СПОСОБ ВЫРАБОТКИ ЭНЕРГИИ ПОСРЕДСТВОМ ОСУЩЕСТВЛЕНИЯ ТЕРМОДИНАМИЧЕСКИХ ЦИКЛОВ С ВОДЯНЫМ ПАРОМ ВЫСОКОГО ДАВЛЕНИЯ И УМЕРЕННОЙ ТЕМПЕРАТУРЫ Российский патент 2013 года по МПК F01K7/22 

Описание патента на изобретение RU2501958C2

Область техники, к которой относится изобретение

Изобретение применимо в энергетике при производстве энергии и в особенности при утилизации энергии вещества, такого как отходы и биомассы, а также при использовании солнечной энергии с системами ее концентрирования.

Уровень техники

В настоящее время утилизация отходов в качестве топлива или использование энергии веществ, таких как отходы и биомассы, обладающих достаточно высокой теплотворной способностью, включает цикл, который обычно осуществляют с помощью топочной камеры, горячие отходящие газы которой используют в парогенераторе для генерирования перегретого пара высокого давления для его последующего расширения в конденсационной турбине, которая обычно соединена с электрическим генератором.

Этот процесс основан на термодинамическом цикле Ренкина, и его энергетическая эффективность (к.п.д.) зависит от параметров водяного пара таким образом, что указанная эффективность повышается, когда перегретый пар генерируется при наибольших возможных давлении и температуре.

Однако в парогенераторах, применяемых для существующих в настоящее время топочных камер, в которых сжигают отходы и некоторые биомассы, в частности в случае парогенераторов, используемых при сжигании городских твердых отходов или ассимилируемых материалов, максимально достижимая температура водяного пара ограничена вследствие того, что при температурах свыше порядка 350°С перегревающий пучок труб для пара подвергается существенной коррозии, вызванной отходящими газами, полученными в результате сжигания указанных отходов и биомасс.

На фоне основных факторов, вызывающих указанные коррозийные эффекты в случае сжигания городских твердых или ассимилируемых отходов, выделяется присутствие хлористого водорода в результате сжигания продуктов, содержащих хлор. Кроме того, в установках, использующих отходы лесозаготовок или сельскохозяйственного производства, таких как солома злаков, отходы, образовавшиеся в маслиновых рощах, и т.п., необходимо принимать во внимание коррозийные эффекты, обусловленные содержанием калия, находящегося в таких отходах, который уносится с летучей золой, осаждающейся в пароперегревателях, и в результате осаждение заканчивается плавлением, что увеличивает трудности, связанные с удалением золы, и в то же время способствует коррозии, после того как эта расплавленная летучая зола отслаивается.

В существующих в настоящее время обычных системах водяной пар генерируется при давлениях, составляющих приблизительно 40 бар, а его перегрев осуществляют при температурах приблизительно 400°С в парогенераторе, использующем теплоту, полученную при сжигании отходов, и поэтому скорость коррозии на внешней поверхности пучков труб в несколько раз превышает скорость коррозии, которая имеет место в тех случаях, когда температура водяного пара составляет менее 350°С.

В целях решения отмеченных выше проблем коррозии перегревающих пучков труб разработаны способы, в соответствии с которыми в парогенераторе, работающем со сжиганием отходов, производят водяной пар высокого давления, выше 70 бар, обычно приблизительно 100 бар, который является слегка перегретым или не перегретым, т.е. при температурах порядка 330°С, при которых эффекты коррозии не являются весьма значительными.

Для повышения к.п.д. паровой турбины в установках, которые используют эти способы, генерируемый водяной пар высокого давления и умеренной температуры перегревают вне парогенератора, работающего со сжиганием отходов. Для этого используют отходящие газы, полученные при сжигании экологически чистого топлива, такого, например, как природный газ, который не вызывает коррозию.

В результате получают пар высокого давления, порядка 70-110 бар, и с высокой температурой, порядка 500-540°С, при отсутствии коррозии в котле для сжигания отходов, что позволяет генерировать в турбине энергию с высокой энергетической эффективностью, при этом указанная энергия может быть получена в виде механической или электрической энергии, причем в последнем случае турбина соединена с электрическим генератором.

Известны способы, такие как описаны в патентных документах Испании ES-2006059-А6 и ES-2010890-A6, в соответствии с которыми пар высокого давления, генерируемый в паровом котле, работающем со сжиганием городских твердых отходов или ассимилируемых материалов, при температурах ниже температуры, при которой начинают становиться значительными эффекты коррозии, перегревают в парогенераторе, утилизирующем теплоту газообразных продуктов сгорания чистого топлива или отходящих газов газовой турбины. При использовании таких установок не только избегают коррозии, но и увеличивают выработку электрической энергии с высокой энергетической эффективностью, достигаемой при использовании двух указанных видов топлива.

Подобным образом, в патентном документе США US-5724807-A также описан способ перегрева пара при давлениях более 68 бар, генерируемого в котле-утилизаторе, с использованием для перегрева отходящих газов газовой турбины, которые, кроме того, генерируют пар низкого давления для таких целей, как охлаждение воздуха, подводимого в газовую турбину, или предварительный нагрев воздуха горения, используемого в котле-утилизаторе, и конденсатов.

Однако в действительности промышленное применение указанных выше способов не было очень успешным, и поэтому известные установки, работающие на водяном паре с давлением менее 60 бар и с температурой выше 350°С, в настоящее время являются все еще распространенными. Это связано с трудностями в обеспечении вблизи установки для сжигания отходов чистого и экономичного дополнительного топлива; и благодаря тому что повышение энергетической эффективности, обусловленной использованием этих способов, экономически не компенсирует необходимость более высоких капиталовложений и добавочного расхода вспомогательного топлива, такие способы являются нежизнеспособными и неэффективными с точки зрения экономической эффективности.

В то же время один из наиболее широко распространенных способов использования солнечной энергии заключается в концентрировании прямого солнечного излучения с помощью зеркал на приемнике излучения, с внутренней стороны которого циркулирует промежуточный теплоноситель, который аккумулирует и передает теплоту, полученную от парогенераторов. Этот способ используют на тепловых электрических станциях, в которых максимальный уровень температуры, который могут выдерживать промежуточные теплоносители - органические текучие среды, без их разложения, составляет порядка 400°С.

