СПОСОБ И СИСТЕМА ДЛЯ ВЫПОЛНЕНИЯ БИОПСИИ Российский патент 2014 года по МПК A61B10/02 A61B6/03 

Описание патента на изобретение RU2510699C2

Настоящее изобретение сделано при выполнении «Договором о совместных исследованиях и разработке» с Министерством здравоохранения США (CRADA No. NCI-NIHCC-01864). Правительство США может обладать определенными правами на настоящее изобретение.

Настоящая заявка относится к медицинским процедурам, в частности, связанным с биопсиями, и изложена с конкретными ссылками на них. Однако следует принимать во внимание то, что иллюстративные варианты осуществления также могут найти применение в сочетании с другими медицинскими процедурами, размещением других медицинских устройств и т.п.

Рак предстательной железы является важнейшей проблемой здравоохранения. В США один из шести мужчин в течение своей жизни оказывается пораженным данным заболеванием. У мужчин рак предстательной железы стоит на втором месте после рака легких в качестве основной причины смерти от злокачественной опухоли.

На сегодняшний день наиболее популярным способом скрининга рака предстательной железы является скрининг простатоспецифического антигена в сыворотке с последующими шестью или более биопсиями под контролем двухмерного трансректального УЗИ в реальном времени. Как часть этой процедуры, как правило, простату делят на шесть зон равного объема. Из каждой из шести зон берут одну или несколько биопсий систематическим, но по существу ненаправляемым способом. Такую процедуру называют секстантной биопсией.

Секстантную биопсию широко применяют благодаря ее низкой стоимости и относительной простоте в сравнении с другими способами обнаружения рака предстательной железы. Однако показано, что секстантная биопсия дает значительное относительное число ложноотрицательных результатов и может допускать неточности относительно фактической локализации биопсии. Обычно результаты секстантной биопсии представлены с использованием грубой стандартной карты простаты, на которой патоморфолог вручную описывает результаты биопсии. Такая карта по существу является неточной, поскольку фактическое место биопсии не известно описывающему патоморфологу.

Сущность изобретения предоставлена в соответствии с 37 C.F.R. § 1.73, в котором требуется, чтобы краткое изложение сущности изобретения отражало природу и сущность изобретения. Она предоставлена в рамках договоренности о том, что ее не следует использовать для интерпретации или ограничения объема или значения формулы изобретения.

По одному аспекту иллюстративных вариантов осуществления способ может включать предоставление зонда с выдвигающейся иглой для биопсии; совмещение системы слежения с диагностическими изображениями; получение изображения целевой области в организме пациента, используя систему визуализации; выполнение процедуры биопсии целевой области; получение ультразвуковой визуализации целевой области во время процедуры биопсии; получение данных слежения для локализации по меньшей мере одного из: иглы для биопсии и зонда во время процедуры биопсии; обозначение места биопсии для проведения процедуры биопсии на ультразвуковой визуализации и преобразование места биопсии из ультразвуковой визуализации в место биопсии на диагностических изображениях, основываясь на данных слежения и совмещении системы слежения с диагностическими изображениями.

По другому аспекту иллюстративных вариантов осуществления машиночитаемый носитель информации может содержать хранящийся на нем исполняемый компьютером код, причем исполняемый компьютером код сконфигурирован так, чтобы предписывать вычислительному устройству, в которое загружен машиночитаемый носитель информации, выполнять этапы совмещения системы слежения с диагностическими изображениями, причем система слежения выполнена с возможностью слежения по меньшей мере за одним из: зонда, иглы для биопсии, выдвигающейся из зонда, и направителя иглы, функционально соединенного с зондом; получения ультразвуковой визуализации целевой области и получения данных слежения для локализации по меньшей мере одного из: зонда, иглы для биопсии и направителя иглы во время процедуры биопсии и переноса обозначения места биопсии, связанного с процедурой биопсии, из ультразвуковой визуализации на диагностические изображения, основываясь на данных слежения и совмещении системы слежения с диагностическими изображениями.

По другому аспекту иллюстративных вариантов осуществления система для биопсии может включать систему визуализации для получения диагностических изображений целевой области; систему слежения; зонд, содержащий выдвигающуюся иглу для биопсии, для выполнения процедуры биопсии, причем система слежения формирует данные слежения по меньшей мере одного из: зонда и иглы для биопсии; ультразвуковую систему визуализации для получения ультразвуковой визуализации целевой области и компьютер, связанный с системой слежения, системой визуализации и ультразвуковой системой визуализации. Компьютер может совмещать систему слежения с диагностическими изображениями и переносить обозначение места биопсии, связанного с процедурой биопсии, из ультразвуковой визуализации на диагностические изображения, основываясь на данных слежения и совмещении системы слежения с диагностическими изображениями.

