на предлагаемом способе разделения (Фиг.1). При увеличении числа разделительных ступеней, влияние потоков «закрутки» будет практически отсутствовать внутри каскада, и останется лишь незначительное влияние на «краях» каскада. Сравним приведенную схему разделительного каскада с прототипом и схемой, под условным названием «звезда», в которой разделительные элементы соединены так, что, начиная со ступени питания отбор выбранного компонента, идет только в одном направлении; остальные потоки отбора возвращаются на питание предыдущей ступени (Фиг.4). Для сравнения схем зададим характеристики разделительной ступени в каскадах: коэффициенты деления потоков ступени равны 1/3, коэффициенты обогащения α=1,01, коэффициенты обеднения β12=0,995. Абсолютные концентрации каждой из компонент в потоках питания каскадов равны между собой и равны 1/3. Результаты сравнения представлены в виде двух таблиц на Фиг.5. Критериями для сравнения являются: i G i - суммарный поток в каскаде и α q = R n R 0 - коэффициент разделения каскада относительно точки питания, где Rn - относительная концентрация выбранного компонента в потоке отбора каскада, R0 - относительная концентрация выбранного компонента в потоке питания каскада, q - число обогащений в ступени на которой идет отбор выбранного компонента в каскаде (на Фиг.1 данное число указано в номере ступени - к примеру (n-1,0,0)-ая ступень, т.е. для приведенной схемы q=n-1).

Как видно из первой таблицы, предлагаемый способ разделения по сравнению с прототипом характеризуется большим значением коэффициента разделения и меньшим суммарным потоком (рост числа ступеней в прототипе увеличивает эффект от смешения потоков, снижая коэффициент разделения) при меньшем числе обогащений на отборе. При сравнении схемы разделительного каскада на основе предлагаемого способа разделения и схемы «звезда» также наблюдается большее значение коэффициента разделения и меньший суммарный поток. При увеличении числа ступеней также наблюдается большее значение коэффициента разделения, по сравнению с известными схемами, при значительном снижении суммарного потока. Это подтверждает эффективность и высокую производительность предлагаемого способа разделения.

Данный пример соединения разделительных ступеней в разделительном каскаде не исчерпывает всех возможностей предлагаемого способа разделения. При использовании других вариантов также наблюдается высокая эффективность разделения.

В зависимости от цели, отбор компонентов исходной смеси может осуществляться не на точках отбора каскада, а на других ступенях, либо могут быть также реализованы дополнительные отборы с произвольных ступеней.

Главными отличительными особенностями предлагаемого способа разделения изотопов с использованием разделительного каскада, являются описанные выше принцип соединения между собой разделительных ступеней внутри разделительного каскада (Фиг.2) и способы соединения крайних разделительных ступеней разделительного каскада (Фиг.3). Данные особенности обеспечивают увеличение производительности разделительного производства и снижение стоимости получаемой изотопной продукции.

Предлагаемый способ разделения изотопов с использованием разделительного каскада пригоден для различных методов разделения, и, например, может быть реализован в случае, когда в качестве технологии для разделительных элементов используется метод электромагнитного разделения изотопов.

Предлагаемый способ разделения изотопов с использованием разделительного каскада обеспечивает следующий технический эффект: увеличение производительности разделительного производства (благодаря разделению смеси изотопов сразу по трем компонентам) и, как следствие, снижение стоимости получаемой изотопной продукции.

