СПОСОБ ПЕРЕРАБОТКИ ШЛАМОВ ГАЛЬВАНИЧЕСКИХ ПРОИЗВОДСТВ Российский патент 2014 года по МПК C22B7/00 

Описание патента на изобретение RU2504589C1

Изобретение относится к переработке промышленных отходов предприятий металлургии и машиностроения, в частности, способам извлечения металлов из шламов гальванических производств.

Способ переработки шламов гальванических производств включает выщелачивание тяжелых цветных металлов раствором серной кислоты, отделение твердой фазы от раствора выщелачивания методами отстаивания и фильтрования с применением флокулянта, сорбцию ионов цветных металлов из раствора выщелачивания, получение катодных осадков цинка, меди и никеля из десорбатов.

Известен способ переработки шламов гальванического производства по АС СССР 1693098, МКИ С22В 7/00, согласно которому шлам гальванического производства смешивают с осадком нефтесодержащих сточных вод при соотношении 1:0,15-1). Полученную смесь обжигают при температуре 1000-1200°C, образующуюся массу измельчают и выщелачивают серной кислотой. После выщелачивания раствор подвергают фильтрации, при этом в осадке содержатся соединения - оксид и сульфат кальция, силикат хрома, а металлы, находящиеся в растворе в виде сульфатов, выделяют в виде гидроксидов дробной кристаллизацией при повышении рН до 10.

К недостаткам известного способа можно отнести введение в технологический процесс операции термической обработки шлама, что приводит к возгонке таких металлов, как цинк, кадмий и т.п., а также к образованию бенз(а)пирена при термическом разложении органической компоненты осалка нефтесодержащих сточных вод. Кроме того, выделение металлов дробной кристаллизацией не позволяет разделить металлы, так как их гидратообразование происходит в перекрывающихся значениях рН.

Наиболее близким к заявляемому по технической сущности является способ утилизации кеков из промывных вод гальванического произвоства по патенту РФ №2098498 МПК С22В 7/00. Согласно этому способу шлам обрабатывают серной кислотой до кислых значений рН 2-2,5. Затем проводят отделение твердой фазы от раствора, содержащего соединения хрома, цинка, меди, никеля, железа. В твердой фазе содержится главным образом гипс, который может быть использован для получения строительных материалов. Из полученного раствора производят селективное выделение гидроксидов железа и хрома, осаждение основных карбонатов никеля и цинка, растворение их в серной кислоте и выделение из полученного раствора цинка и никеля электролизом.

К недостаткам данного способа следует отнести длительность операций отстаивания и фильтрования, а также высокое содержание взвешенных веществ в растворе выщелачивания после отделении из него твердой фазы, содержащей гипс и карбонаты металлов.

Технической задачей, на решение которой направлено предлагаемое изобретение, является увеличение скорости отстаивания и фильтрации и снижение содержания взвешенных веществ в растворе, образующемся при кислотном выщелачивании.

Поставленная задача решается тем, что в способе переработки шламов гальванических производств, включающем выщелачивание тяжелых цветных металлов раствором серной кислоты с последующим отделением твердой фазы из раствора выщелачивания методами отстаивания и фильтрования, селективную сорбцию ионов цветных металлов из раствора выщелачивания, получение катодных осадков цинка, меди и никеля из десорбатов, при этом осадок от выщелачивания используется при производстве востребованных строительных материалов. Перед отделением твердой фазы добавляют флокулянт - сополимер винилового эфира диэтанол- или моноэтаноламина с акрилатом или метакрилатом натрия или калия общей формулы:

где R - NH2 или -NH-CH2-CH2OH, R′ - Н или СН3, Me - K или Na, а n1=30-70 мол.%

Предлагаемый флокулянт по сравнению с широко применяемым в практике флокулянтом - полиакриламидом (ПАА) позволяет увеличить скорость отстаивания раствора от выщелачивания в 1,3-2 раза, снизить содержание твердого в осветленном растворе до 2 мг/л (табл.3), а также увеличить скорость фильтрации в 2-2,5 раза. При этом отмечена высокая эффективность процесса в широком диаазонс рН среды (в отличие от ПАА, который практически теряет флокулирующую способность в очень кислых и очень щелочных средах). Эффективность флокуляции достигается за счет того, что предлагаемый флокулянт относится к классу полиакрилатов, содержит в своем составе не только карбоксильные, но и амидные группы, то есть проявляет свойства катионоактивных и анионоактивных полимеров, способных соосаждать положительно и отрицательно заряженные взвешенные вещества.

