МЕХАНИЗМ ФОКУСИРОВКИ АЭРОФОТОАППАРАТА Российский патент 2014 года по МПК G03B13/32 

Описание патента на изобретение RU2506618C1

Изобретение относится к оптическому приборостроению, и может быть использовано для создания аэрофотоаппарата.

Известен механизм компенсации сдвига изображения в аэрофотоаппарате (патент РФ №2336547, МПК G02B 27/64, опубл. 20.10.2008 г.), в котором выравнивающий стол с приемником оптического излучения при помощи привода перемещается возвратно-поступательно в плоскости, перпендикулярной оптической оси. Введена обратная связь в виде потенциометра, закрепленного на корпусе. При таком раздельном выполнении привода и потенциометра не происходит одновременного начала их работы, что вносит ошибку в систему управление приводом и снижает точность его работы.

Наиболее близким к предлагаемому изобретению является механизм фокусировки (патент РФ №2275665, МПК G03B 37/00, опубликованный 27.04. 2006 г.), содержащий исполнительный механизм и привод фокусировки. Выравнивающий стол с приемником оптического излучения установлен с возможностью перемещения вдоль оптической оси в корпусе механизма компенсации сдвига изображения, который установлен на опорах, расположенных равномерно по периметру корпуса параллельно оптической оси. По крайней мере, одна из этих опор выполнена в виде винтовой кинематической пары, которая вместе с приводом фокусировки образует механизм фокусировки. Винтовая кинематическая пара выполнена в виде дифференциального винта, состоящего из винта и резьбовой втулки, имеющей резьбу с меньшим шагом. Наличие в кинематической цепи между потенциометром обратной связи и конечным звеном, а именно, с приемником оптического излучения, значительного люфта, не обеспечивает требуемого качества снимков.

Задачей изобретения является создание надежного и качественного механизма фокусировки аэрофотоаппарата, с повышенными экспуатационными характеристиками.

Технический результат - увеличение точности работы механизма фокусировки, увеличение надежности работы аэрофотоаппарата, повышение качества снимков.

Это достигается тем, что в механизме фокусировки аэрофотоаппарата, содержащем привод фокусировки и исполнительный механизм, выполненный в виде дифференциальных винтов, на первых торцах которых установлено основание с приемником оптического излучения с возможностью перемещения вдоль оптической оси аэрофотоаппарата, параллельно которой расположены оси дифференциальных винтов. В отличие от известного, привод фокусировки и исполнительный механизм закреплены на плате, кроме того, введен потенциометр обратной связи расположенный на втором торце одного из дифференциальных винтов, второй торец другого дифференциального винта снабжен толкателем, кинематически связанным с кулачком, контактирующим с подпружиненными нажимными винтами и микропереключателями ограничения рабочего хода механизма фокусировки. Кроме этого, введен механический упор, расположенный на втором торце третьего дифференциального винта, ограничивающий полный ход механизма фокусировки, состоящий из дополнительной втулки, установленной на дифференциальном винте, и регулировочного винта, закрепленного через дополнительный кронштейн на плате и зафиксированного контровочной гайкой.

Изобретение поясняется чертежом, где изображена схема механизма фокусировки аэрофотоаппарата.

Механизм фокусировки состоит из платы 1, на которой размещены привод фокусировки 2 и исполнительный механизм 3. Привод фокусировки 2 выполнен из электродвигателя, зубчатых редукторов 4, которые взаимодействуют с четырьмя винтовыми кинематическими парами, выполненными в виде дифференциальных винтов 5, размещенными на кронштейнах 6, которые, в свою очередь, жестко установлены на плате 1. Один торец каждого дифференциального винта 5 выполнен в виде шаровой опоры 7, контактирующей с основанием 8, на котором размещен приемник оптического излучения 9. Все дифференциальные винты 5, кинематически связаны посредством зубчатых редукторов 4 с электродвигателем привода фокусировки 2. Механизм фокусировки снабжен потенциометром обратной связи 10, который жестко закреплен в кронштейне 6 на плате 1 механизма фокусировки таким образом, что его выходной конец, через переходную втулку 11 соединен со вторым свободным торцом одного из дифференциальных винтов 5. Таким образом, потенциометр обратной связи 10, является последним звеном в кинематической цепи механизма фокусировки, который поворачивается одновременно с поворотом дифференциального винта 5 и при этом исключаются какие либо люфты. Рабочий угол поворота оси потенциометра обратной связи 10, согласован с размером «L», ограничивающим перемещение дифференциального винта 5. Второй торец другого дифференциального винта 5 снабжен толкателем 12, кинематически взаимодействующим с кулачком 13, отключающим привод фокусировки 2 в крайних его положениях, с помощью микропереключателей 14 и 15. Для этого кулачок 13 контактирует с нажимными винтами 16, подпружиненными к нему упругими элементами 17. Микропереключатели 14 и 15 закреплены на плате 1. Второй торец третьего дифференциального винта 5 снабжен дополнительной втулкой 19, ограничивающей перемещение в сторону приемника излучения, а при обратном ходе, упором в виде регулировочного винта 20 и контровочной гайки 21. Упор установлен на дополнительном кронштейне 18, жестко закрепленном на плате 1 механизма фокусировки.

