СПОСОБ ОПРЕДЕЛЕНИЯ ВЛАГОСОДЕРЖАНИЯ ВОЗДУХА Российский патент 2014 года по МПК G01N25/56 

Описание патента на изобретение RU2505804C1

Изобретение относится к гигрометрии, в частности к гигрометрам, измеряющим относительную влажность газа, и поверке гигрометров без их демонтажа с объекта эксплуатации.

Известны различные способы (методы) измерения и воспроизведения величин влажности газов, представленные в РМГ 75-2004 (Рекомендации по межгосударственной стандартизации. ГСИ. Измерения влажности веществ. Термины и определения):

- сорбционно-гравиметрический метод - гравиметрический метод измерения влажности газов, основанный на сорбционном способе выделения влаги из газов;

- конденсационно-гравиметрический метод - гравиметрический метод измерения влажности газов, основанный на конденсационном способе выделения влаги из газов;

- конденсационный метод - метод измерения точки росы [инея], заключающийся в охлаждении газа до температуры выпадения конденсата (росы или инея) и измерении этой температуры;

- и другие.

Известен метод прямого весового определения содержания влаги газов, который сводится к поглощению влаги из пробы контролируемого газа энергичными поглотителями и определению ее количества по увеличению веса поглотителей. Этот метод обладает высокой точностью, но требует больших временных затрат (до 30 часов).

Реализация всех указанных способов характеризуется достаточно длительным процессом подготовки и проведения измерений (несколько часов), а также громоздкостью требуемой аппаратуры, что ограничивает их прикладные возможности (например, для организации поверки рабочих гигрометров без демонтажа с объекта эксплуатации).

Наиболее близким к заявляемому решению, взятым за прототип, является «Метод полного поглощения» (Берлинер М.А. Измерения влажности. - М.: Энергия, 1973 г., стр.349-351), основанный на взвешивании определенного объема газа при пропускании его через вещество, способное поглощать водяной пар, и оценке изменения параметров этого вещества в результате полного поглощения влаги. Для реализации способа используют систему поглощения влаги для определения ее массы и систему измерения объема прошедшего газа. Анализируемый газ пропускают через три последовательно соединенных сосуда, имеющих форму U-образных трубок, заполненных твердыми сорбентами. Для определения массы водяного пара сравнивают массу трубок с сорбентами до и после протекания газа с помощью точных аналитических весов. Для измерения объема газа используют систему из двух цилиндрических камер, погруженных в термостатированную масляную ванну. Камеры заполняются попеременно. Массу сухого газа вычисляют по числу заполнений камер с учетом температуры и давления.

Метод полного поглощения можно рассматривать как абсолютный, и его точность ограничивается погрешностями измерительных операций (взвешивание поглотителя, измерение количества газа) и наличием примесей в газе. Процесс измерения длителен и трудоемок, в связи с чем эти методы используются только в качестве лабораторных. Такой метод применяют в качестве наиболее точного образцового при градуировке, испытаниях и поверке гигрометров.

Этот способ является дорогостоящим и длительным по времени (более 30 часов) определения влажности газов, а для его реализации используется громоздкое устройство. Кроме того, при измерении данным способом необходимо производить демонтаж гигрометра с объекта эксплуатации и доставку его в поверочную лабораторию.

Задачей заявленного решения является снижение эксплуатационных и временных затрат, повышение точности и надежности измерений, а также повышение удобства процесса измерения и возможность ведения электронной базы данных проверок.

Поставленная цель достигается за счет того, что в известном способе определения влагосодержания газов, заключающемся в прямом взвешивании, согласно заявленному решению, измерительный сосуд известного объема заполняют сухим воздухом и взвешивают, затем измерительный сосуд заполняют исследуемым воздухом и взвешивают, фиксируют значение температуры и давления исследуемого воздуха и, используя измеренные значения, определяют влагосодержание исследуемого воздуха по формуле:

, г/кг сух.

где m1 - масса измерительного сосуда с сухим воздухом, г;

m2 - масса измерительного сосуда с исследуемым воздухом, г;

V - внутренний объем измерительного сосуда, литр;

Рив - атмосферное давление исследуемого воздуха, мм рт.ст.;

Тив - температура исследуемого воздуха, °С;

gn - удельный вес пара, г/литр (gn=0,803 г/литр);

gc - удельный вес сухого воздуха, г/литр (gc=1,2928 г/литр);

Р0 - нормальное давление, мм рт.ст.(Р0=760 мм рт.ст.);

Т0 - нормальная температура °С(Т0=273°С);

Техническим результатом заявленного способа и устройства является снижение эксплуатационных и временных затрат, за счет того, что в предлагаемом способе вместо громоздкого оборудования и длительной операции, для определения влагосодержания воздуха проводят взвешивание герметичного измерительного сосуда, например, шарообразной формы, выполненного из легкого материала известного объема V, поочередно заполняя его сухим и исследуемым воздухом.

