СПОСОБ ЭЛЕКТРОХИМИЧЕСКОЙ ОБРАБОТКИ ВОДЫ И УСТРОЙСТВО Российский патент 2013 года по МПК C02F1/467 C02F1/461 C25B15/02 C25B9/06 

Описание патента на изобретение RU2500625C1

Изобретение относится к способам электрохимической обработки воды. Оно может быть использовано для обработки питьевой воды, бытовых и промышленных сточных вод, воды плавательных бассейнов.

Техническим результатом изобретения является возможность безреагентного (без добавления химических реагентов) управления свойствами воды с низким содержанием хлоридов 0,1÷20 мг/л, приводя к непосредственной дезинфекции.

Известен способ обработки воды гипохлоритом натрия, реализованный в RU 2100483 от 19.02.1996, в котором дезинфектант производится на месте потребления путем прямого электролиза подземной минерализованной воды с содержанием хлорида натрия от 1,5 до 15 г/л. Недостатком этого технического решения является невозможность применения воды с содержанием хлорида натрия менее 1,5 г/л.

Так же известен способ получения сверхчистой питьевой воды, включающий синтез озона из воздуха и пропускание его через слой обрабатываемой воды, реализованный в RU 2114790 от 17.04.1998, в котором регулируется плотность тока в электролизере в зависимости от концентрации веществ в воде и изменения полярности электродов. Он имеют один существенный недостаток: синтез озона из воздуха, что существенно уменьшает безопасность применения этого способа.

Известно устройство для электролиза, реализованное в RU 2139956 от 04.06.1997 в котором применяются титановые аноды и катоды с оксидно-рутениевым покрытием с реверсированием тока. Устройство резко ограничивает продолжительность ресурса электролизера так как смена полярности сокращает срок службы электродов.

Наиболее близким техническим решением является установка типа «Поток» производства завода «Коммунальник» для обеззараживания воды прямым электролизом, представленная в Пособии к СНиП 2.04.02-84. Недостатком Установки типа «Поток» является отсутствие возможности обеззараживания природных вод при содержании хлоридов менее 20 мг/л.

Также из BG 66016 B1 от 29.10.2009 известен способ проведения электролиза и устройство для его проведения, который предусматривает использование групп электродов ЕК1 - EKn, электрически соединенных с источником питания (1), каждая из которых содержит, по меньшей мере, одну пару разноименно заряженных электродов, при этом, в процессе электролиза осуществляют коммутацию электрической цепи через блок коммутации (3), обеспечивающую поочередное подключение к источнику питания и отключение от него групп электродов. Согласно примеру осуществления известного способа частоту и продолжительность подключения источника питания к группам электродов определяет блок управления (5), который отслеживает мощность постоянного тока, подаваемого на группы электродов (стр.3, зона 30 - справа). Таким образом, в BG 66016 В1 используют принцип отключения электропитания и последующего включения для поддержания необходимой силы постоянного тока на группах электродов без изменения полярности.

Задачей, на решение которой направлено данное изобретение, является создание способа обработки воды и устройство для осуществления способа, в которых для дезинфекции воды можно было бы использовать воду с небольшим количеством хлоридов для удешевления технологии обработки воды при обеспечении экологической безопасности, а так же устранение образующихся отложений солей жесткости на электродах электролизных устройств при значительном увеличении ресурса работы электролизных устройств.

Сущность предлагаемого изобретения заключается в том, что для получения дезинфектантов - гидроксильный радикал (ОН), атомарный кислород (О), кислород (O2), озон (О3), перекись водорода (H2O2), радикалы хлора (хлорноватистая кислота HClO и гипохлорит-ион ClO-) путем прямого электролиза в проточном режиме используют обрабатываемую воду, содержащую 0,1÷20 мг/л хлорида натрия. При этом межэлектродное расстояние составляет менее 1 мм. Причем между моментом отключения электропитания и моментом включения с противоположной полярностью присутствует пауза от нескольких секунд до нескольких часов.

Переполяризация применяется для удаления отложений солей жесткости на поверхности электродов. Пауза между периодами действия питания устройства, позволяет устранить отрицательное влияние переходных процессов на активное металлооксидное покрытие электродов и продлевает жизнь покрытия в режиме переполяризации в 3-5 раз.

