СПОСОБ ИЗГОТОВЛЕНИЯ МИКРОЭЛЕКТРОМЕХАНИЧЕСКОГО КЛЮЧА ДЛЯ ЗАЩИТЫ ИНФОРМАЦИОННО-ТЕЛЕКОММУНИКАЦИОННОЙ АППАРАТУРЫ КОСМИЧЕСКИХ АППАРАТОВ ПРИ ЭЛЕКТРОМАГНИТНОМ СТАРТЕ Российский патент 2014 года по МПК B81C1/00 

Описание патента на изобретение RU2509051C1

Изобретение относится к области космического приборостроения и микроэлектроники и может быть использовано для изготовления систем защиты информационно-телекоммуникационной аппаратуры космических аппаратов (ИТА КА), в частности беспилотных малогабаритных космических аппаратов.

Впервые способ получения ключа (шок сенсора) был описан в патенте США №3101069, опубл. 20.08.1963 года, НКЛ 116-114. Массогабариты ключа намного превышали сегодняшний уровень. Совершенствование ключа проводилось в направлении мнкроминиатюризации. Недостатком данного метода является то, что для изготовления ключа используются методы механической обработки, а само изделие является механическим изделием с очень низкой надежностью.

Наиболее близким к заявляемому изобретению является патент США №6619123 В2. МКЛ G01P 15/10, НКЛ 73-514.29, опубл. 16.09.2003 г., в котором изложен способ изготовления ключа с помощью ряда элементов, чувствительных к ускорению. Инерционная масса закреплена на неподвижной части с помощью изгибающегося мостика - кантилевера. При достаточно высоком ускорении инерционная масса замыкается с электродом и детектирующее устройство регистрирует отклонение. Имеется тестовый электрод, который создает электрическое поле, заставляющее инерционную массу отклониться и замкнуться на электрод. Зная напряжение, поданное на тестовый электрод, и силу, созданную этим напряжением, возможно определить минимальное ускорение, которое зарегистрирует детектирующее устройство. Каждый элемент образован рельефным элементом, к которому присоединен кантилевер, при воздействии на который ускорения чувствительная масса, сформированная на кантилевере, опускает кантилевер вниз к контактной площадке, при этом формируется детектируемый электрический сигнал. Технологической базой изготовления этого ключа являются объемная или поверхностная микромеханика. Сигнал формируется при касании к контактной площадке кантилевера с чувствительной к разному ускорению массой при воздействии перегрузки. Изготовление и надежность проводящих и контактных площадок связаны со сложностями образованного рельефа, нанесением металлизации на рельеф. Необходимо сделать 7 фотолитографий и соответствующих технологически сложных операций, использующих дорогостоящее оборудование и реактивы для создания одного интегрированного сенсорного чувствительного элемента. Ключ испытывает большие перегрузки и возникающие напряжения снижают надежность работы ключа в системе защиты ИТА КА. Для контроля детектируемых величин ускорений специально выделены группы элементов, формирующие эталонный сигнал.

При этом топологические и геометрические размеры ключа уменьшаются при увеличении воздействующих ускорений. Возникает проблема изготовления балок и опор с меньшими размерами, более высокими требованиями по адгезии между материалами, с повышенными требованиями к совмещению.

Проблема изготовления с такими требованиями обычно решается с использованием еще более дорогостоящего оборудования, обеспечивающего высокую степень совмещения последовательно изготавливаемых технологических слоев микроэлектромеханического ключа на стадиях формирования скрытого изображения в слое фоторезиста, изготовления элементов ключа сухим реактивным травлением с высоким аспектным отношением, нанесением металлических слоев для проводящих дорожек и контактных площадок по сложному развитому рельефу, где возникает проблема обрыва металлизации на краях элементов, изготовленных с высокими аспектными соотношениями.

Недостатком способа является низкая технологичность, неопределенность выбора пороговых величин ускорения, необходимость использования дорогостоящих оборудования и химических реагентов.

Задачей изобретения является повышение технологичности, снижение трудоемкости способа получения групп микроэлектромеханических ключей, повышение надежности срабатывания при достижении пороговых величин ускорений при электромагиитоэлектрическом старте беспилотных малых космических аппаратов.