Сравнительный анализ заявленного решения с известным, позывает: Характеристика сравнения Прототип Предлагаемый способ Материально-техническое обеспечение 1. Точные рычажные аналитические весы Электронные весы 2. Три стеклянных сосуда с химическими сорбентами Не требуется 3. Две калиброванные цилиндрические камеры из нержавеющей стали и массивная термостабилизированная ванна Калиброванный сосуд из дюрали или титана. 4. Вакуумный насос с реле давления Вакуумный насос (без реле давления) 5. Компрессор с системой осушки сжатого воздуха Не требуется 6. Холодильная установка для масляной ванны Не требуется 7. Байпасная линия с запорными клапанами Не требуется 8. Измерители температуры и давления Измерители температуры и давления Время подготовки До 16 часов Не требуется Длительность измерения До 30 часов До 3 минут Длительность обработки результатов До 30 минут До 3 минут

Достоинства предлагаемого способа:

а) для реализации способа не требуется дорогостоящего и громоздкого оборудования;

б) выполнение всех операций предлагаемого способа занимает несколько минут;

в) возможность математического пересчета значения влагосодержания воздуха в любые другие его гигрометрические характеристики;

г) позволяет создать рабочий эталон (измерительный сосуд) для периодической поверки приборов измерения влажности, работающих при нормальном давлении, без их демонтажа с объекта эксплуатации, в рабочих условиях;

д) погрешность предлагаемого способа (метода) зависит только от погрешностей применяемых средств измерений (давления и температуры) и может иметь предельно малые значения.

Заявленное решение поясняется чертежом.

На чертеже представлена структурная схема реализации способа. Схема содержит измерительный сосуд 1, высокоточные весы 2, сухой воздух 3 (например, баллон с сухим воздухом), устройство для откачки воздуха 4, входной клапан (запорный кран) 5, выходной клапан (запорный кран) 6, барометр 7, термометр 8, устройство для забора исследуемого воздуха 9, позицией 10 обозначена исследуемая среда.

Для определения влагосодержания воздуха используется герметичный измерительный сосуд 1 (например, шарообразной формы, дюралевый или титановый) из какого-либо легкого материала известного объема V, который определяется по разности весов сосуда без воды и сосуда с водой. Значение объема измерительного сосуда заносится в его паспорт.

Для вычисления влагосодержания исследуемого воздуха проводятся следующие операции:

1. Определение суммарной массы измерительного сосуда 1 с сухим воздухом.

Измерительный сосуд 1 с двумя кранами, входной 5 и выходной 6, прокачивается сухим воздухом 3 с помощью устройства для откачки воздуха 4 (компрессор или вакуумный насос). Сухой воздух можно получить путем осушки исследуемого воздуха, т.е. пропущенного через цеолит или из подготовленного баллона с сухим воздухом. Краны 5 и 6 поочередно закрываются (вначале кран 6 на выходе сосуда, затем кран 5 на входе) и измерительный сосуд 1 взвешивается на электронных весах 2 с требуемой погрешностью (например, не более ±0,1 мг).

2. Определение суммарной массы измерительного сосуда с исследуемым воздухом.

Открываются оба крана измерительного сосуда 1. В измерительный сосуд 1 с помощью устройства для откачки воздуха 4 (компрессор или вакуумный насос) закачивается исследуемый воздух. Краны 5 и 6 поочередно закрываются (вначале на выходе сосуда, затем на его входе), и измерительный сосуд 1 взвешивается на электронных весах 2 с требуемой погрешностью (например, не более ±0,1 мг).

3. Фиксируют давление исследуемого воздуха с помощью барометра 7.

4. Фиксируют температуру исследуемого воздуха с помощью термометра 8.

5. Проводят вычисления влагосодержания исследуемого воздуха по формуле:

, г/кг сух.

где m1 - масса измерительного сосуда с сухим воздухом, г;

m2 - масса измерительного сосуда с исследуемым воздухом, г;

V - внутренний объем измерительного сосуда, литр;

Рив - атмосферное давление исследуемого воздуха, мм рт.ст.;

Тив - температура исследуемого воздуха, °С;

gn - удельный вес пара, г/литр (gn=0,803 г/литр);

gc - удельный вес сухого воздуха, г./литр (gc=1,2928 г/литр);

Р0 - давление при нормальных условиях, мм рт.ст.(Р0=760 мм рт.ст.);

Т0 - температура при нормальных условиях, °С (Т0=273°С).