По другому аспекту иллюстративного варианта осуществления система может объединять МРТ-томограммы и эхограммы трансректального ультразвукового исследования (TRUS) в реальном времени в процессе получения целевой биопсии простаты, чтобы объединить преимущества чувствительности МРТ и возможности ультразвуковой визуализации в реальном времени. Объединение изображений ранее полученных МРТ-томограмм и эхограмм TRUS в реальном времени могли осуществлять, используя электромагнитное слежение, которое позволяет определять положение и ориентацию ультразвукового зонда внутри организма человека (например, система глобального позиционирования in vivo). Когда простату сканировали с ультразвуком, система могла совмещать соответствующие реконструкции МРТ в нескольких плоскостях и накладывать их на эхограмму. Для компенсации движения простаты могли осуществлять совмещение на основе изображения в реальном времени.

Иллюстративные варианты осуществления, описанные в настоящем описании, обладают многими преимуществами перед современными системами и процессами, включая точное картирование мест биопсии.

Основываясь на следующем подробном описании, фигурах и прилагаемой формуле изобретения, специалисты в данной области поймут и оценят описанные выше и другие признаки и преимущества настоящего раскрытия.

На фиг.1 представлено схематическое изображение иллюстративного варианта осуществления системы для использования в биопсии;

На фиг.2 представлено схематическое изображение области простаты для выполнения биопсии;

На фиг.3 представлено схематическое изображение зонда для биопсии для использования в системе на фиг.1;

На фиг.4 представлен способ, который можно использовать посредством системы на фиг.1 для выполнения биопсии;

На фиг. 5 представлена эхограмма, сформированная системой на фиг.1, с обозначенным местом биопсии;

На фиг.6 представлено сформированное системой на фиг.1 изображение, полученное объединением магнитно-резонансной томографии (МРТ) и ультразвуковой визуализации;

На фиг.7 представлена МРТ-томограмма аксиальной проекции с обозначенным местом биопсии, сформированная системой на фиг.1;

На фиг.8 представлена МРТ-томограмма сагиттальной проекции c обозначенным местом биопсии, сформированная системой на фиг.1;

На фиг.9 представлен графический пользовательский интерфейс (GUI) системы на фиг.1 с совмещением ультразвуковой визуализации и МРТ-визуализации;

На фиг.10 представлен GUI системы на фиг.1 с совмещением ультразвуковой визуализации и МРТ-визуализации;

На фиг.11 представлен GUI системы на фиг.1 с картированием локализации биопсии, преобразованным в МРТ-визуализацию;

На фиг.12 представлены результаты процедур секстантной биопсии у десяти исследованных пациентов с использованием системы на фиг.1;

На фиг.13 представлено изображение, сформированное системой на фиг.1, на котором показаны биопсии, подтвержденные с использованием трехмерного TRUS; и

На фиг.14 представлено изображение, сформированное системой на фиг.1, на котором показаны биопсии, подтвержденные с использованием МРТ.

На фигурах, в частности на фиг.1 и 2, проиллюстрирована система 10 обнаружения, которая может содержать ультразвуковую систему 50 визуализации, систему 100 слежения и систему 190 визуализации и которую можно использовать для получения картирования положений или мест биопсии в целевой области в организме пациента 20. Иллюстративные варианты осуществления описаны в настоящем описании в отношении выполнения биопсии предстательной железы 200, как показано на фиг.2. Однако специалисту в данной области понятно, что иллюстративные системы и способы, описанные в настоящем описании, можно использовать по отношению к различным частям организма, человека или другого живого существа, включая органы, ткани и т.д.

Каждую из этих систем 50, 100 и 190 можно связать с компьютером 150, содержащим соединенное с ним устройство 175 отображения (например, монитор). Компьютером 150 могут являться компьютеры различных типов и в него могут входить различные компоненты, включая несколько процессоров для параллельной обработки посредством рабочей станции. Однако, несмотря на то, что в описании иллюстративного варианта осуществления каждая из систем 50, 100 и 190 соединена с компьютером 150, специалисту в данной области понятно, что определенные способы, описанные по отношению к системе 10, можно осуществлять независимо от других способов. Например, система 190 визуализации может представлять собой независимую систему, которая получает изображения целевой области пациента 20 до или после процедуры биопсии, причем систему 50 визуализации и систему 100 слежения применяют для других способов, которые использует система 10 для картирования мест биопсии.

Дополнительно со ссылкой на фиг.3 ультразвуковая система 50 визуализации может быть связана с компьютером 150 и может включать в себя ультразвуковой контроллер 60 и ультразвуковой зонд 75. Конкретный тип ультразвукового контроллера 60, зонда 75 и других ультразвуковых компонентов, использованных системой 10, может меняться, и конкретные способы визуализации, такие которые относятся к получению, анализу и представлению данных, также могут меняться. Например, зонд 75 может представлять собой зонд TRUS, содержащий направитель иглы для выдвигания иглы для биопсии из зонда TRUS. Конкретный тип и конфигурация зонда 75 TRUS, включая направитель иглы и выдвигающуюся иглу для биопсии, также могут меняться. В настоящем описании также предполагается использовать другие типы ультразвуковых зондов наряду с другими типами устройств для биопсии, которые позволяют получать эхограммы устройства для биопсии при отслеживании устройства, как еще раз описано ниже.