Для реализации поставленной задачи в способе получения микроэлектромеханического ключа, для защиты информационно-телекоммуникационной аппаратуры космических аппаратов при электромагнитном старте, включающий формирование чувствительного блока, состоящего из балки и опор, примыкающего при воздействии ускорения к подложке с помощью контактных элементов, формируя сигнал, указывающий на порог величины ускорения, по которому судят о перегрузке аппаратуры, формируют травлением через маску на плоской полупроводниковой подложке проводящие дорожки и контактные площадки из системы металлов ванадий-алюминий, а чувствительный элемент получают с помощью двухслойной системы металлов железо-никель, которые осаждают друг на друга в едином технологическом цикле термического испарения в вакууме, которые затем травят через маску в водном растворе соляной кислоты до получения заданной формы чувствительного блока - балки из никеля и опор из железа в одном технологическом цикле.

При этом подложка может быть выполнена из любой полупроводниковой или диэлектрической подложки.

Для обеспечения адгезии железа к подложке используется напыление тонкого слоя соответствующего металлического материала, которые наносят, например, путем магнетронного распыления.

Для уменьшения наводороживания железа в водный раствор соляной кислоты добавляют ингибиторы.

В результате описываемых технологических действий топологические и геометрические размеры ключа уменьшаются при увеличении воздействующих ускорений. Возникает проблема изготовления балок и опор с меньшими размерами, более высокими требованиями по адгезии между материалами, с повышенными требованиями к совмещению.

Изобретение поясняется чертежами, где на фиг 1 изображена структурная схема микроэлектромеханического ключа, на фиг.2 - фотография изготовленного экспериментального образца кристалла с микроэлектромеханическими ключами для модуля защиты ИТА КА; а на фиг.3 - фотография модуля защиты ИТА КА в сборе.

На чертеже изображены: подложка 1 из кремния, чувствительный элемент, состоящий из опор 2 и балки 3, с инерционной массой.

Способ осуществляют следующим образом.

Для получения микроэлектромеханических ключей для их дальнейшего использования в качестве элементов системы защиты ИТА КА предлагается использовать широко распространенный и в связи с этим недорогой метод химического раздельного интенсивного травления металлов. На подложку 1 из кремния в едином цикле термического нанесения в вакууме из разных мишеней в одной вакуумной камере наносят слои железа и никеля. При этом достигается высокая адгезия между слоями. Одной фотолитографией формируют самосовмещенные топологии балки 3 (с инерционной массой, находящейся на упругой части балки) и опор 2 с соответствующими технологическими допусками. Последующее травление с разными скоростями железа и никеля формирует микроэлектромеханический ключ. Для травления материалов балки и опор выбран жидкостной метод травления в водном растворе 20% соляной кислоты при температуре 40°С в течение 35 минут.

Для формирования системы защиты ИТА КА к группе микроэлектромеханических ключей на плоской кремниевой подложке формируются металлизация (токопроводящие дорожки) и контактные площадки из системы ванадий-алюминий. Для этого используется одна фотолитография. Причем формирование металлизации и контактных площадок может быть выполнено до и после формирования микроэлектромеханических ключей.

В рамках экспериментальной работы была получена серия образцов микроэлектромеханических ключей, данные о которых представлены в таблицах 1, 2.

Таблица 1 - Геометрические размеры ключа первого типа Геометрический размер Значение, мкм Длина ключа 600,0 Длина упругой части (балки) ключа 400,0 Длина и ширина опоры и инерционной массы 100,0 Ширина упругой части (балки) ключа 36,0 Высота инерционной массы 16,2 Высота опор 1,5 Высота упругой части (балки) ключа 2,0 Таблица 2 - Геометрические размеры ключа второго типа Геометрический размер Значение, мкм Длина ключа 700,0 Длина упругой части (балки) ключа 500,0 Длина и ширина опоры и инерционной массы 100,0 Ширина упругой части (балки) ключа 100,0 Высота инерционной массы 18,5 Высота опор 1,5 Высота упругой части (балки) ключа 2,0

Преимуществом изобретения по сравнению с прототипом и другими известными методами являются повышение технологичности за счет исключения пяти фотолитографических и сопутствующих им технологических процессов, формирование самосовмещенных балок и опор в одном технологическом цикле, увеличение адгезионной силы между слоями микроэлектромеханического ключа при формировании слоев ключа в едином цикле вакуумного напыления, повышение надежности системы защиты ИТА КА за счет формирования слоев металлизации и контактных площадок на плоской, безрельефной подложке, без риска обрыва металлизации на рельефных элементах с высоким аспектным отношением.