Авторами было теоретически обнаружено и экспериментально подтверждено, что электролиз воды с небольшим количеством хлоридов (0,1÷20 мг/л) активирует не только растворенную в питьевой воде соль с получением радикалов хлора (хлорноватистая кислота HClO и гипохлорит-ион ClO-), но и кислородные связи в эффективную дезинфекцию. Процесс обеспечивает расщепление молекул воды (H2O) на несколько мощных нетоксичных окислителей - свободных радикалов (O, O2, O3, ОН, H2O2), каждый из которых обладает гораздо большим окислительным потенциалом, чем хлор. Радикалы мощно укрепляют друг друга, и действуют одновременно в бактериологическом, физическом и органическом отношении.

На фиг.1 изображены результаты эксперимента по получению свободного хлора Cl2 и кислорода O2 путем прямого электролиза обрабатываемой воды в проточном режиме со скоростью 200 м3/ч устройством мощностью 6 кВт.

Из графика видно, что при прямом электролизе воды с содержанием хлоридов менее 20 мг/л происходит образование в основном кислорода O2, а в воде с содержанием хлоридов более 20 мг/л преобладают реакции с образованием растворенного хлора Cl2.

В таблице 1 приведены показатели анализов исходной и обработанной методом прямого электролиза воды в проточном режиме северо-западной части Краснодарского края.

Таблица 1 Показатели качества воды Ед. изм. Норматив Исходная вода Обработанная вода Запах 200 балл 2 3 0 600 балл 2 3 0 Привкус балл 2 3 0 Цветность град 20 51,3 12 Мутность мг/дм3 1,5 2,5 <1,0 Окисляемость перманганатная мг О2/дм3 5,0 7,2 0,54 Железо (общее) мг/дм3 0,3 0,28 0,2 Аммоний-ион, аммиак мг/дм3 1,5 2,35 0,01 Нитрат-ион мг/дм3 45,0 0,604 0,5 Нитрит-ион мг/дм3 3,0 0,016 0,003 Сероводород мг/дм3 0,003 1,2 0 Сульфаты мг/дм3 500,0 489 485,1 Хлориды мг/дм3 350,0 17 6 Хлор остаточный свободный мг/дм3 0,3-0,5 0 0,34 Хлор остаточный связванный мг/дм 0,8-1,2 0 0,5 Кислород мг/дм3 - 5 9

Как видно из таблицы, получаемые в процессе прямого электролиза, дезинфектанты не только уничтожают органику - споры, вирусы, бактерии и другие микроорганизмы, что гарантируется наличием остаточного хлора, обеспечивая при этом чистую, питьевого качества воду, но и оказывают влияние на содержание растворенного железа, аммиака и сероводорода.

В процессе прямого электролиза синтезируется ряд окислителей, при этом происходят следующие реакции:

Удаление железа

Двухвалентное железо окисляется электролизным кислородом до гидроксида трехвалентного железа.

4Fe2+2+8OH-+2H2O→4Fe(ОН)3

Удаление аммиака

Аммиак окисляется электролизным озоном до нитрата.

NH3+4O3→NO3-+4O2+H3O+

Удаление сероводорода

Сероводород окисляется электролизной перекисью водорода до коллоидной серы.

H2S+H 2 O 2→S+2H2O

В упрощенном виде процессы образования дезинфектантов из пресной воды заключаются в следующем.

При электролизе воды происходит выделение кислорода и озона:

2H 2 O→O2+4H++4е-; 3H2O→О3+6е-+6H+

Растворяясь в воде, кислород может образовывать перекись водорода:

O2+2H 2 O+2е-→H2O2+2OH-

В воде даже с очень низким содержанием хлоридов может быть получен хлор:

2Cl-→Cl2+2е-

При гидролизе хлора образуется хлорноватистая кислота (HClO) и гипохлорит-ион (ClO-):

Cl2+H2O→HClO+HCl;

Сумму концентраций хлорноватистой кислоты и гипохлорит-иона обычно называют свободным хлором.

Приведенные реакции окисления лишь небольшая часть сложных процессов и реакций, происходящих при электролизе воды. Но в конечном результате все они приводят к уменьшению концентрации указанных веществ до норм ПДК и, как следствие, удалению цветности и мутности.

Прямой электролиз отличается от распространенных методов обеззараживания тем, что сочетает в себе их положительные эффекты и не содержит их отрицательных свойств: обладает последействием и не создает побочные продукты.