Как результат такого технического ограничения, парогенераторы установок, концентрирующих солнечную энергию, с промежуточным теплоносителем предназначены для генерирования водяного пара с температурами порядка 380°С. Это означает, что термодинамические циклы, осуществляемые в таких солнечных энергетических установках, имеют низкую энергетическую эффективность.

С целью повышения энергетической эффективности термодинамических циклов, основанных на использовании солнечной энергии, рассматриваются различные способы, включающие раскрытый в патентном документе Франции FR-2450363-B1, в котором описана тепловая электростанция для выработки электричества за счет солнечной энергии, осуществляемой путем перегрева водяного пара с давлением 50 бар, генерируемого с помощью промежуточного органического теплоносителя, поступающего от солнечных коллекторов, представляющего собой смесь расплавленных солей, нагреваемую при высокой температуре в солнечном коллекторе с использованием центральной башни и гелиостатов.

Подобным образом, в патентном документе США US-2006260314-A1 описаны способ и установка, в которых низкотемпературный водяной пар, генерируемый с помощью промежуточных органических теплоносителей, поступающих из солнечных коллекторов, перегревают с использованием высокотемпературного пара, полученного в комбинированном цикле, что может быть также осуществлено с помощью остаточных отходящих газов комбинированного цикла так, как это описано в опубликованной международной заявке WO-9511371-A1.

С другой стороны, в опубликованных международных заявках WO-2007093464-A1 и WO-2007093474-A1 раскрыто использование подвода внешней теплоты в цикле Ренкина, в котором используют турбину с промежуточным перегревом и расширением, осуществляемыми (обычно) за счет использования невозобновляемого топлива.

Однако на практике все эти установки и способы повышения эффективности генерирования электрической энергии, производимого за счет солнечной энергии, являются дорогостоящими, и их промышленное применение затруднено, поскольку они требуют привлечения сложных систем, например связи с комбинированным термодинамическим циклом, использования невозобновляемых топлив и, например, расплавленных солей при высокой температуре.

Короче говоря, анализ состояния уровня техники показывает, что необходимы более простые и эффективные термодинамические циклы для выработки электрической энергии с помощью водяного пара умеренной температуры, причем как в парогенераторах, работающих со сжиганием отходов или биомасс, с целью предотвращения действия коррозии, так и в тепловых солнечных электростанциях для предотвращения разложения органических теплоносителей, при отсутствии необходимости использования дополнительных топлив.

Подобным образом необходимы также более эффективные термодинамические циклы, обеспечивающие перегрев водяного пара высокого давления и промежуточной температуры, генерируемого в парогенераторах с использованием отходов или биомасс, с помощью вспомогательных топлив, так что повышение энергетической эффективности компенсирует затраты, связанные с необходимостью производить большие капиталовложения и с издержками, соответствующими потреблению дополнительного топлива.

Сущность изобретения

Настоящее изобретение относится к способу генерирования энергии с помощью термодинамических циклов с водяным паром высокого давления и умеренной температуры, что позволяет повысить энергетическую и эксплуатационную эффективность превращения тепловой энергии от возобновляемых тепловых источников или топлив в механическую или электрическую энергию посредством проведения термодинамических циклов с использованием пара высокого давления, температура которого при его генерировании ограничена умеренными величинами.

Задача настоящего изобретения заключается в повышении энергетической эффективности циклов Ренкина, в которых температуру водяного пара ограничивают умеренными величинами, не превышающими порядка 380°С, вследствие коррозии в парогенераторах или разложения теплоносителей, как это было отмечено выше.

Очевидно, что настоящее изобретение применимо также к любому способу генерирования энергии, в котором температура водяного пара ограничена техническими и экономическими факторами, в отличие от рассмотренных выше.

Изобретение решает различные задачи, которые указаны ниже.

Первая задача настоящего изобретения заключается в получении термодинамического цикла, в котором используют пар высокого давления и с умеренной температурой, без привлечения вспомогательных или дополнительных топлив для перегрева указанного пара, и который в то же время имеет большую энергетическую и эксплуатационную эффективность по сравнению с циклами, предлагаемыми способами, используемыми в настоящее время.

Кроме того, задача изобретения заключается в достижении более высокой эксплуатационной эффективности топочных камер для сжигания отходов, биомасс или ассимилируемых материалов, уменьшения коррозии в их паровых трубах, следствием чего является уменьшение непроизводительных потерь времени на осуществление технического обслуживания и ремонта установки, требующих соответствующих затрат, что позволяет увеличить годовой тоннаж отходов, сжигаемых в установке, использующей способ, соответствующий изобретению, а также увеличить количество генерируемой электрической энергии.

Непосредственно в связи с указанной выше задачей изобретение предлагает способ очистки, производимой внутри парогенераторов, с помощью золообдувателей, который способствует снижению эксплуатационных расходов для установок и повышению производственной мощности термодинамических циклов, осуществляемых с водяным паром высокого давления и низкой температуры, что, короче говоря, означает уменьшение непроизводительных потерь времени в установке и, следовательно, повышение ее эффективности.

Другая задача настоящего изобретения относится к повышению энергетической и эксплуатационной эффективности термодинамических циклов, в которых используют водяной пар высокого давления и умеренной температуры, при этом перегрев генерируемого пара производят вне парогенератора, используя с этой целью дополнительное топливо или какой-либо иной источник теплоты. В соответствии с изобретением способ генерирования энергии с помощью термодинамических циклов, использующих пар высокого давления и умеренной температуры, включает следующие стадии:

a) генерирование водяного пара при давлении более 65 бар и умеренной температуре ниже 400°С;

b) расширение пара, генерированного на стадии а), по меньшей мере, в одной двухкорпусной паровой турбине, содержащей корпус высокого давления и корпус низкого давления, в пар промежуточного давления, в интервале 10-40 бар, предпочтительно в интервале 15-30 бар, при умеренной влажности, менее 15% и предпочтительно менее 5%, получаемый в указанном корпусе высокого давления паровой турбины;

c) высушивание пара, полученного на стадии b), посредством, по меньшей мере, одного сепаратора влаги и затем осуществление промежуточного перегрева пара;

d) расширение пара, полученного на стадии с), в корпусе низкого давления паровой турбины;

e) нагревание воды для питания парогенератора, используемой для генерирования пара на стадии а), с помощью большого количества отборов пара из турбины, предпочтительно не менее 4 отборов, производимых для осуществления теплообмена с указанной водой для питания парогенератора и обеспечения ее нагревания.