Пример

Раствор от выщелачивания, представляющий собой суспензию с соотношением Т:Ж=1:10, твердая фаза которой представлена сульфатом кальция и гидроксидами хрома, цинка, меди, никеля, с ситовой характеристикой твердой фазы (табл.1), перемешивают в течение 1-2 минут с раствором 0,1%-го водного раствора флокулянта - сополимера винилового эфира диэтанол- или моноэтаноламина с акрилатом или метакрилатом натрия или калия общей формулы:

где R - NH2 или -NH-CH2-CH2OH, R′ - Н или СН3, Me - K или Na, a n, n1=30-70 мол.%, в количестве 30-200 мг/л, после чего определяют скорость отстаивания по перемещению во времени границы осветленного слоя жидкости. После этого определяют чистоту слива по содержанию в нем твердого весовым методом.

Флокулянт испытывают как в кислой, так и в щелочной среде.

Для сравнения проведены эксперименты с известным флокулянтом -полиакриламидом (ПАА).

Данные о скорости отстаивания минеральной суспензии с различными флокулянтами приведены в табл.2.

Оптимальный расход флокулянтов составил: при рН=2-20 мг/л, рН=6-40 мг/л, рН=12,5-30 мг/л.

Содержание твердого в сливе после осветления суспензии различными флокулянтами (через 20 минут после осаждения твердого) приведено в табл.3.

Из данных таблиц 2 и 3 следует, что предлагаемый флокулянт (оп.2-4) обеспечивает скорость отстаивания в критической точке в 1,3-2 раза большую, чем с ПАА (оп.1).

Содержание взвешенных веществ в сливе после сгущения с предлагаемым флокулянтом значительно ниже, чем с ПАА (табл.3, опыт 2-4 и 1 соответственно), в оптимальном варианте с предлагаемым флокулянтом содержание твердого в осветленном растворе составляет при рН=2-2,8 мг/л, рН=6-3,5 мг/л, рН=12,5-3,7 мг/л., в то время как с ПАА - 61,8 мг/л, 14,4 мг/л и 58 мг/л соответственно.

За счет увеличения кажущейся крупности твердых частиц, скорость фильтрования по прелагаемому способу увеличивается в 1,3-1,5 раза.

Таким образом, при переработке гальваношлама предлагается перед отстаиванием обрабатывать раствор от выщелачивания флокулянтом - сополимером винилового эфира диэтанол- или моноэтаноламина с акрилатом или метакрилатом натрия или калия, при этом значительно повышается скорость отстаивания в широком диапазоне рН среды (в сравнении с ПАА - в 1,5-2 раза); снижается содержание твердого в осветленном сливе после сгущения (в сравнении с ПАА - в 10-20 раз), увеличивается скорость фильтрации в 1,3-1,5 раза. Кроме того, снижение содержания твердого в растворе выщелачивания улучшает эффективность последующих технологических операций, в частности, ионообменной сорбции ионов тяжелых цветных металлов.

Изобретение может быть использовано также в процессах гидрометаллургии при фильтрации и осветлении растворов, содержащих сульфаты кальция, гидроксиды тяжелых цветных металлов.