Кислород, как наиболее сильный окислитель, преобладает в реакциях обеззараживания, а свободный хлор играет вторичную роль, и «выполнив миссию» пролонгированного действия, опять превращается в хлориды.

Таким образом, дезинфектанты производятся из самой воды и, выполнив свою функцию, переходят в прежнее состояние, не внося в воду побочных продуктов.

Из уровня техники (см. Медриш Г.Л., Тейшева А.А., Басин Д.Л. Обеззараживание природных и сточных вод с использованием электролиза, Москва, Стройиздат, 1982, стр.10) известно, что для создания малогабаритных и высокопроизводительных установок наиболее целесообразно предусматривать минимально возможные межэлектродные расстояния. Для существующего уровня исполнения устройств в 1982 году это было 3-6 мм. Чем меньше величина межэлектродных зазоров в электролизере, тем более энергетически эффективен процесс электролиза. При современном существующем уровне высокотехнологического исполнения устройства межэлектродный зазор менее 1 мм может быть достигнут без опасности соприкосновения поверхностей электродов. Например, электролизеры производства ООО «НПФ «Невский кристалл» имеют межэлектродное расстояние 0,9 мм и успешно эксплуатируются во многих регионах России и странах СНГ.

На фиг.2 изображены результаты эксперимента по изучению ресурса покрытий электродов при работе с паузами и без паузы между периодами действия питания электролизера.

Резкое увеличение напряжения на электролизной ячейке свидетельствует о полном срабатывании активного покрытия и исчерпании ресурса электрода. Среди исследованных электродов самый короткий ресурс в шесть месяцев оказался у электродов, работающих без паузы. Электроды, работающие с паузой, продемонстрировали срок службы более 2 лет. При этом образования отложений солей жесткости на электродах устранялись при их переполюсовке, и зарастания межэлектродного пространства осадком не происходило за все время эксперимента.

Приведенный пример свидетельствует, что в случае применения предлагаемого технического решения удается произвести достаточное количество дезинфектантов из небольшого количества естественных минеральных солей, которые присутствуют в любом источнике пресной воды.

Из приведенного описания понятно, что предлагаемое изобретение может быть реализовано и в других конкретных формах без отступления от существа изобретения, определенного ее формулой.

Похожие патенты RU2500625C1

название год авторы номер документа
СПОСОБ ЭЛЕКТРОХИМИЧЕСКОЙ ОБРАБОТКИ ВОДЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2018
  • Фесенко Лев Николаевич
  • Пчельников Игорь Викторович
  • Скрябин Александр Юрьевич
  • Бабаев Азаддин Азизага-Оглы
  • Игнатенко Сергей Иванович
RU2702650C1
УСТРОЙСТВО ДЛЯ ЭЛЕКТРОХИМИЧЕСКОЙ ОБРАБОТКИ ЖИДКОСТИ 2012
  • Куприков Николай Петрович
  • Журавков Олег Анатольевич
RU2493108C1
СПОСОБ ЭЛЕКТРОЛИЗА С УПРАВЛЕНИЕМ ПРОЦЕССОМ ЭЛЕКТРОХИМИЧЕСКОЙ ОБРАБОТКИ ВОДНЫХ РАСТВОРОВ 2012
  • Куприков Николай Петрович
  • Журавков Олег Анатольевич
RU2500838C2
СПОСОБ ИЗГОТОВЛЕНИЯ ТИТАНОВОГО ЭЛЕКТРОДА 2011
  • Куприков Николай Петрович
  • Журавков Олег Анатольевич
RU2476624C1
ЭЛЕКТРОЛИЗНАЯ УСТАНОВКА ДЛЯ ПОЛУЧЕНИЯ ГИПОХЛОРИТА НАТРИЯ 2006
  • Кибирев Дмитрий Иванович
  • Куприков Николай Павлович
  • Никифоров Георгий Иванович
RU2349682C2
СПОСОБ ПОЛУЧЕНИЯ КОНЦЕНТРАТОВ ГИПОХЛОРИТОВ ЩЕЛОЧНЫХ МЕТАЛЛОВ 1992
  • Игнатов Владимир Александрович
  • Бородин Виктор Степанович
  • Гуссар Владимир Анатольевич
  • Лазарев Ким Федорович
  • Терентьев Вячеслав Иванович
RU2026808C1
СТАНЦИЯ ОБЕЗЗАРАЖИВАНИЯ ВОДЫ 2010
  • Баранов Сергей Витальевич
  • Лукьянов Александр Валентинович
RU2459768C1
Способ получения электролитического гипохлорита натрия 2019
  • Колобова Светлана Владимировна
  • Мезенева Елена Анатольевна
  • Соколов Леонид Иванович
  • Силинский Виктор Алексеевич
RU2722175C1
СТАНЦИЯ ОБЕЗЗАРАЖИВАНИЯ ВОДЫ 2004
  • Новичков Евгений Петрович
  • Лейф Валерий Эдуардович
  • Африн Сергей Александрович
  • Коняхин Олег Анатольевич
  • Баранов Сергей Витальевич
  • Лукьянов Александр Валентинович
RU2281252C2
СИСТЕМА ПОДГОТОВКИ ВОДЫ И ПОДАЧИ ПИТАТЕЛЬНОЙ СМЕСИ В ПОЧВУ ПРИ КАПЕЛЬНОМ ОРОШЕНИИ 2002
  • Карпунин В.В.
  • Сапунков А.П.
  • Салдаев А.М.
  • Абезин В.Г.
  • Карпунин В.В.
  • Лагутин А.Н.
RU2219761C1