Таким образом, реализуется термодинамический цикл с паром, обычно водяным паром высокого давления, с промежуточным расширением до влажного пара с высокой степенью регенерации теплоты и повышением в результате энергетической эффективности, которая может быть достигнута при использовании пара умеренной температуры, предпочтительно приблизительно в интервале 330-380°С.

На стадии b) расширение пара высокого давления осуществляют в двухкорпусной турбине, получая в выпускном отверстии корпуса высокого давления пар с промежуточным давлением, при температуре, которая может быть меньше температуры насыщения, при этом получают влажный пар.

На стадии с) жидкую воду удаляют из влажного пара промежуточного давления, для чего может быть использован сепаратор влаги, при этом сухой пар затем подвергают промежуточному перегреву при умеренных температурах.

На стадии е) использование большого количества отборов из турбины позволяет осуществить предварительный нагрев питательной воды для парогенератора или обеспечить другие потребности цикла в теплоте, такие, например, как предварительный нагрев воздуха горения.

Особенность способа, соответствующего изобретению, заключается в промежуточном расширении пара до достижения области влажного пара и последующей сушке пара перед осуществлением его промежуточного перегрева, что поясняется с помощью диаграммы Молье (i-S диаграммы), иллюстрируемой на фиг.1, на которой можно видеть, что расширение пара высокого давления ограничено близостью температурной кривой пара высокого давления, слегка перегретого, и температурной кривой насыщенного пара среднего давления. Процесс расширения улучшается, если увеличивается разность температур между паром высокого давления и паром среднего давления, при этом расширение проводят до температур ниже температуры насыщения, как это можно видеть на диаграмме Молье, представленной на фиг.2.

Последующая сепарация воды уменьшает тепловой удар в промежуточном пароперегревателе, поскольку предотвращается вторичное испарение указанной воды. Отделение воды от расширенного влажного пара может быть осуществлено просто посредством включения в трубопроводную паровую линию сепаратора влаги, размещенного между выходом пара промежуточного давления из турбины и его входом в пучок труб промежуточного перегрева.

Для отделения воды могут быть использованы каплеотделители, например, в виде цилиндрического резервуара под давлением с размещенными внутри него дефлекторами, изготовленными из нержавеющей стали, что позволяет практически полностью устранить содержание влаги и обеспечить давление менее 50 мбар.

Отличия способа согласно изобретению от способов, используемых в настоящее время, могут быть видны, например, в том случае, когда способ согласно изобретению применяется при сжигании твердых городских отходов. Особенности изобретения (признаки), которые составляют указанные отличия, отмечены выше.

В способе согласно изобретению генерирование пара в парогенераторе со сжиганием отходов осуществляют при давлениях в интервале 90-110 бар и температурах порядка 315-350°С, в то время как в способах, известных в уровне техники, генерирование пара осуществляют при давлениях в интервале 30-60 бар и температурах 375-450°С.

В способе согласно изобретению используют двухкорпусную турбину, в первом корпусе которой пар высокого давления, 90-110 бар, перегретый до температуры, приблизительно равной 330°С, расширяют до промежуточного давления, 10-30 бар, и температуры, равной или ниже температуры насыщения, при которой, следовательно, пар содержит влагу, предпочтительно не более 5%; при этом воду затем отделяют с помощью сепаратора влаги и подвергают промежуточному перегреву в котле отходящими газами, полученными в результате процесса сжигания, при температуре приблизительно 330°С, с получением, таким образом, перегретого пара среднего давления, который расширяют в корпусе низкого давления турбины. В отличие от предлагаемого способа, применяемые в настоящее время способы используют турбину с единственным корпусом, в котором реализуются среднее давление и относительно высокая температура, без проведения промежуточного перегрева, что влечет за собой коррозию внешних поверхностей труб парогенератора, которая много больше, чем коррозия, которая проявляется при использовании технического решения согласно настоящему изобретению.

Способ согласно изобретению включает регенеративный цикл с высокой степенью регенерации теплоты, в котором используют большое количество отборов пара из турбины, предпочтительно от 5 до 6 отборов, для нагревания питательной воды для парогенератора до или после деаэрации и с целью дополнительного нагрева воздуха горения, предварительно нагреваемого параллельно с питательной водой для парогенератора. В отличие от предложенного способа, известные в уровне техники циклы являются в меньшей степени регенеративными и обычно осуществляются с тремя отборами пара из турбины и предварительным нагревом воздуха горения непосредственно паром одного из этих отборов.

Преимущества способа согласно изобретению по сравнению с известным циклом, который характеризуется меньшей степенью регенерации, низким давлением и высокой температурой пара, достигаемые за счет указанных выше отличий, отмечены ниже и заключаются в том, что способ согласно изобретению имеет более высокую энергетическую эффективность, а коррозия в пучках труб перегревателя и промежуточного перегревателя для пара высокого давления не является значительной, что уменьшает затраты и время, необходимое на перерывы в работе установки, связанные с техническим обслуживанием. Таким образом, увеличивается возможность получения заданной электрической энергии, заданного количества рабочих часов в год при номинальной мощности, равно как и тонн сжигаемых в год отходов.

Отмеченные преимущества видны из таблицы 1, в которой приведено сравнение способа выработки энергии за счет сжигания городских твердых отходов (ГТО) 30 т/час с теплотворной способностью, составляющей менее 2000 ккал/кг.

Таблица 1 Способ Уровень техники (аналоги) Настоящее изобретение Давление пара (бар) 40 92 Температура пара (°С) 400 330 Турбина Простая одноступенчатая турбина, без промежуточного перегрева пара Турбина с двумя корпусами, с промежуточным перегревом Количество отборов пара от турбины 3 5 Годовая выработка электрической энергии (ГВт·ч) 137357 164228

Повышение энергетической эффективности позволяет увеличить количество электрической энергии, генерируемой за час работы установки, и в то же время уменьшение коррозии обуславливает увеличение часов работы установки. Влияние обоих факторов заключается в увеличении выработки электрической энергии на 19,56%.