Таблица 1 Гранулометрический состав твердой фазы после выщелачивания шлама Классы, мм Выход класса, % Суммарный выход, % -0,200 +0 0,160 2,8 2,8 +0,100 5,4 8,2 +0,74 4,9 13,1 +0,044 30,1 43,2 +0,022 20,1 63,3 +0,011 25,3 88,6 +0,005 6,9 95,5 -0,005 4,5 100

Таблица 2 Скорость отстаивания (осветления) раствора от выщелачивания в зависимости от рН при оптимальных расходах флокулянтов Опыт Флокулянт Скорость осветления, см/мин при рН=2 рН=6 рН=12,5 1 Полиакриламид 8,83 16,14 11,00 2 Сополимер ВЭМЭА с МАКK - 70:30 13,25 19,37 14,29 3 Сополимер ВЭМЭА с MAKNa - 60:40 11,28 22,96 14,29 4 Сополимер ВЭМЭА с АКK - 50:50 13,26 31,09 22,72

Таблица 3 Содержание твердого в сливе в зависимости от рН при оптимальных расходах флкулянтов Опыт Флокулянт Содержание твердого, мг/л при рН=2 рН=6 рН=12,5 1 Полиакриламид 61,8 14,4 58,0 2 Сополимер ВЭМЭА с МАКK - 70:30 3,3 4,0 4,2 3 Сополимер ВЭМЭА с MAKNa - 60:40 2,9 3,8 4,0 4 Сополимер ВЭМЭА с АКK - 50:50 2,8 3,5 3,7

Похожие патенты RU2504589C1

название год авторы номер документа
СПОСОБ СНИЖЕНИЯ ЭМИССИИ В ВОДНУЮ СРЕДУ ХИМИЧЕСКИХ ЭЛЕМЕНТОВ ИЗ ГАЛЬВАНИЧЕСКИХ ШЛАМОВ 2020
  • Сафаров Рудель Николаевич
  • Овсянников Анатолий Анатольевич
  • Харлямов Дамир Афгатович
  • Маврин Геннадий Витальевич
  • Фатихова Динара Робертовна
RU2742757C1
Способ регенерации элюатов натрий-катионитовых фильтров 2020
  • Селиванов Олег Григорьевич
  • Пикалов Евгений Сергеевич
  • Смелая Наталья Дмитриевна
  • Сенцова Александра Евгеньевна
RU2756617C1
СПОСОБ РЕГЕНЕРАЦИИ СВОБОДНОГО ЦИАНИДА ИЗ РАСТВОРОВ 2005
  • Петров Сергей Владимирович
  • Петров Владимир Феофанович
RU2285734C1
СПОСОБ ПЕРЕРАБОТКИ ШЛАМОВ ГАЛЬВАНИЧЕСКОГО ПРОИЗВОДСТВА 2010
  • Рубанов Юрий Константинович
  • Токач Юлия Егоровна
RU2422543C1
СПОСОБ ПЕРЕРАБОТКИ ШЛАМОВ НЕЙТРАЛИЗАЦИИ КИСЛЫХ ШАХТНЫХ ВОД 2012
  • Черный Максим Львович
  • Машкин Антон Евгеньевич
  • Пастухов Антон Михайлович
  • Кириллов Евгений Владимирович
RU2482198C1
СПОСОБ ЛОКАЛЬНОЙ РЕАГЕНТНОЙ ОЧИСТКИ ОТРАБОТАННЫХ КОНЦЕНТРИРОВАННЫХ РАСТВОРОВ ОТ ИОНОВ ТЯЖЕЛЫХ МЕТАЛЛОВ, МАРГАНЦА 2005
  • Легошина Вера Рашидовна
  • Степанов Александр Викторович
  • Лебедев Виктор Петрович
  • Бушланова Светлана Ивановна
  • Мухамеджанов Рафаэль Равильевич
RU2299866C2
СПОСОБ РЕГЕНЕРАЦИИ СВОБОДНОГО ЦИАНИДА ИЗ РАСТВОРОВ С ОТДЕЛЕНИЕМ ОБРАЗУЮЩЕГОСЯ ОСАДКА 2015
  • Петров Владимир Феофанович
  • Петров Сергей Владимирович
RU2650961C2
СПОСОБ КОМПЛЕКСНОЙ ПЕРЕРАБОТКИ ОСТАТКОВ ДОМАНИКОВЫХ ОБРАЗОВАНИЙ 2013
  • Школьник Владимир Сергеевич
  • Жарменов Абдурасул Алдашевич
  • Козлов Владиллен Александрович
  • Кузнецов Андрей Юрьевич
  • Бриджен Николас Джон
RU2547369C2
СПОСОБ ОСАЖДЕНИЯ ТЯЖЕЛЫХ ЦВЕТНЫХ МЕТАЛЛОВ ИЗ ПРОМЫШЛЕННЫХ РАСТВОРОВ И/ИЛИ СТОКОВ 2015
  • Викторов Валерий Викторович
  • Сирина Татьяна Петровна
  • Соловьев Георгий Владимирович
  • Красненко Татьяна Илларионовна
  • Ротермель Мария Викторовна
RU2601333C1
СПОСОБ ОЧИСТКИ КИСЛЫХ МАЛОМУТНЫХ ШАХТНЫХ И ПОДОТВАЛЬНЫХ ВОД 2008
  • Шамуков Станислав Иванович
  • Чистяков Владимир Николаевич
  • Жариков Лев Клавдианович
  • Тихонова Галина Григорьевна
  • Гришин Владимир Петрович
  • Гибадуллин Закария Равгатович
  • Александрова Нина Николаевна
RU2386592C2