Механизм фокусировки работает следующим образом. При подаче питающих напряжений на аэрофотоаппарат в случае отсутствия расфокусировки, то есть сохранения условий, при которых механизм фокусировки был отъюстирован в заводских условиях, механизм фокусировки сохраняет свое исходное положение. Однако в процессе работы аэрофотоаппарата в режиме «СЪЕМКА» может происходить изменение высоты фотографирования, давления и температуры в отсеке носителя. Это вызывает расфокусировку аэрофотоаппарата и, как следствие, потерю качества снимков. При этом формируется управляющий сигнал, зависящий от показаний датчиков высоты, давления и температуры, посредством которых привод фокусировки 2, приводит в действие исполнительный механизм 3 - дифференциальные винты 5. Дифференциальные винты 5 посредством шаровых опор 7 перемещают основание 8, с расположенным на нем приемником оптического излучения 9. Потенциометр обратной связи 10 в цепи управления приводом фокусировки 2, поворачиваясь, меняет уровень управляющего сигнала привода фокусировки 2 до уровня внешнего управляющего сигнала. Кроме того, обеспечена защита механизма фокусировки от поломок в крайних положениях исполнительного механизма 3. Для этого толкатель 12 нажимает на кулачок 13 и, двигаясь в заданном направлении, последовательно при прямом ходе дифференциального винта 5 в сторону приемника оптического излучения 9 посредством нажимных винтов 16, нажимает на микропереключатель 14, который выключает питание привода фокусировки 2. В обратном ходе дифференциального винта 5 срабатывает микропереключатель 15, останавливая работу привода фокусировки 2. Нажимные винты 16 после регулировки моментов срабатывания микропереключателей 14 и 15 контруются гайками 21. Кроме этого, второй торец третьего дифференциального винта 5, оснащенного дополнительной втулкой 19, при прямом ходе последнего, упирается в ось зубчатого редуктора 4, а при обратном ходе упирается в регулировочный винт 20, закрепленный на дополнительном кронштейне 18. Регулировочный винт 20 после регулировки размера «L», определяющего полный рабочий ход дифференциального винта 5, контру ется гайкой 21. В случаях, когда при работе механизм фокусировки контактирует с механическими упорами, происходит остановка исполнительного механизма 3 фокусировки, но электродвигатель привода фокусировки 2 продолжает работать за счет проскальзывания фрикциона, встроенного в кинематическую цепь. Поэтому в механизме фокусировки конструктивно предусмотрена двойная защита: электрическая, посредством срабатывания микропереключателей 14 и 15 и механическая в виде дополнительной втулки 19 и регулировочного винта 20.

Преимущества предложенного технического решения по сравнению с ближайшим аналогом состоят в следующем: обеспечивается высокая точность фокусировки аэрофотоаппарата в широком диапазоне скорости и высоты полета носителя и возникающих при этом перепадов давления за счет уменьшения времени задержки сигнала обратной связи и как следствие, обеспечивается высокое качество снимков и увеличивается надежность работы аэрофотоаппарата. Таким образом, в созданном механизме фокусировки обеспечено достижение технического результата.