Повышение энергетической эффективности за счет расширения пара высокого давления до состояния влажного пара промежуточного давления, как показано на диаграмме, представленной на фиг.2, с отделением влаги перед проведением промежуточного перегрева иллюстрируется ниже в таблице 2 для случая использования солнечной энергии посредством осуществления цикла с паром высокого давления, 100 бар, и умеренной температуры, 377°С, с использованием двухкорпусной турбины, образующей часть цикла с высокой степенью регенерации посредством 6 боковых отборов пара из турбины для предварительного нагревания питательной воды для парогенератора.

Таблица 2 Расширение насыщенного пара. Фиг.1 Расширение влажного пара. Фиг.2 Пар, полученный в парогенераторе Температура пара (°С) 377 377 Давление пара (бар) 100 100 Пар на выходе из корпуса высокого давления турбины Температура пара (°С) 231 207 Давление пара (бар) 28 18 Влажность - 5% Пар после промежуточного перегрева, поступающий в первый корпус низкого давления турбины Температура пара (°С) 380 380 Давление пара (бар) 26 17 К.п.д. парового цикла 39,06% 39,40%

Эффект от расширения влажного пара и его последующего высушивания, перед промежуточным перегревом, заключается в экономии тепловой энергии промежуточного теплоносителя на величину порядка 1%, которая эквивалентна уменьшению поверхности солнечных коллекторов на 2%.

Предусматривается возможность использования, по меньшей мере, одного насоса для нагнетания питательной воды в парогенератор на стадии е), при этом указанный насос соединен с валом паровой турбины.

В циклах, известных из уровня техники, насос для подачи питательной воды в парогенератор должен нагнетать указанную воду при давлениях от немного превышающих атмосферное до давлений порядка 50 бар, и поэтому упомянутый насос обычно приводится в действие электрическим двигателем. Однако в тепловых процессах, использующих пар высокого давления, насос для подачи питательной воды в парогенератор должен нагнетать воду под давлением порядка 100 бар, что обуславливает большее потребление установкой электрической энергии.

Для снижения потребления энергии в циклах согласно настоящему изобретению насос для подачи питательной воды в парогенератор соединяют непосредственно с валом паровой турбины, и в результате достигается экономия энергии, которая может составлять 8-10% от энергии, потребляемой указанным насосом, поскольку в этом случае предотвращаются потери энергии генератора, соединенного с паровой турбиной, потери при преобразовании механической энергии вращения вала турбины в электрическую энергию в клеммах генератора, потери в преобразователях напряжения и электрических цепях, а также потери при преобразовании электрической энергии в механическую энергию в электродвигателе насоса.

С другой стороны, непосредственное соединение вала паровой турбины обуславливает уменьшение потребления на месте электрической энергии, что позволяет генерировать большее количество общей полезной электрической энергии в том случае, если полная мощность генератора лимитирована законодательными ограничениями. В такой ситуации оба эффекта, экономия энергии и уменьшение собственного потребления электрической энергии, могут означать, в случае указанного непосредственного соединения, увеличение энергии, направленной в электрическую сеть, составляющее порядка 1%, по отношению к использованию электромотора в традиционной технологии.

В соответствии с воплощением изобретения генерирование пара на стадии а) и промежуточный перегрев сухого пара на стадии с) включают использование теплоты, которая может быть получена от продуктов сгорания вещества, выбранного из группы, включающей отходы, биомассу, ассимилируемые материалы и их смесь.

Подобным образом, предполагается, что стадия с) предусматривает использование воздуха при сжигании вещества, выбранного из группы, включающей отходы, биомассу, ассимилируемые материалы и их смесь, при этом указанный воздух предварительно нагревают с помощью питательной воды для парогенератора и воды, отведенной, по меньшей мере, из одного сепаратора влаги, используемого на стадии с).

Согласно предпочтительному воплощению варианта, описанного выше, сжигание вещества, выбранного из группы веществ, включающих отходы, биомассы, ассимилируемые вещества и их смесь, осуществляют, по меньшей мере, в одной топочной камере, для чистки которой используют перегретый пар, полученный посредством проведения следующих стадий: f) отбор части пара, генерируемого на стадии а), и снижение его давления с использованием, по меньшей мере, одного редуцирующего клапана до давления достаточного уровня для преодоления перепадов давления в системе, содержащей несколько золообдувателей, и нагревания пара, полученного на стадии f), по меньшей мере, в одном теплообменнике, в котором теплоносителем является часть пара, генерированного на стадии а), при этом получают перегретый пар, приспособленный для работы золообдувателей.

Традиционно используемые золообдуватели обычно потребляют пар с давлением 5-25 бар, который перегревают при температурах, предотвращающих образование влаги, которая может вызвать коррозию. Наличие пара высокого давления в этих циклах позволяет использовать простые и оригинальные средства генерирования пара для сдува золы, в частности, при запусках, когда в распоряжении не имеется другого типа пара.

В соответствии с настоящим изобретением для получения пара с определенными характеристиками, необходимыми для сдувания золы, начальная точка соответствует насыщенному или слегка перегретому пару, отобранному на выходе парогенератора, работающего со сжиганием отходов, или печи для сжигания мусора; его давление уменьшают с помощью редукционного клапана до величины, немного превышающей необходимую для сдувания золы, составляющую в установках для сжигания городских или ассимилируемых отходов обычно 20-25 бар, так, чтобы учитывать потери давления между указанным клапаном и нагнетателями. Полученный таким путем влажный пар перегревают до желательной температуры в теплообменнике, в котором нагревающей текучей средой является тот же насыщенный или слегка перегретый пар высокого давления, генерируемый в печи для сжигания мусора и также отобранный из выходного коллекторного трубопровода этой печи. Избыток влажного пара из теплообменника отводят в расширительный бак, используемый при непрерывной продувке печи для сжигания мусора, или в дренажную систему, или какую-либо точку установки, которая может принимать пар и использовать его энергию.