Похожие патенты RU2500461C2

название год авторы номер документа
Способ обогащения многокомпонентной изотопной смеси промежуточным компонентом 1990
  • Девдариани Окропир Антонович
  • Левин Евгений Владимирович
  • Сиденко Роман Иванович
SU1745319A1
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОКОНЦЕНТРИРОВАННОГО ИЗОТОПА КИСЛОРОДА О-18 2023
  • Хорошилов Алексей Владимирович
RU2812219C1
СПОСОБ УПРАВЛЕНИЯ КАСКАДОМ ГАЗОВЫХ ЦЕНТРИФУГ ДЛЯ ОБОГАЩЕНИЯ УРАНА 2003
  • Абрамович Андрей Владиславович
  • Войкин Федор Михайлович
  • Герасимов Сергей Николаевич
  • Горохов Владимир Евгеньевич
  • Зимин Борис Михайлович
  • Илюхин Вячеслав Михайлович
  • Козлов Владимир Андреевич
  • Леонтьев Яков Поликарпович
  • Мазин Владимир Ильич
  • Миклин Александр Валентинович
  • Рощупкин Владимир Иванович
  • Скугорев Александр Николаевич
  • Стерхов Максим Иванович
RU2277963C2
СПОСОБ ИЗОТОПНОГО ВОССТАНОВЛЕНИЯ РЕГЕНЕРИРОВАННОГО УРАНА 2007
  • Балагуров Николай Андрианович
  • Водолазских Виктор Васильевич
  • Галкин Владимир Владимирович
  • Журин Владимир Анатольевич
  • Короткевич Владимир Михайлович
  • Крюков Олег Васильевич
  • Мазин Владимир Ильич
  • Прусаков Владимир Николаевич
  • Сазыкин Александр Александрович
  • Соснин Леонид Юрьевич
  • Утробин Дмитрий Владимирович
  • Чельцов Анатолий Николаевич
  • Щелканов Владимир Иванович
RU2361297C2
СПОСОБ ПОЛУЧЕНИЯ ГЕКСАФТОРИДА НИЗКООБОГАЩЕННОГО УРАНА ИЗ ОРУЖЕЙНОГО ВЫСОКООБОГАЩЕННОГО УРАНА 2005
  • Водолазских Виктор Васильевич
  • Журин Владимир Анатольевич
  • Ледовских Александр Константинович
  • Лазарчук Валерий Владимирович
  • Козлов Владимир Андреевич
  • Мазин Владимир Ильич
  • Стерхов Максим Иванович
  • Шидловский Владимир Владиславович
  • Щелканов Владимир Иванович
RU2292303C2
СПОСОБ ПОЛУЧЕНИЯ ИЗОТОПОВ НЕОДИМА 2015
  • Годисов Олег Никленович
  • Мязин Леонид Петрович
  • Тютин Борис Владимирович
  • Морозов Андрей Александрович
  • Костылев Александр Иванович
  • Мазгунова Вера Александровна
  • Филимонов Сергей Васильевич
  • Зырянов Сергей Михайлович
  • Сидько Юрий Анатольевич
RU2638858C2
СПОСОБ ИЗОТОПНОГО ВОССТАНОВЛЕНИЯ РЕГЕНЕРИРОВАННОГО УРАНА 2009
  • Журин Владимир Анатольевич
  • Водолазских Виктор Васильевич
  • Щелканов Владимир Иванович
  • Палкин Валерий Анатольевич
  • Глухов Николай Петрович
RU2399971C1
Способ разделения изотопов циркония 2022
  • Галкин Данил Евгеньевич
  • Гришмановский Павел Александрович
  • Палиенко Александр Александрович
  • Совач Виктор Петрович
  • Кущ Олег Анатольевич
  • Ушаков Антон Андреевич
RU2794182C1
СПОСОБ ВОССТАНОВЛЕНИЯ ПРИГОДНОСТИ ВЫГОРЕВШЕГО В ЯДЕРНОМ РЕАКТОРЕ ТОПЛИВА В ВИДЕ ГЕКСАФТОРИДА ВЫГОРЕВШЕЙ СМЕСИ ИЗОТОПОВ УРАНА ДЛЯ ПОВТОРНОГО ИСПОЛЬЗОВАНИЯ В ЯДЕРНОМ РЕАКТОРЕ 2005
  • Водолазских Виктор Васильевич
  • Гаврилов Петр Михайлович
  • Журин Владимир Анатольевич
  • Козлов Владимир Андреевич
  • Короткевич Владимир Михайлович
  • Крутых Виктор Николаевич
  • Мазин Владимир Ильич
  • Стерхов Максим Иванович
  • Щелканов Владимир Иванович
RU2307410C2
Способ получения высокообогащенных изотопов с промежуточным массовым числом 2019
  • Совач Виктор Петрович
  • Ушаков Антон Андреевич
RU2723866C1

Иллюстрации к изобретению RU 2 500 461 C2

Реферат патента 2013 года СПОСОБ РАЗДЕЛЕНИЯ ИЗОТОПОВ

Изобретение относится к способу разделения изотопов и может быть использовано для получения требуемых концентраций изотопов и для обогащения различных стабильных и радиоактивных изотопов. Способ разделения изотопов с использованием разделительного каскада, содержащего трехкомпонентные разделительные ступени, способные разделять многокомпонентную смесь на три части в одном акте разделения, имеющего потоки отбора выделяемых компонент и один или несколько потоков питания разделительного каскада, так что поток отбора по произвольному компоненту разделительной ступени разделительного каскада поступает на питание ступени, имеющей количество обогащений по соответствующему этому потоку отбора компоненту на единицу больше, при равных обогащениях по другим компонентам, причем, реализуя в каскаде последовательно три акта обогащения по разным компонентам, начиная с произвольной разделительной ступени, последний поток отбора поступает на питание этой ступени. Изобретение обеспечивает увеличение производительности разделительного производства и снижение стоимости получаемой изотопной продукции. 5 з.п. ф-лы, 5 ил.