Похожие патенты RU2509051C1

название год авторы номер документа
СПОСОБ ИЗГОТОВЛЕНИЯ ЧУВСТВИТЕЛЬНОГО ЭЛЕМЕНТА ДАТЧИКА ДАВЛЕНИЯ ЖИДКИХ И ГАЗООБРАЗНЫХ СРЕД 2009
  • Березин Сергей Валерьевич
  • Хорев Максим Дмитриевич
RU2465681C2
ТУННЕЛЬНЫЙ НАНОСЕНСОР МЕХАНИЧЕСКИХ КОЛЕБАНИЙ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2007
  • Жукова Светлана Александровна
  • Жуков Андрей Александрович
RU2362221C1
РУЧНАЯ ГРАНАТА 2012
  • Борзов Андрей Борисович
  • Лихоеденко Константин Павлович
  • Цыганков Виктор Юрьевич
  • Апресян Арсен Манвелович
RU2512051C1
МИКРОЭЛЕКТРОМЕХАНИЧЕСКИЙ ВЗРЫВАТЕЛЬ 2012
  • Борзов Андрей Борисович
  • Лихоеденко Константин Павлович
  • Цыганков Виктор Юрьевич
  • Апресян Арсен Манвелович
RU2522323C1
СПОСОБ ИЗГОТОВЛЕНИЯ ГИБКИХ РЕЛЬЕФНЫХ ПЕЧАТНЫХ ПЛАТ ДЛЯ ЭЛЕКТРОННОЙ И ЭЛЕКТРОТЕХНИЧЕСКОЙ АППАРАТУРЫ 2012
  • Сасов Юрий Дмитриевич
  • Усачев Вадим Александрович
  • Голов Николай Александрович
  • Кудрявцева Наталья Валерьевна
RU2496286C1
СПОСОБ ИЗГОТОВЛЕНИЯ ТРЕХМЕРНОГО ЭЛЕКТРОННОГО ПРИБОРА 2012
  • Сасов Юрий Дмитриевич
  • Усачев Вадим Александрович
  • Голов Николай Александрович
  • Кудрявцева Наталья Валерьевна
RU2498453C1
МИКРОЭЛЕКТРОМЕХАНИЧЕСКИЙ РАКЕТНЫЙ ДВИГАТЕЛЬ 2012
  • Цыганков Виктор Юрьевич
  • Павлов Григорий Львович
  • Лихоеденко Константин Павлович
  • Борзов Андрей Борисович
  • Сучков Виктор Борисович
RU2498103C1
СПОСОБ ИЗГОТОВЛЕНИЯ ТУННЕЛЬНОГО СЕНСОРА МЕХАНИЧЕСКИХ КОЛЕБАНИЙ 2008
  • Жукова Светлана Александровна
  • Обижаев Денис Юрьевич
  • Гринькин Евгений Анатольевич
RU2388682C1
СПОСОБ ИЗГОТОВЛЕНИЯ СВЧ ТРЕХМЕРНОГО МОДУЛЯ 2012
  • Сасов Юрий Дмитриевич
  • Усачев Вадим Александрович
  • Голов Николай Александрович
  • Кудрявцева Наталья Валерьевна
RU2498454C1
СПОСОБ ИЗГОТОВЛЕНИЯ ШУНТИРУЮЩЕГО ДИОДА ДЛЯ СОЛНЕЧНЫХ БАТАРЕЙ КОСМИЧЕСКИХ АППАРАТОВ 2011
  • Басовский Андрей Андреевич
  • Жуков Андрей Александрович
  • Дидык Павел Игоревич
  • Анурова Любовь Владимировна
RU2479888C1

Иллюстрации к изобретению RU 2 509 051 C1

Реферат патента 2014 года СПОСОБ ИЗГОТОВЛЕНИЯ МИКРОЭЛЕКТРОМЕХАНИЧЕСКОГО КЛЮЧА ДЛЯ ЗАЩИТЫ ИНФОРМАЦИОННО-ТЕЛЕКОММУНИКАЦИОННОЙ АППАРАТУРЫ КОСМИЧЕСКИХ АППАРАТОВ ПРИ ЭЛЕКТРОМАГНИТНОМ СТАРТЕ