На фиг.7 представлена схема предложенной системы, в которой золообдуватели работают при давлении 20 бар абсолютных и температуре 260°С, и пар характеризуется давлением 105 бар абсолютных и температурой 325°С.

Таким образом, с помощью настоящего изобретения устраняется необходимость использования дополнительных парогенераторов, работающих со сжиганием невозобновляемого топлива, такого как мазут или природный газ, например, или электрических парогенераторов, предназначенных для генерировании пара с вышеуказанными параметрами или перегретого пара с высоким давлением и насыщенного или немного перегретого пара после снижения его давления, следовательно, имеющего влажность. Любое из этих решений является дорогостоящим для осуществления и применения, принимая во внимание, что продолжительность использования нагнетателей в течение года составляет порядка 2-3%.

Вместе с тем, в другом варианте изобретения предусмотрена возможность генерирования пара на стадии а) и промежуточного перегрева сухого пара на стадии с) с использованием теплоты солнечного источника.

В соответствии с предпочтительным воплощением варианта, описанного выше, генерирование пара на стадии а) и вторичный перегрев сухого пара на стадии с) включают использование теплоты солнечного источника и теплоты, полученной в результате сжигания вещества, выбранного из группы, включающей биогаз, природный газ, синтетический газ, топлива - производные нефти, отходы, биомассы, ассимилируемые материалы и их смесь.

В любом случае предусмотрена возможность того, что способ дополнительно включает следующие стадии: h) перегрев пара, генерируемого на стадии а), за счет использования теплоты, полученной при сжигании дополнительного топлива при высокой температуре, находящейся в интервале 500-580°С, перед осуществлением стадии b), и i) осуществление промежуточного перегрева на стадии с) посредством промежуточного перегрева пара, полученного на стадии b), с использованием теплоты, полученной при сжигании указанного вспомогательного топлива при высокой температуре, находящейся в интервале 500-580°С.

В способах, известных в уровне техники, использование парогенераторов, работающих на топливах, которые не вызывают коррозию в пучках труб, перегретый пар генерируют при температурах 530-540°С, поскольку этот интервал, как правило, является интервалом максимальной температуры, допустимой при использовании материалов, имеющих приемлемую стоимость для использования в конструкции пароперегревателей/промежуточных пароперегревателей, подходящих для парогенератора.

В случае парогенераторов, которые утилизируют теплоту отходящих газов, или газов, полученных при сжигании городских отходов, или тому подобного и в которых генерируют пар при высоком давлении и низкой температуре для предотвращения коррозии трубных пучков, температуры пара 530-540°С достигаются при дополнительном нагревании пара, полученного в парогенераторе, работающем со сжиганием отходов, за счет использования другого, внешнего, парогенератора, работающего с некоррозийными отходящими газами, как было описано выше в разделе «Уровень техники» описания изобретения.

В отличие от рассмотренного выше случая, в способе, предложенном в настоящем изобретении, нагревание во внешнем парогенераторе с использованием дополнительных топлив или дополнительной теплоты осуществляют так, что пар перегревают или осуществляют его промежуточный перегрев подходящим образом до температуры более 540°С, т.е. до температурного предела, допускаемого материалами современных паровых турбин, который обычно составляет 565-580°С. Энергетическая эффективность, таким образом, повышается на дополнительные 2-3%.

В соответствии с предпочтительным воплощением способа, описанного выше, дополнительное топливо является веществом, выбранным из группы веществ, включающих биомассу, биогаз, природный газ, синтетический газ, отходы, остатки от переработки отходов, топлива - производные нефти, ассимилируемые материалы и их смесь. Подобным образом, стадия е) предпочтительно включает использование теплоты, полученной при сжигании дополнительного топлива, для предварительного нагревания питательной воды для парогенератора.

Краткое описание чертежей

В целях лучшего понимания особенностей заявленного изобретения, соответствующих его предпочтительному воплощению, к настоящему описанию приложен ряд иллюстрирующих и не ограничивающих изобретение чертежей.

Фиг.1 - диаграмма Молье для термодинамического цикла с насыщенным паром.

Фиг.2 - диаграмма Молье для термодинамического цикла с влажным паром.

Фиг.3 - схема, иллюстрирующая осуществление способа выработки энергии, предложенного согласно изобретению.

Фиг.4 - схема, иллюстрирующая осуществление способа, соответствующего изобретению, с проведением термодинамического цикла с водяным паром высокого давления и умеренной температуры без промежуточного перегрева пара, осуществляемого вне парогенератора, работающего со сжиганием отходов.

Фиг.5 - схема, иллюстрирующая осуществление способа, соответствующего изобретению, с проведением термодинамического цикла с водяным паром высокого давления и умеренной температуры для извлечения солнечной энергии и без использования дополнительного топлива.

Фиг.6 - схема, иллюстрирующая осуществление способа, соответствующего изобретению, с проведением термодинамического цикла с водяным паром высокого давления и умеренной температуры, с осуществлением промежуточного вторичного перегрева пара вне парогенератора, работающего со сжиганием отходов.

Фиг.7 - схема, иллюстрирующая систему золообдувателей, предложенную согласно настоящему изобретению.

Осуществление изобретения

Как было отмечено выше, настоящее изобретение включает в себя комбинации различных особенностей, которые создают синергетические эффекты по повышению энергетической эффективности и уровня работоспособности различных установок. Ниже описаны три воплощения, которые являются лишь примерами и не ограничивают возможные комбинации и применения раскрытых выше идей изобретения.

Фиг.4 иллюстрирует термодинамический цикл с использованием водяного пара высокого давления и умеренной температуры, осуществляемый без промежуточного перегрева пара вне парогенератора, работающего со сжиганием отходов, с целью извлечения тепловой энергии при сжигании биомасс, или твердых отходов, или ассимилируемых материалов.