По определенному влагосодержанию d (г/кгсух) воздуха из I-d диаграммы Рамзина получено эмпирическое выражение для определения относительной влажности φ (%):

, %

Полученную влажность φ исследуемого воздуха сравнивают с показаниями поверенного гигрометра φr и делают вывод о его метрологической пригодности.

Для реализации предлагаемого способа был изготовлен полый стеклянный сосуд с двумя притертыми пробками массой 185,46 г. Измерение массы проводилось в лаборатории при температуре Тив=+23°С и атмосферном давлении Рив=756 мм рт.ст. при открытых пробках, чтобы избежать влияния плотности воздуха в лаборатории на результат измерений массы сосуда. Внутренний объем сосуда определили по разности масс сосуда с дистиллированной водой и пустого:

V=1,6127-0,18546=1,4272 л

mтары=185,46 г и внутренний объем сосуда V=1,427 л занесли в паспорт.

Заполнили сосуд сухим воздухом и взвесили, что составило m1=187,1584 г. Эта масса состоит из суммы масс тары и воздуха минус масса, соответствующая выталкивающей силе Архимеда mарх:

187,1584=185,46+gc·V0-mарх

где V0 - приведенный к нормальным условиям объем газа.

Заполнили сосуд исследуемым воздухом, образцовый термогигрометр показал относительную влажность 47,6%. Сосуд взвесили на электронных весах с разрешающей способностью 0,1 мг. Масса составила m2=187,1500 г. Разность масс Δm:

где mc - масса сухого воздуха;

mx - масса исследуемого воздуха;

gx - удельный вес исследуемого воздуха.

Следовательно, масса исследуемого воздуха в сосуде

mх=gc·V0-Δm=1,2928·1,3092-0,0084=1,6841 г.

Масса mх складывается из массы сухого воздуха и массы водяного пара с учетом занимаемых их объемов, т.е.

mх=gx·V0=mс+mn=gc(V0-Vn)+(gn·Vn)=1,6841 г

Объем пара Vn составляет

Влагосодержание исследуемого воздуха

При t°=+23°C это влагосодержание соответствует относительной влажности φ%=47.63% (I-d диаграмма Рамзина)

Для увеличения чувствительности предлагаемого метода измерительный сосуд следует изготовить большей емкости.

Заявленный способ может быть использован для поверки рабочих гигрометров, предназначенных для измерения относительной влажности в рабочих условиях их эксплуатации (без демонтажа с объекта эксплуатации). Кроме того, он может быть использован для определения влагосодержания любых газов, при соответствующем уточнении коэффициентов составляющих математического аппарата.

Похожие патенты RU2505804C1

название год авторы номер документа
СПОСОБ ОПРЕДЕЛЕНИЯ ВЛАГОСОДЕРЖАНИЯ ГАЗОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2012
  • Барбар Юрий Алексеевич
  • Томский Константин Абрамович
  • Катушкин Владимир Петрович
RU2506574C1
СПОСОБ ОПРЕДЕЛЕНИЯ ВЛАЖНОСТИ ПРИРОДНОГО ГАЗА ПОСЛЕ ГЛИКОЛЕВОЙ ОСУШКИ 2008
  • Вышиваный Иван Григорьевич
  • Костюков Валентин Ефимович
  • Москалев Игорь Николаевич
RU2361196C1
УСТРОЙСТВО ДЛЯ ПОВЕРКИ ГИГРОМЕТРОВ ПРИРОДНОГО ГАЗА 2009
  • Кузнецов Сергей Анатольевич
  • Москалев Игорь Николаевич
  • Чистяков Алексей Олегович
RU2395824C1
СПОСОБ ОПРЕДЕЛЕНИЯ ВЛАГОСОДЕРЖАНИЯ ГАЗОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2010
  • Иванов Юрий Михайлович
  • Катушкин Владимир Петрович
  • Косенков Борис Владимирович
  • Ураков Виктор Алексеевич
RU2450262C1
СПОСОБ ОПРЕДЕЛЕНИЯ ВЛАГОСОДЕРЖАНИЯ ГАЗОВ 2013
  • Иванов Юрий Михайлович
  • Катушкин Владимир Петрович
  • Ураков Виктор Алексеевич
RU2548061C1
Эластомерная композиция для изготовления резиновых уплотнителей 2014
  • Осовская Ираида Ивановна
  • Сафонов Юрий Константинович
  • Ростовцева Ольга Сергеевна
  • Савина Екатерина Владимировна
  • Левич Владимир Евгеньевич
RU2619693C2
УСТРОЙСТВО ДЛЯ ПОВЕРКИ КОНДЕНСАЦИОННЫХ ГИГРОМЕТРОВ - ГЕНЕРАТОР ВЛАЖНОСТИ ГАЗА 1998
  • Москалев И.Н.
  • Кориткин И.П.
RU2167442C2
СПОСОБ ЭКСПРЕССНОГО ОПРЕДЕЛЕНИЯ ВЛАГОСОДЕРЖАНИЯ В ПРОДУКЦИИ ГАЗОВЫХ СКВАЖИН 2004
  • Шапченко М.М.
  • Кирсанов С.А.
  • Варламов В.П.
  • Жигалин В.А.
RU2255218C1
Способ определения пористости 1990
  • Перов Юрий Юрьевич
  • Кружкова Елена Юрьевна
SU1783380A1
Гигрометр 1990
  • Дятлов Валерий Николаевич
  • Паутов Геннадий Антонович
  • Семенов Владислав Алексеевич
SU1744590A1