Формула изобретения RU 2 500 461 C2

1. Способ разделения изотопов многокомпонентной смеси с использованием разделительного каскада, содержащего трехкомпонентные разделительные ступени, способные разделять многокомпонентную смесь на три части в одном акте разделения, имеющего потоки отбора выделяемых компонент и один или несколько потоков питания разделительного каскада, отличающийся тем, что поток отбора по произвольному компоненту разделительной ступени разделительного каскада - поток отбора «G» - поступает на питание ступени, имеющей количество обогащений по соответствующему потоку отбора «G» компоненту на единицу больше, при равных обогащениях по другим компонентам, причем, реализуя в каскаде последовательно три акта обогащения по разным компонентам, начиная с произвольной разделительной ступени - ступени «А», последний поток отбора поступает на питание этой ступени «А».

2. Способ разделения изотопов многокомпонентной смеси по п.1, отличающийся тем, что поток отбора по некоторому компоненту - компоненту «К» - крайней произвольной разделительной ступени - ступени «В», который не является потоком отбора каскада и не соединен последовательно с другой ступенью, направляют на питание разделительной ступени - ступени «С», поток отбора которой по другому компоненту - компоненту «L» - поступает на питание ступени «В».

3. Способ разделения изотопов многокомпонентной смеси по п.1, отличающийся тем, что поток отбора по некоторому компоненту - поток отбора «G1» - крайней произвольной разделительной ступени - ступени «В», который не является потоком отбора каскада и не соединен последовательно с другой ступенью, направляют на питание разделительной ступени - ступени «D», поток отбора которой по другому компоненту - поток отбора «G2», который не является потоком отбора каскада и не соединен последовательно с другой ступенью, имеет такое же количество обогащений по любому из компонентов, как и поток отбора «G1», при этом поток отбора «G2» направляют на питание ступени «В».

4. Способ разделения изотопов многокомпонентной смеси по п.3, отличающийся тем, что, если для потока отбора по некоторому компоненту «G1» крайней произвольной разделительной ступени «В» невозможно найти разделительную ступень «D», поток отбора которой по другому компоненту имеет такое же количество обогащений по любому из компонентов, как и поток отбора «G1», то поток отбора «G1» направляют на питание разделительной ступени - ступени «Е», поток отбора которой по другому компоненту поступает на питание ступени «В».

5. Способ разделения изотопов многокомпонентной смеси по п.1, отличающийся тем, что поток отбора произвольной разделительной ступени - ступени «F» полностью или частично направляют на питание этой ступени «F».

6. Способ разделения изотопов многокомпонентной смеси по любому из пп.1-5, отличающийся тем, что поток отбора разделительного каскада по произвольному компоненту - компоненту «М» - направляют на питание дополнительной разделительной ступени - ступени «Н», которая становится крайней разделительной ступенью и приобретает все их свойства и принципы соединения, поток отбора по компоненту «М» дополнительной разделительной ступени «Н» становится потоком отбора разделительного каскада по компоненту «М».

Документы, цитированные в отчете о поиске Патент 2013 года RU2500461C2

RU 2331463 C2, 20.08.2008
СПОСОБ РАЗДЕЛЕНИЯ ИЗОТОПОВ КРЕМНИЯ 2000
  • Тихомиров А.В.
RU2172642C1
СПОСОБ ПОЛУЧЕНИЯ РАЗБАВИТЕЛЯ ДЛЯ ПЕРЕРАБОТКИ ОРУЖЕЙНОГО ВЫСОКООБОГАЩЕННОГО УРАНА В НИЗКООБОГАЩЕННЫЙ УРАН 2006
  • Шопен Виктор Пантелеймонович
  • Шубин Анатолий Николаевич
  • Вандышев Виктор Иванович
  • Кошелев Сергей Михайлович
  • Герцог Виктор Давыдович
  • Чернов Леонид Григорьевич
  • Палкин Валерий Анатольевич
  • Комаров Роман Сергеевич
  • Глухов Николай Петрович
RU2321544C2
US 4167244 A, 11.09.1979.

RU 2 500 461 C2

Авторы

Гадельшин Вадим Маратович

Шульгин Борис Владимирович

Палкин Валерий Анатольевич

Даты

2013-12-10Публикация

2012-03-11Подача