Реферат патента 2014 года СПОСОБ ПЕРЕРАБОТКИ ШЛАМОВ ГАЛЬВАНИЧЕСКИХ ПРОИЗВОДСТВ

Изобретение относится к переработке промышленных отходов предприятий металлургии и машиностроения. Способ переработки шламов гальванических производств включает выщелачивание тяжелых цветных металлов раствором серной кислоты с последующим отделением твердой фазы из раствора выщелачивания отстаиванием и фильтрованием, селективную сорбцию ионов тяжелых цветных металлов с получением катодных осадков цинка, меди и никеля из десорбатов. Перед отделением твердой фазы в раствор выщелачивания добавляют флокулянт - сополимер винилового эфира диэтанол- или моноэтаноламина с акрилатом или метакрилатом натрия или калия. Обеспечивается повышение скорости отстаивания, фильтрования и снижается содержание взвешенных веществ в растворе выщелачивания. 3 табл., 1 пр.

Формула изобретения RU 2 504 589 C1

Способ переработки шламов гальванических производств, включающий выщелачивание тяжелых цветных металлов раствором серной кислоты с последующим отделением твердой фазы из раствора выщелачивания отстаиванием и фильтрованием, селективную сорбцию ионов тяжелых цветных металлов из раствора выщелачивания с получением катодных осадков цинка, меди и никеля из десорбатов, при этом осадок от выщелачивания используют при производстве строительных материалов, отличающийся тем, что перед отделением твердой фазы в раствор выщелачивания добавляют флокулянт - сополимер винилового эфира диэтанол- или моноэтаноламина с акрилатом или метакрилатом натрия или калия общей формулы:

где R - NH2 или -NH-CH2-CH2OH, R′ - Н или СН3, Мe - K или Na, а n, n1=30-70 мол.%.

Документы, цитированные в отчете о поиске Патент 2014 года RU2504589C1

ПОЛИМЕРНАЯ КОМПОЗИЦИЯ 1996
  • Полещук Л.И.
  • Ковалева Н.И.
RU2098438C1
Способ переработки шламов гальванических производств 1989
  • Пустильник Анатолий Иосифович
  • Громова Светлана Константиновна
  • Михайлов Вадим Константинович
  • Молодов Павел Валентинович
  • Орлов Александр Михайлович
  • Пальгунов Петр Петрович
  • Пузырева Галина Петровна
  • Сумароков Михаил Васильевич
  • Шумский Марк Григорьевич
SU1693098A1
WO 1988003911 А1, 02.06.1988
US 4293332 А, 06.10.1981.

RU 2 504 589 C1

Авторы

Селиванова Нина Васильевна

Трифонова Татьяна Анатольевна

Селиванов Олег Григорьевич

Ширкин Леонид Алексеевич

Ильина Марина Евгеньевна

Даты

2014-01-20Публикация

2012-10-01Подача