Реферат патента 2014 года СПОСОБ ОПРЕДЕЛЕНИЯ ВЛАГОСОДЕРЖАНИЯ ВОЗДУХА

Изобретение относится к области измерения влагосодержания воздуха (газов), в частности может быть использовано для поверки гигрометров без демонтажа с места установки. Способ определения влагосодержания заключается в том, что измерительный сосуд известного объема заполняют сухим воздухом и взвешивают. Затем измерительный сосуд заполняют исследуемым воздухом и взвешивают, фиксируют значение температуры и давления исследуемого воздуха и, используя измеренные значения. Далее определяют влагосодержание d исследуемого воздуха по формуле:

, г/кг сух.,

где m1 - масса измерительного сосуда с сухим воздухом, г;

m2 - масса измерительного сосуда с исследуемым воздухом, г;

V - внутренний объем измерительного сосуда, литр;

Рив - атмосферное давление исследуемого воздуха, мм рт.ст.;

Тив - температура исследуемого воздуха, °С;

gn - удельный вес пара, г/литр (gn=0,803 г/литр);

gc - удельный вес сухого воздуха, г/литр (gc=1,2928 г/литр);

Р0 - нормальное давление, мм рт.ст.(Р0=760 мм рт.ст.);

Т0 - нормальная температура °С(T0=273°С).

Техническим результатом является снижение эксплуатационных и временных затрат, повышение точности и надежности измерений. 1 ил.

Формула изобретения RU 2 505 804 C1

Способ определения влагосодержания воздуха, заключающийся в прямом взвешивании, отличающийся тем, что измерительный сосуд известного объема заполняют сухим воздухом и взвешивают, затем измерительный сосуд заполняют исследуемым воздухом и взвешивают, фиксируют значение температуры и давления исследуемого воздуха и, используя измеренные значения, определяют влагосодержание d исследуемого воздуха по формуле:
, г/кг сух.
где m1 - масса измерительного сосуда с сухим воздухом, г;
m2 - масса измерительного сосуда с исследуемым воздухом, г;
V - внутренний объем измерительного сосуда, литр;
Рив - атмосферное давление исследуемого воздуха, мм рт.ст.;
Тив - температура исследуемого воздуха, °С;
gn - удельный вес пара, г/литр (gn=0,803 г/литр);
gc - удельный вес сухого воздуха, г/литр (gc=1,2928 г/литр);
Р0 - нормальное давление, мм рт.ст.(Р0=760 мм рт.ст.);
Т0 - нормальная температура °С(Т0=273°С).

Документы, цитированные в отчете о поиске Патент 2014 года RU2505804C1

Берлинер М.А
Метод полного поглощения
Измерения влажности
- М.: Энергия, с.349-351, 1973
Устройство для определения влажности весовым методом 1978
  • Мардер Залман Меерович
  • Климанов Виктор Петрович
  • Деев Владимир Николаевич
  • Стронов Виктор Васильевич
SU672553A1
Установка для определения влагоотдачи материалов 1981
  • Витязь Петр Александрович
  • Шелег Валерий Константинович
  • Александров Валерий Михайлович
  • Капцевич Вячеслав Михайлович
SU972322A1
US 20010039831 A1, 15.11.2001.

RU 2 505 804 C1

Авторы

Иванов Юрий Михайлович

Катушкин Владимир Петрович

Косенков Борис Владимирович

Ураков Виктор Алексеевич

Даты

2014-01-27Публикация

2012-07-24Подача