СПОСОБ ОПРЕДЕЛЕНИЯ ПРОЧНОСТНЫХ ХАРАКТЕРИСТИК И ВЕЛИЧИНЫ ЗЕРНА В МЕТАЛЛИЧЕСКИХ МАТЕРИАЛАХ И СПЛАВАХ Российский патент 2014 года по МПК G01N33/20 

Описание патента на изобретение RU2505811C1

Изобретение относится к области моделирования технологических процессов, в частности к моделированию методами конечно-элементного (МКЭ) анализа горячего пластического деформирования металлических материалов и сплавов в процессах обработки металлов давлением (ОМД). Данный способ может применяться при проведении научных исследований и в промышленности.

Известен способ определения прочностных характеристик и величины зерна в металлических материалах и сплавах, включающий изготовление заготовки, се нагрев, деформацию, охлаждение, определение полученного напряженно-деформированного состояния и распределение полученного размера зерна (см. напр. DE 2005014221, МПК B21J 5/00 от 05.10.2006)

Недостатком известного способа является то, что он не позволяет получать образцы с различной микроструктурой, размером зерна для определения, в результате моделирования горячего пластического формоизменения металлических материалов и сплавов, величин прочностных характеристик, таких как прочность, твердость, пластичность, и размера зерна в образцах в зависимости от степеней их деформации и режимов охлаждения, включающих начальную температуру и скорость охлаждения.

В основу изобретения поставлена задача получить образцы с различной микроструктурой, размером зерна для определения в результате моделирования горячего пластического формоизменения металлических материалов и сплавов, величин прочностных характеристик, таких как прочность, твердость, пластичность, и размера зерна в образцах в зависимости от степеней их деформации и режимов охлаждения, включающих начальную температуру и скорость охлаждения.

Поставленная задача решается тем, что в способе определения прочностных характеристик и величины зерна в металлических материалах и сплавах, включающем изготовление заготовки, ее нагрев, деформацию, охлаждение, определение полученного напряженно-деформированного состояния и распределение полученного размера зерна, напряженно-деформированного состояния испытываемых заготовок, для экспериментальных исследований изготавливают не менее двух заготовок клиновидной формы и после их нагрева до различной температуры производят деформацию каждой заготовки методом продольной прокатки начиная с узкого конца, а охлаждение производят на различных скоростях охлаждения для обеспечения формирования различных прочностных характеристик и размера зерна, каждую заготовку разделяют не менее чем на два образца, определяют металлографическими исследованиями размер зерна, испытаниями на прочность механические характеристики каждого образца, которые зависят от природы материала образца, температуры при проведении деформации и скорости охлаждения и разрабатывают математическую модель, в которой совмещают результаты экспериментальных исследований и расчеты.

Поскольку для экспериментальных исследований изготавливают не менее двух заготовок клиновидной формы и после их нагрева до различной температуры производят деформацию каждой заготовки методом продольной прокатки начиная с узкого конца, а охлаждение производят на различных скоростях охлаждения для обеспечения формирования различных прочностных характеристик и размера зерна, каждую заготовку разделяют не менее чем на два образца, определяют металлографическими исследованиями размер зерна, испытаниями на прочность механические характеристики каждого образца, которые зависят от природы материала образца, температуры при проведении деформации и скорости охлаждения и разрабатывают математическую модель, в которой совмещают результаты экспериментальных исследований и расчеты напряженно-деформированного состояния испытываемых заготовок, обеспечивается получение образцов с различной микроструктурой, размером зерна для определения в результате моделирования горячего пластического формоизменения металлических материалов и сплавов, величин прочностных характеристик, таких как прочность, твердость, пластичность, и размера зерна в образцах в зависимости от степеней их деформации и режимов охлаждения, включающих начальную температуру и скорость охлаждения.

На фиг.1 показана клиновидная заготовка; на фиг.2 - схема прокатки клиновидной заготовки; на фиг.3 - клиновидная заготовка после продольной прокатки; на фиг.4 - схема выреза образцов из деформированной заготовки; на фиг.5 - результаты испытаний образцов на растяжной машине типа Instron; на фиг.6 - результаты моделирования прокатки клиновидной заготовки, где а) распределение деформаций, б) распределение температур.

Заявленный способ определения прочностных характеристик и величины зерна в металлических материалах и сплавах осуществляют следующим образом.

Для экспериментальных исследований изготавливают не менее двух заготовок клиновидной формы (фиг.1) из металлического материала или сплава. На боковой поверхности каждой клиновидной заготовки через равные промежутки наносят вертикальные насечки для определения в последующем распределения степени деформации по длине заготовки после прокатки. После нагрева заготовок до различной температуры производят деформацию каждой заготовки методом продольной прокатки начиная с узкого конца, который выполнен под углом α (фиг.2). Чем больше угол α, длипа заготовки L и соответственно ее толщина Н, тем большая величина степени деформации может быть реализована в ходе одного эксперимента. Охлаждение деформированных заготовок (фиг.3) производят на различных скоростях охлаждения для обеспечения формирования различных прочностных характеристик и размера зерна. Каждую деформированную заготовку (фиг.4) разделяют не менее чем на два образца и на растяжной машине, например Instron, автоматически определяют значения пределов текучести и прочности в зависимости от условий иагружения (фиг.5). Эти механические характеристики зависят от природы материала образца, его напряженно-деформированного состояния, температуры в ходе деформации и скорости охлаждения. Металлографическими исследованиями определяют размер зерна.