Цикл, представленный на фиг.4, является предпочтительным воплощением изобретения для выработки электрической энергии с использованием парогенератора, который генерирует пар высокого давления и низкой температуры и работает со сжиганием топлива, а именно твердых городских отходов или ассимилируемого материала. Это предпочтительное воплощение, в дополнение к паровой турбине с промежуточным перегревом пара, большим количеством отборов пара из турбины, а также подогревом воздуха с помощью предварительно нагретой питательной воды для парогенератора, предусматривает соединение насоса для нагнетания питательной воды парогенератора с валом указанной турбины и сдувание золы, что на схеме, представленной на фиг.4, не отражено для упрощения ее понимания.

В соответствии с фиг.4 парогенератор (А), работающий со сжиганием городских твердых отходов, генерирует водяной пар с давлением 92 бар и температурой 330°С, который подвергают расширению в первом корпусе (В) паровой турбины до давления 20 бар и температуры, приблизительно равной 212°С. Расширение осуществляют до указанного давления 20 бар с достижением температуры ниже температуры насыщения пара, так что расширенный пар имеет влажность 5%.

Пар затем направляют в каплеотделитель (С), из которого отбирают конденсат, который подают в нагреватель (J) воздуха горения, и сухой пар промежуточного давления. Этот пар подвергают промежуточному перегреву вновь в парогенераторе (А) до температуры 330°С для последующего расширения в низкотемпературном корпусе (Е) паровой турбины. Из корпуса (Е) низкого давления турбины отбирают ряд потоков пара, которые предварительно нагревают конденсат, полученный в конденсаторе (G), в трех нагревателях (F1, F2, F3) воды и в деаэраторе (F4) или емкости для дегазации воды, в то время как поток расширенного пара или вода, сконденсированная в потоке, отведенном из корпуса высокого давления (В) турбины, служит для нагревания воздуха горения в теплообменнике (J). Из деаэратора (F4) насос (К1) высокого давления направляет питательную воду для парогенератора при температуре, составляющей примерно 160°С, в парогенератор (А). Часть воды из деаэратора (F4) используют также для предварительного нагревания воздуха горения в теплообменнике (I).

Рассматриваемое воплощение позволяет повысить вплоть до 20% выработку полезной энергии, подводимой в электрическую сеть, по сравнению с известным циклом, характеризуемым высокой температурой и низким давлением, благодаря комбинированному эффекту большего количества энергии, генерируемой посредством нового цикла, и, в меньшей степени, вследствие более эффективного использования установки. Обследование труб для генерирования пара и промежуточного перегрева сухого расширенного пара, проведенное по истечении 24000 часов работы установки, не выявило признаков проявления коррозии.

В то же время в соответствии со вторым воплощением, иллюстрируемым на фиг.5, для извлечения солнечной энергии осуществляют термодинамический цикл с водяным паром высокого давления и низкой температуры без использования дополнительного топлива. На упомянутой фиг.5 представлено предпочтительное воплощение использования солнечной энергии с помощью ряда коллекторов (X) прямого солнечного излучения, концентрирующих подводимую теплоту на органическом теплоносителе, который отдает полученную от солнца теплоту в парогенераторе (А), в котором генерируется пар высокого давления, и в промежуточном пароперегревателе (D) пара промежуточного давления, отводимого из корпуса (В) высокого давления паровой турбины.

Питательную воду для парогенератора прокачивают под давлением более 100 бар через теплообменники (F1, F2, F3), в которых она с помощью боковых отборов пара из турбины подогревается, деаэрируется в деаэраторе (F4) и затем подвергается новому подогреву в двух теплообменниках (F5, F6) с помощью других боковых отборов пара из турбины. Испарение воды происходит в парогенераторе (А) за счет теплоты теплоносителя, при этом пар генерируется с давлением, приблизительно равным 100 бар, и температурой 377°С и затем расширяется в корпусе высокого давления паровой турбины. Влажный пар с промежуточным давлением осушают в каплеотделителе (С) и подвергают промежуточному перегреву при температуре 380°С в теплообменнике (D), используя получаемую посредством теплоносителя теплоту солнечного излучения. Пар промежуточного давления, составляющего 16 бар, с температурой 380°С расширяется в корпусе (Е) низкого давления паровой турбины и конденсируется в конденсаторе (G).

Наконец, фиг.6 иллюстрирует термодинамический цикл с паром высокого давления и низкой температурой и с промежуточным перегревом пара, осуществляемым вне парогенератора, работающего со сжиганием отходов. Указанная фиг.6 отображает предпочтительное воплощение выработки электрической энергии с помощью парогенератора для сжигания городских отходов или ассимилируемого материала, при этом парогенератор (А) генерирует пар высокого давления и низкой температуры, который перегревается вне парогенератора (А), а именно в парогенераторе (Y) с помощью отходящих газов газовой турбины. Пар с давлением, приблизительно равным 100 бар, и температурой 560°С расширяется в первом корпусе (В) турбины и подвергается промежуточному перегреву в том же парогенераторе (Y) до температуры приблизительно 560°С, после чего этот пар направляют в корпус (Е) низкого давления паровой турбины.

Выходящий из конденсатора (G) конденсат деаэрируют в деаэраторе (F4) и нагнетают посредством насоса (К2) высокого давления в парогенератор (А), при этом предварительно конденсат нагревают в парогенераторе (Y) отходящими газами из газовой турбины.

Насос (К2) высокого давления соединен непосредственно с валом турбины, хотя на фиг.6 это не показано. Воздух горения нагревают в теплообменнике (I) с использованием питательной воды для парогенератора, которая получает теплоту от отходящих газов турбины в парогенераторе (Y).

Данное воплощение предусматривает также использование показанного на фиг.7 устройства (L) для сдувания золы, указанного на стадии d). Для того чтобы не усложнять фиг.7, на ней не показаны регенеративный водонагреватель и система отборов пара из турбины, которые используются также для подогрева воздуха горения и в соответствии с фиг.6.

Использование идей настоящего изобретения в этом предпочтительном воплощении позволяет повысить выработку полезной электрической энергии на 3-4% по отношению к подобному циклу с перегревом пара высокого давления, генерируемого в парогенераторе, утилизирующем теплоту отходящих газов газовой турбины. Отмеченное преимущество достигается за счет большего количества общей располагаемой энергии, что является результатом повышения энергетической эффективности процесса.