Изобретение относится к области космического приборостроения и микроэлектроники и может быть использовано для систем защиты информационно-телекоммуникационной аппаратуры ИТА беспилотных малых космических аппаратов от высоких стартовых перегрузок на заданных пороговых значениях. Изобретение обеспечивает повышение технологичности, снижение трудоемкости способа получения групп микроэлектромеханических ключей, повышение надежности срабатывания при достижении пороговых величин ускорений при электромагнитоэлектрическом старте беспилотных малых космических аппаратов. В способе получения микроэлектромеханического ключа, являющегося основой системы защиты информационно-телекоммуникационной аппаратуры космических аппаратов при электромагнитном старте с перегрузками от нескольких тысяч до десятков тысяч единиц ускорений свободного падения тела, формируют чувствительный блок, состоящий из балки и опор, примыкающий при воздействии ускорения к подложке с помощью контактных элементов, формируя при этом сигнал, указывающий на порог величины ускорения, по которому судят о перегрузке аппаратуры, формируют травлением через маску на плоской полупроводниковой подложке проводящие дорожки и контактные площадки из системы металлов ванадий-алюминий, а чувствительный блок получают с помощью двухслойной системы металлов железо-никель, которые осаждают друг на друга в едином технологическом цикле термического испарения в вакууме, которые затем травят через маску в водном растворе соляной кислоты до получения заданной формы чувствительного блока в одном технологическом цикле. 4 з.п. ф-лы, 3 ил., 2 табл.

Формула изобретения RU 2 509 051 C1

1. Способ изготовления микроэлектромеханического ключа для защиты информационно-телекоммуникационной аппаратуры космических аппаратов при электромагнитном старте, включающий формирование чувствительного блока, состоящего из балки и опор, примыкающего при воздействии ускорения к подложке с помощью контактных элементов, формируя сигнал, указывающий на порог величины ускорения, по которому судят о перегрузке аппаратуры, отличающийся тем, что формируют травлением через маску на плоской полупроводниковой подложке проводящие дорожки и контактные площадки из системы металлов ванадий-алюминий, а чувствительный блок получают с помощью двухслойной системы металлов железо-никель, которые осаждают друг на друга в едином технологическом цикле термического испарения в вакууме, которые затем травят через маску в водном растворе соляной кислоты до получения заданной формы чувствительного блока - балки из никеля и опор из железа в одном технологическом цикле.

2. Способ изготовления микроэлектромеханического ключа для защиты информационно-телекоммуникационной аппаратуры космических аппаратов при электромагнитном старте по п.1, отличающийся тем, что в качестве подложки используется любая полупроводниковая или диэлектрическая подложка.

3. Способ изготовления микроэлектромеханического ключа для защиты информационно-телекоммуникационной аппаратуры космических аппаратов при электромагнитном старте по п.1, отличающийся тем, что для обеспечения адгезии железа к подложке используется напыление тонкого слоя соответствующего металлического материала.

4. Способ изготовления микроэлектромеханического ключа для защиты информационно-телекоммуникационной аппаратуры космических аппаратов при электромагнитном старте по п.1, отличающийся тем, что в водный раствор соляной кислоты добавляют ингибиторы для уменьшения наводороживания железа.

5. Способ изготовления микроэлектромеханического ключа для защиты информационно-телекоммуникационной аппаратуры космических аппаратов при электромагнитном старте по п.1, отличающийся тем, что металлические слои наносят путем магнетронного распыления.

Документы, цитированные в отчете о поиске Патент 2014 года RU2509051C1

US 7653985 B1, 02.02.2010
US 6619123 B2, 16.09.2003
US 6682871 B2, 27.01.2004
US 6875936 B1, 05.04.2005
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. 1921
  • Богач Б.И.
SU3A1
ИНТЕГРАЛЬНЫЙ БАЛОЧНЫЙ ТЕНЗОПРЕОБРАЗОВАТЕЛЬ 1992
  • Данилова Н.Л.
  • Зимин В.Н.
  • Синицин Е.В.
  • Салахов Н.З.
  • Шелепин Н.А.
  • Небусов В.М.
RU2006993C1

RU 2 509 051 C1

Авторы

Борзов Андрей Борисович

Лихоеденко Константин Павлович

Васильев Дмитрий Александрович

Капустян Андрей Владимирович

Цыганков Виктор Юрьевич

Даты

2014-03-10Публикация

2012-07-20Подача