По результатам испытаний строится функциональная зависимость:

D=Dб*Km*Kε*Kτ, где

D - расчетный параметр, например размер зерна, предел прочности и др.;

Dб - расчетное значение параметра при базовых значениях температуры деформации, степени деформации и скорости охлаждения;

Km, Kε, Kτ - поправочные коэффициенты, корректирующие базовую величину D в зависимости от соответственно температуры, степени деформации и скорости охлаждения.

Затем выполняют конечно-элементное математическое моделирование процесса прокатки заготовок клиновидной формы, например, в программе DeForm 3D. Параметры моделирования - контактное трение, геометрия зоны очага деформации, температурно-скоростной режим выбираются таким образом, чтобы в результате получить модель максимально приближенную к реально деформированной заготовке. Результатом моделирования является численная картина распределения напряженно - деформированного состояния по объему образца (фиг.6а и 6б).

На заключительном этапе создают математическую модель, которая совмещает результаты экспериментов и расчеты напряженно-деформированного состояния испытываемых заготовок, то есть результаты физических исследований такие как прочность, твердость, пластичность, полученные в зависимости от степени деформации и условий охлаждения с картиной распределения напряженно-деформированного состояния полученной методами конечно-элементного математического моделирования.

Предложенный способ позволяет снизить количество физических экспериментальных исследований за счет использования заготовок клиновидной формы, не требует изготовления специального оборудования и инструмента, имеет низкую себестоимость, а качество итоговых данных обладает высокой точностью и обеспечивает решение поставленной задачи.

Похожие патенты RU2505811C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ СЛОИСТОГО КОМПОЗИЦИОННОГО МАТЕРИАЛА НА ОСНОВЕ АЛЮМИНИЕВЫХ СПЛАВОВ И НИЗКОЛЕГИРОВАННОЙ СТАЛИ 2013
  • Павлова Вера Ивановна
  • Зайцев Денис Валерьевич
  • Зыков Сергей Алексеевич
  • Полякова Ирина Николаевна
  • Осокин Евгений Петрович
RU2552464C1
СПОСОБ ПРОИЗВОДСТВА РУЛОНОВ ГОРЯЧЕКАТАНОЙ ПОЛОСЫ ИЗ КРИОГЕННОЙ КОНСТРУКЦИОННОЙ СТАЛИ 2019
  • Полецков Павел Петрович
  • Гущина Марина Сергеевна
  • Алексеев Даниил Юрьевич
  • Денисов Сергей Владимирович
  • Брайчев Евгений Викторович
  • Стеканов Павел Александрович
RU2720286C1
Способ производства стального проката 2020
  • Шиляев Павел Владимирович
  • Урцев Владимир Николаевич
  • Шмаков Антон Владимирович
  • Хабибулин Дим Маратович
  • Корнилов Владимир Леонидович
  • Капцан Феликс Виленович
  • Фомичев Александр Валерьевич
  • Горностырев Юрий Николаевич
  • Лобанов Михаил Львович
  • Мокшин Евгений Дмитриевич
  • Дегтярев Василий Николаевич
  • Урцев Николай Владимирович
RU2724217C1
СПОСОБ ПРОИЗВОДСТВА ГОРЯЧЕГО ПРОКАТА ИЗ МИКРОЛЕГИРОВАННЫХ СТАЛЕЙ 2012
  • Денисов Сергей Владимирович
  • Корнилов Владимир Леонидович
  • Демидченко Юрий Павлович
  • Стеканов Павел Александрович
  • Шмаков Антон Владимирович
  • Горностырев Юрий Николаевич
  • Урцев Владимир Николаевич
  • Хабибулин Дим Маратович
  • Дегтярев Василий Николаевич
RU2519719C1
СПОСОБ ДЕФОРМИРОВАНИЯ ДЛЯ ПОЛУЧЕНИЯ ЗАГОТОВОК В СУБМИКРОКРИСТАЛЛИЧЕСКОМ И НАНОСТРУКТУРИРОВАННОМ СОСТОЯНИИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2010
  • Шаркеев Юрий Петрович
  • Глухов Иван Александрович
  • Ерошенко Анна Юрьевна
  • Коробицын Геннадий Петрович
  • Толмачев Алексей Иванович
RU2436847C1
Способ построения зависимостей рекристаллизации 2023
  • Галкин Владимир Викторович
  • Гаврилов Геннадий Николаевич
  • Вашурин Алексей Вячеславович
  • Баженов Евгений Олегович
  • Итальянцев Даниил Сергеевич
RU2817327C1
СПОСОБ ОБРАБОТКИ КРУПНОГАБАРИТНЫХ ЗАГОТОВОК ИЗ ТИТАНОВЫХ СПЛАВОВ 2010
  • Салищев Геннадий Алексеевич
  • Жеребцов Сергей Валерьевич
  • Лопатин Николай Валерьевич
  • Дьяконов Григорий Сергеевич
RU2439195C1
СПОСОБ ВИНТОВОЙ ПРОКАТКИ КРУГЛЫХ ПРОФИЛЕЙ 1994
  • Галкин Сергей Павлович
  • Карпов Борис Владимирович
  • Михайлов Виктор Константинович
  • Романцев Борис Алексеевич
RU2073572C1
СПОСОБ ИЗГОТОВЛЕНИЯ ТОНКИХ ЛИСТОВ ИЗ ДВУХФАЗНОГО ТИТАНОВОГО СПЛАВА И ИЗДЕЛИЕ ИЗ ЭТИХ ЛИСТОВ 2013
  • Ледер Михаил Оттович
  • Козлов Александр Николаевич
  • Берестов Александр Владимирович
RU2555267C2
СПОСОБ ПОЛУЧЕНИЯ БИМЕТАЛЛОВ ИЗ НИЗКОЛЕГИРОВАННОЙ СТАЛИ И АЛЮМИНИЕВЫХ СПЛАВОВ 2008
  • Орыщенко Алексей Сергеевич
  • Осокин Евгений Петрович
  • Павлова Вера Ивановна
  • Полякова Ирина Николаевна
  • Зыков Сергей Алексеевич
RU2368475C1