Специалисту в данной области техники, принимая во внимание настоящее описание и чертежи, будет понятно, что рассмотренные выше воплощения изобретения могут быть скомбинированы многими путями в пределах объема изобретения. Изобретение было раскрыто в соответствии с некоторыми его предпочтительными воплощениями, но для специалиста в данной области техники будет очевидно, что в указанных предпочтительных воплощениях может быть произведено множество изменений без выхода за пределы объема пунктов формулы изобретения.

Похожие патенты RU2501958C2

название год авторы номер документа
Способ и устройство получения энергии в термодинамических циклах 2024
  • Дударев Степан Юрьевич
RU2823418C1
СПОСОБ РАБОТЫ ПАРОГАЗОВОЙ ЭЛЕКТРОСТАНЦИИ НА КОМБИНИРОВАННОМ ТОПЛИВЕ (ТВЕРДОМ С ГАЗООБРАЗНЫМ ИЛИ ЖИДКИМ) И ПАРОГАЗОВАЯ УСТАНОВКА ДЛЯ ЕГО РЕАЛИЗАЦИИ 2001
  • Уварычев Александр Николаевич
  • Уварычев Евгений Николаевич
  • Дикий Николай Александрович
RU2230921C2
УСТРОЙСТВО И СПОСОБ ВЫРАБОТКИ ЭНЕРГИИ НА ЦЕЛЛЮЛОЗНОМ ЗАВОДЕ 2006
  • Савихарью Кари
  • Симонен Йорма
  • Арпалахти Олли
  • Койвисто Ласси
RU2399709C2
Способ повышения мощности двухконтурной АЭС за счет комбинирования с водородным циклом 2019
  • Аминов Рашид Зарифович
  • Егоров Александр Николаевич
  • Байрамов Артем Николаевич
RU2707182C1
Способ водородного подогрева питательной воды на АЭС 2019
  • Аминов Рашид Зарифович
  • Егоров Александр Николаевич
RU2709783C1
ПАРОТУРБИННАЯ УСТАНОВКА АЭС С СИСТЕМОЙ БЕЗОПАСНОГО ИСПОЛЬЗОВАНИЯ ВОДОРОДА 2021
  • Байрамов Артём Николаевич
RU2769511C1
ПАРОТУРБИННАЯ УСТАНОВКА АЭС С ДОПОЛНИТЕЛЬНОЙ ПАРОВОЙ ТУРБИНОЙ И С СИСТЕМОЙ БЕЗОПАСНОГО ИСПОЛЬЗОВАНИЯ ВОДОРОДА 2021
  • Байрамов Артём Николаевич
RU2768766C1
СИСТЕМА СЖИГАНИЯ ВОДОРОДА ДЛЯ ПАРОВОДОРОДНОГО ПЕРЕГРЕВА СВЕЖЕГО ПАРА В ЦИКЛЕ АТОМНОЙ ЭЛЕКТРИЧЕСКОЙ СТАНЦИИ 2009
  • Аминов Рашид Зарифович
  • Байрамов Артем Николаевич
RU2427048C2
СИСТЕМА СЖИГАНИЯ ВОДОРОДА В ЦИКЛЕ АЭС С РЕГУЛИРОВАНИЕМ ТЕМПЕРАТУРЫ ВОДОРОД-КИСЛОРОДНОГО ПАРА 2012
  • Аминов Рашид Зарифович
  • Байрамов Артем Николаевич
  • Юрин Валерий Евгеньевич
RU2488903C1
Система сжигания водорода для пароводородного перегрева свежего пара в цикле атомной электрической станции с закрученным течением компонентов и с использованием ультравысокотемпературных керамических материалов 2018
  • Байрамов Артем Николаевич
RU2709237C1

Иллюстрации к изобретению RU 2 501 958 C2

Реферат патента 2013 года СПОСОБ ВЫРАБОТКИ ЭНЕРГИИ ПОСРЕДСТВОМ ОСУЩЕСТВЛЕНИЯ ТЕРМОДИНАМИЧЕСКИХ ЦИКЛОВ С ВОДЯНЫМ ПАРОМ ВЫСОКОГО ДАВЛЕНИЯ И УМЕРЕННОЙ ТЕМПЕРАТУРЫ

Изобретение относится к энергетике. Способ генерирования энергии с помощью термодинамических циклов с водяным паром высокого давления и умеренной температуры осуществляется посредством проведения термодинамических циклов, в которых температуру пара при его генерировании ограничивают до умеренных величин, включающих следующие стадии: генерирование водяного пара при давлении более 65 бар и умеренной температуре ниже 400°С; расширение указанного пара в паровой турбине, при этом получают пар с промежуточным давлением, находящимся в интервале 10-40 бар, и умеренной влажностью, менее 15%, высушивают указанный пар с помощью сепаратора влаги и осуществляют промежуточный перегрев указанного пара, пар расширяют в турбине, а питательную воду для парогенератора, используемую для генерирования пара, нагревают с помощью ряда отборов пара из турбины, производимых для осуществления теплообмена с указанной питательной водой для парогенератора. Изобретение позволяет повысить энергетическую и эксплуатационную эффективность при превращении тепловой энергии в механическую или электрическую энергию. 10 з.п. ф-лы, 7 ил., 2 табл.

Формула изобретения RU 2 501 958 C2

1. Способ генерирования энергии с помощью термодинамических циклов с водяным паром высокого давления и умеренной температуры, характеризующийся тем, что включает стадии, на которых:
a) генерируют водяной пар при давлении более 65 бар и умеренной температуре ниже 400°С;
b) расширяют пар, генерированный на стадии а), по меньшей мере в одной двухкорпусной паровой турбине, содержащей корпус высокого давления и корпус низкого давления, до пара промежуточного давления, в интервале 10-40 бар, при умеренной влажности, менее 15%, получаемого в указанном корпусе высокого давления паровой турбины;
c) высушивают пар, полученный на стадии b), посредством по меньшей мере одного сепаратора влаги и осуществляют промежуточный перегрев пара с помощью первичного теплового источника; при этом горячую жидкую воду, накопленную в сепараторе влаги, используют для подвода теплоты к используемым в тепловом процессе текучим средам, имеющим низкий уровень температуры;
d) расширяют пар, полученный на стадии с), в корпусе низкого давления по меньшей мере одной паровой турбины; и
e) нагревают питательную воду для парогенератора, используемую для генерирования пара на стадии а), посредством использования множества отборов пара из указанной по меньшей мере одной турбины, для того чтобы осуществлять теплообмен с указанной питательной водой для парогенератора.