Похожие патенты RU2506618C1

название год авторы номер документа
АППАРАТ АЭРОФОТОТЕЛЕВИЗИОННЫЙ 2006
  • Данилов Николай Иванович
  • Бунин Александр Сергеевич
RU2307383C1
АЭРОФОТОАППАРАТ 2004
  • Данилов Николай Иванович
RU2275665C1
Универсальное мобильное устройство для выполнения аэрофотосъемки с применением различных пилотируемых воздушных средств 2021
  • Флоров Алексей Вадимович
  • Спиридонов Константин Витальевич
  • Калмыков Никита Сергеевич
  • Голубцов Сергей Андреевич
  • Минюков Кирилл Русланович
  • Мактаз Никита Дмитриевич
  • Путятин Павел Валерьевич
RU2795778C1
АЭРОФОТОАППАРАТ 2003
  • Брянцев А.Н.
  • Данилов Н.И.
RU2248026C1
АЭРОФОТОАППАРАТ (ВАРИАНТЫ) 2004
  • Данилов Н.И.
RU2263940C1
АЭРОФОТОАППАРАТ 2010
  • Данилов Николай Иванович
  • Бунин Александр Сергеевич
  • Козлов Борис Иванович
RU2451316C1
МЕХАНИЗМ КОМПЕНСАЦИИ СДВИГА ИЗОБРАЖЕНИЯ В АЭРОФОТОАППАРАТЕ 2006
  • Данилов Николай Иванович
RU2336547C1
СПОСОБ ИЗГОТОВЛЕНИЯ УСТРОЙСТВ ДЛЯ ХРАНЕНИЯ ИНФОРМАЦИИ (ВАРИАНТЫ) 1996
  • Холлен Зденек А.
  • Мерфи Кент Т.
  • Мейер Рассел А.
  • Рассел Роберт Г.
  • Монсен Кристофер Дж.
  • Депуй Чарльз
  • Хитон Херберт Е.
  • Хувер Дуглас Е.
  • Кнорр Кристофер А.
  • Андерсон Гэри
  • Паперник Дэвид Л.
  • О'Нил Холл Холлис Ii
  • Лойе Джеймс К.
  • Тейлор Вилхелм
  • Грассенс Леонардус Дж.
RU2188464C2
Устройство для проверки микропереключателей 1978
  • Иванов Игорь Борисович
  • Кисляков Михаил Августинович
SU748251A1
УСТРОЙСТВО ДЛЯ ФОКУСИРОВКИ РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ 1994
  • Корнев А.Н.
  • Голуб Ю.В.
  • Михайлов А.М.
RU2080669C1

Реферат патента 2014 года МЕХАНИЗМ ФОКУСИРОВКИ АЭРОФОТОАППАРАТА

Изобретение относится к оптическому приборостроению и может быть использовано при аэрофотосъемке. Механизм фокусировки аэрофотоаппарата содержит привод фокусировки и исполнительный механизм, выполненный в виде дифференциальных винтов. На первых торцах дифференциальных винтов установлено основание с приемником оптического излучения и с возможностью перемещения вдоль оптической оси аэрофотоаппарата. Оси дифференциальных винтов расположены параллельно оптической оси аэрофотоаппарата. Привод фокусировки и исполнительный механизм закреплены на плате. Кроме того, введен потенциометр обратной связи, расположенный на втором торце одного из дифференциальных винтов. Второй торец другого дифференциального винта снабжен толкателем, кинематически связанным с кулачком, контактирующим с подпружиненными нажимными винтами и микропереключателями ограничения рабочего хода механизма фокусировки. Введен механический упор, расположенный на втором торце третьего дифференциального винта, ограничивающий полный ход механизма фокусировки и состоящий из дополнительной втулки, установленной на дифференциальном винте, и регулировочного винта, закрепленного через дополнительный кронштейн на плате и зафиксированного контровочной гайкой. Технический результат - увеличение точности работы механизма фокусировки, увеличение надежности работы аэрофотоаппарата, повышение качества снимков. 1 ил.

Формула изобретения RU 2 506 618 C1

Механизм фокусировки аэрофотоаппарата, содержащий привод фокусировки и исполнительный механизм, выполненный в виде дифференциальных винтов, на первых торцах которых установлено основание с приемником оптического излучения с возможностью перемещения вдоль оптической оси аэрофотоаппарата, параллельно которой расположены оси дифференциальных винтов, отличающийся тем, что привод фокусировки и исполнительный механизм закреплены на плате, кроме того, введен потенциометр обратной связи, расположенный на втором торце одного из дифференциальных винтов, второй торец другого дифференциального винта снабжен толкателем, кинематически связанным с кулачком, контактирующим с подпружиненными нажимными винтами и микропереключателями ограничения рабочего хода механизма фокусировки, кроме этого, введен механический упор, расположенный на втором торце третьего дифференциального винта, ограничивающий полный ход механизма фокусировки, состоящий из дополнительной втулки, установленной на дифференциальном винте, и регулировочного винта, закрепленного через дополнительный кронштейн на плате и зафиксированного контровочной гайкой.

Документы, цитированные в отчете о поиске Патент 2014 года RU2506618C1

АЭРОФОТОАППАРАТ 2004
  • Данилов Николай Иванович
RU2275665C1
АЭРОФОТОАППАРАТ 2000
  • Ивкин А.А.
  • Шабаков Е.И.
RU2180449C2
US 2004113033, 17.06.2004
JP 8032845 А, 02.02.1996.

RU 2 506 618 C1

Авторы

Данилов Николай Иванович

Бунин Александр Сергеевич

Даты

2014-02-10Публикация

2012-07-18Подача