Иллюстрации к изобретению RU 2 505 811 C1

Реферат патента 2014 года СПОСОБ ОПРЕДЕЛЕНИЯ ПРОЧНОСТНЫХ ХАРАКТЕРИСТИК И ВЕЛИЧИНЫ ЗЕРНА В МЕТАЛЛИЧЕСКИХ МАТЕРИАЛАХ И СПЛАВАХ

Изобретение относится к области моделирования технологических процессов, в частности к моделированию методами конечно-элементного (МКЭ) анализа горячего пластического деформирования металлических материалов и сплавов в процессах обработки металлов давлением (ОМД). Сущность: изготавливают не менее двух заготовок клиновидной формы и после их нагрева до различной температуры производят деформацию каждой заготовки методом продольной прокатки начиная с узкого конца, а охлаждение производят на различных скоростях охлаждения для обеспечения формирования различных прочностных характеристик и размера зерна. Каждую заготовку разделяют не менее чем на два образца, определяют металлографическими исследованиями размер зерна, испытаниями на прочность механические характеристики каждого образца, температуры при проведении деформации и скорости охлаждения. Разрабатывают математическую модель, в которой совмещают результаты экспериментальных исследований и расчеты напряженно-деформированного состояния испытываемых заготовок. Технический результат: снижение количества физических экспериментальных исследований и повышение качества итоговых данных. 6 ил.

Формула изобретения RU 2 505 811 C1

Способ определения прочностных характеристик и величины зерна в металлических материалах и сплавах, включающий изготовление заготовки, ее нагрев, деформацию, охлаждение, определение полученного напряженно-деформированного состояния и распределение полученного размера зерна, отличающийся тем, что для экспериментальных исследований изготавливают не менее двух заготовок клиновидной формы и после их нагрева до различной температуры производят деформацию каждой заготовки методом продольной прокатки, начиная с узкого конца, а охлаждение производят на различных скоростях охлаждения для обеспечения формирования различных прочностных характеристик и размера зерна, каждую заготовку разделяют не менее чем на два образца, определяют металлографическими исследованиями размер зерна, испытаниями на прочность механические характеристики каждого образца, которые зависят от природы материала образца, температуры при проведении деформации и скорости охлаждения и разрабатывают математическую модель, в которой совмещают результаты экспериментальных исследований и расчеты напряженно-деформированного состояния испытываемых заготовок.

Документы, цитированные в отчете о поиске Патент 2014 года RU2505811C1

Способ микроскопического анализа металлов и сплавов в вакууме или в атмосфере различных газов 1948
  • Гудцов Н.Т.
  • Зудин И.Ф.
  • Лозинский М.Г.
SU82641A1
Способ испытания образцов материалов на термическую усталость 1984
  • Третьяченко Георгий Николаевич
  • Кравчук Леонид Васильевич
  • Куриат Ростислав Иванович
  • Семенов Георгий Романович
SU1173256A1
Способ испытаний образцов на термическую усталость 1986
  • Третьяченко Георгий Николаевич
  • Барило Виктор Григорьевич
SU1337729A1
CN 101738371 А, 16.06.2010.

RU 2 505 811 C1

Авторы

Галкин Виктор Иванович

Палтиевич Андрей Романович

Анохин Александр Олегович

Галкин Евгений Владимирович

Преображенский Евгений Владимирович

Евсеев Павел Сергеевич

Даты

2014-01-27Публикация

2012-06-14Подача