Иллюстрации к изобретению RU 2 500 625 C1

Реферат патента 2013 года СПОСОБ ЭЛЕКТРОХИМИЧЕСКОЙ ОБРАБОТКИ ВОДЫ И УСТРОЙСТВО

Изобретение относится к способу электрохимической обработки воды дезинфектантами, который может быть использован для обработки питьевой воды, бытовых и промышленных сточных вод, воды плавательных бассейнов. Способ включает введение в обрабатываемую воду дезинфектантов, получаемых путем прямого электролиза в проточном режиме обрабатываемой воды, содержащей хлорид натрия, при этом используют воду, содержащую 0,1÷20 мг/л хлорида натрия. Также изобретение относится к устройству для электрохимической обработки воды дезинфектантами, которое содержит корпус с входными и выходными патрубками, изменяющие полярность титановые электроды, средство подвода тока к электродам, при этом изменение полярности происходит с паузой от нескольких секунд до нескольких часов, причем межэлектродное расстояние составляет менее 1 мм. Техническим результатом изобретения является возможность безреагентного управления свойствами воды с низким содержанием хлоридов, приводя к непосредственной дезинфекции. 2 н. и 1 з.п. ф-лы, 1 табл., 2 ил.

Формула изобретения RU 2 500 625 C1

1. Способ электрохимической обработки воды дезинфектантами, включающий введение в обрабатываемую воду дезинфектантов, получаемых путем прямого электролиза в проточном режиме обрабатываемой воды, содержащей хлорид натрия, отличающийся тем, что используют воду, содержащую 0,1÷20 мг/л хлорида натрия.

2. Способ электрохимической обработки воды по п.1, отличающийся тем, что в качестве дезинфектантов выступают гидроксильный радикал (OH), атомарный кислород (О), кислород (O2), озон (O3), перекись водорода (H2O2), радикалы хлора (хлорноватистая кислота HClO и гипохлорит-ион ClO-).

3. Устройство для электрохимической обработки воды дезинфектантами согласно способу по п.1, содержащее корпус с входными и выходными патрубками, изменяющие полярность титановые электроды, средство подвода тока к электродам, отличающееся тем, что изменение полярности происходит с паузой от нескольких секунд до нескольких часов, причем межэлектродное расстояние составляет менее 1 мм.

Документы, цитированные в отчете о поиске Патент 2013 года RU2500625C1

Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
RU 2009111531 A, 31.03.2009
УСТРОЙСТВО ДЛЯ ЭЛЕКТРОХИМИЧЕСКОЙ ОБРАБОТКИ ЖИДКОСТИ 2008
  • Пустовалов Виктор Алексеевич
RU2370453C1
Штамп для изгибания труб 1935
  • Карпов И.Н.
SU47893A1
Подвижная диаграмма 1927
  • Полюнов М.И.
SU10551A1
US 20100187122 A1, 29.07.2010
WO 2002026636 A1, 04.04.2002.

RU 2 500 625 C1

Авторы

Бражкин Владимир Сергеевич

Куприков Николай Петрович

Журавков Олег Анатольевич

Даты

2013-12-10Публикация

2012-04-03Подача