2. Способ генерирования энергии с помощью термодинамических циклов с водяным паром высокого давления и умеренной температуры по п.1, в котором пар, полученный на стадии b), имеет давление в интервале 15-30 бар и влажность менее 5%, а на стадии е) питательную воду для парогенератора нагревают за счет использования по меньшей мере 4 отборов пара из указанной по меньшей мере одной турбины.

3. Способ генерирования энергии с помощью термодинамических циклов с водяным паром высокого давления и умеренной температуры по п.1, в котором на стадии е) используют по меньшей мере один насос для нагнетания питательной воды для парогенератора, при этом указанный насос соединен с валом указанной по меньшей мере одной паровой турбины.

4. Способ генерирования энергии с помощью термодинамических циклов с водяным паром высокого давления и умеренной температуры по п.1, в котором при генерировании пара на стадии а) и при промежуточном перегреве сухого пара на стадии с) используют теплоту, получаемую от отходящих газов при сжигании материала, выбранного из группы, включающей отходы, биомассу, ассимилируемые материалы и их смесь.

5. Способ генерирования энергии с помощью термодинамических циклов с водяным паром высокого давления и умеренной температуры по п.4, в котором на стадии с) используют воздух при сжигании материала, выбранного из группы веществ, включающей отходы, биомассу, а также ассимилируемые материалы и их смесь, при этом указанный воздух предварительно нагревают с помощью питательной воды для парогенератора, а воду, отведенную из указанного по меньшей мере одного сепаратора влаги, используют на указанной стадии с).

6. Способ генерирования энергии с помощью термодинамических циклов с водяным паром высокого давления и умеренной температуры по п.4 или 5, в котором сжигание материала, выбранного из группы, включающей отходы, биомассу, ассимилируемые материалы и их смесь, осуществляют по меньшей мере в одной топочной камере, при очистке которой используют перегретый пар, полученный посредством проведения следующих стадий, на которых:
f) отбирают часть пара, генерируемого на стадии а), и понижают его давление за счет использования по меньшей мере одного редуцирующего клапана до уровня давления, достаточного для преодоления перепадов давления в системе, включающей ряд золообдувателей, и
g) нагревают пар, полученный на стадии f), по меньшей мере в одном теплообменнике, в котором теплоносителем служит часть пара, генерированного на стадии а), при этом получают перегретый пар, приспособленный для работы золообдувателей.

7. Способ генерирования энергии с помощью термодинамических циклов с водяным паром высокого давления и умеренной температуры по п.1, в котором при генерировании пара на стадии а) и промежуточном перегреве сухого пара на стадии с) используют теплоту солнечного излучения.

8. Способ генерирования энергии с помощью термодинамических циклов с водяным паром высокого давления и умеренной температуры по п.7, в котором при генерировании пара на стадии а) и промежуточном перегреве сухого пара на стадии с) используют теплоту солнечного излучения и теплоту, полученную при сжигании материала, выбранного из группы, включающей биогаз, природный газ, синтетический газ, топлива - производные нефти, отходы, биомассу, ассимилируемые материалы и их смесь.

9. Способ генерирования энергии с помощью термодинамических циклов с водяным паром высокого давления и умеренной температуры по любому из пп.1-5, 7, 8, дополнительно включающий следующие стадии, на которых:
h) перед проведением стадии b) перегревают пар, генерированный на стадии а), до высокой температуры, в интервале 500-580°С, посредством использования теплоты, полученной при сжигании дополнительного топлива, и
i) осуществляют промежуточный перегрев на стадии с) посредством промежуточного перегрева пара, полученного на стадии b), с помощью теплоты, полученной при сжигании указанного дополнительного топлива при высокой температуре, в интервале 500-580°С.

10. Способ генерирования энергии с помощью термодинамических циклов с водяным паром высокого давления и умеренной температуры по п.9, в котором вспомогательное топливо представляет собой материал, выбранный из группы, включающей биомассу, биогаз, природный газ, синтетический газ, отходы, остатки от переработки отходов, топлива - производные нефти, ассимилируемые материалы и их смеси.

11. Способ генерирования энергии с помощью термодинамических циклов с водяным паром высокого давления и умеренной температуры по п.9, в котором на стадии е) используют теплоту, полученную при сжигании дополнительного топлива, для подогрева питательной воды для парогенератора.

Документы, цитированные в отчете о поиске Патент 2013 года RU2501958C2

БЛОКИРУЮЩЕЕ УСТРОЙСТВО ПОЛОЖЕНИЯ РАБОЧИХ 0
SU177500A1
Способ защиты от эрозии-коррозии паропроводов передачи пара от ступени высокого давления и устройство для его осуществления 1990
  • Жак Маржолле
  • Борис Перрас
SU1830106A3
Паротурбинная установка 1982
  • Бальва Ливерий Яковлевич
  • Бачило Леверье Лаврентьевич
  • Неженцев Юрий Николаевич
  • Пахомов Владимир Александрович
  • Пискарев Алексей Алексеевич
  • Рыжков Виктор Кузьмич
  • Смолкин Юрий Васильевич
  • Артемов Лев Николаевич
SU1114804A1
СПОСОБ ЭКСПЛУАТАЦИИ АТОМНОЙ ПАРОТУРБИННОЙ ЭНЕРГЕТИЧЕСКОЙ УСТАНОВКИ И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2003
  • Ершов В.В.
RU2253917C2
Паровая установка высокого давления 1923
  • Ф. Лезель
SU1849A1
СПОСОБ ПРОМЫВКИ ПАРОВОЙ МНОГОЦИЛИНДРОВОЙТУРБИНЫ 1972
SU419578A1

RU 2 501 958 C2

Авторы

Менендес Сальседо Хосе Мария

Ангуло Арамбуру Херонимо

Даты

2013-12-20Публикация

2009-02-24Подача