В одном из вариантов осуществления контроллер 60 может содержать устройство формирования пучка для обработки полученных эхосигналов, допплеровский процессор для обработки информации о допплеровских измерениях и процессор обработки изображений для формирования двухмерных и/или трехмерных изображений. Контроллер 60 также может содержать запоминающее устройство, такое как память CINELOOP®, и процессор обработки видеосигналов. В другом варианте осуществления контроллер 60 может содержать компоненты и/или использовать способы, связанные с наведением и электронным фокусированием ультразвуковых волн зонда 75. В контроллере 60 также можно использовать другие компоненты и/или способы, такие как процессор автоматического определения границ, который может определять анатомические границы и накладывать их графическое представление относительно представленных изображений. В настоящем описании также предполагается использование других компонентов и/или способов в дополнение к описанным выше компонентам контроллера 60 или вместо них. Кроме того, специалисту в данной области понятно, что контроллер 60 или один или несколько его компонентов могут совместно использоваться компьютером 150 или быть встроены в него, например компоненты для осуществления способов обработки и представления данных.

Система 100 слежения может быть связана с компьютером 150 и может включать в себя генератор 120 поля, такой как генератор, расположенный над койкой 25 или другой опорой для пациента 20. Однако конкретное расположение генератора 120 поля может меняться в зависимости от многих факторов, включая тип генератора поля или структуру других компонентов системы 10 (например, использование рентгеновского аппарата с C-образным рычагом). Например, генератор 120 поля можно расположить под койкой 25 и прикрепить к ней. Генератор 120 поля может быть связан с одним или несколькими датчиками 80, соединенными с зондом 75 TRUS или иным способом интегрированными в него, чтобы сделать возможным отслеживание зонда посредством системы 100 слежения. В зависимости от многих факторов, включая тип используемого способа слежения, датчики 80 могут представлять собой датчики различных типов.

В одном из вариантов осуществления система 100 слежения может представлять собой электромагнитную систему слежения, в которой использован электромагнитный генератор 120 поля и один или несколько электромагнитных датчиков 80, соединенных с зондом TRUS 75 или встроенных в него. В системе 100 можно использовать другие компоненты, такие как маркеры опорных точек. В одном из вариантов осуществления в системе 100 слежения можно использовать различные компоненты слежения, например, поставляемые компанией Traxtal Inc. или Northern Digital Inc. В качестве другого примера, в системе 100 слежения можно использовать оптические способы и компоненты слежения, например, поставляемые компанией Northern Digital Optotrak Certus Motion Capture System. В качестве датчика или трансмиттера локализации и монитора или приемника локализации для слежения за положением зонда 75 TRUS можно использовать другие способы и компоненты, включая способы и компоненты для регистрации ультразвука. В другом варианте осуществления датчики 80 слежения можно соединить с направителем иглы зонда 75 TRUS и/или с иглой для биопсии или иным способом встроить в них.

В системе 190 визуализации можно использовать различные способы визуализации. В одном из вариантов осуществления в системе 190 визуализации можно использовать магнитно-резонансную томографию (МРТ). В настоящем раскрытии предполагается использование других способов визуализации или комбинаций способов визуализации посредством системы 190 визуализации, включая компьютерную томографию (КТ), контрастное ультразвуковое исследование, позитронно-эмиссионную томографию (ПЭТ), однофотонную эмиссионную компьютерную томографию (ОФЭКТ) и так далее.

На фиг.4-14 дополнительно проиллюстрирован способ, который можно использовать для выполнения биопсии с использованием системы 10 и который в целом обозначен номером позиции 400. Специалисту данной области понятно, что этапы, описанные по отношению к способу 400, предназначены выполнять функцию иллюстрации использования системы 10 и можно использовать большее или меньшее количество этапов, включая этапы, показанные пунктирными линиями. Кроме того, при осуществлении способа 400 также можно использовать другие компоненты или устройства, которые не описаны явно по отношению к системе 10.

Способ 400 может включать этап 402, в котором диагностические изображения области простаты или другой целевой области биопсии можно получать, используя систему 190 визуализации. На этапе 404 система слежения 100 может быть совмещена с диагностическими изображениями. Способ регистрации может включать один или несколько этапов калибровки, как известно в данной области, например, посредством получения данных о положении, в то время как компоненты системы слежения остаются в неподвижном положении. Например, способ совмещения может включать каждую точку, которая получена системой 100 слежения и соответствует соответствующей точке в данных изображения, полученных системой 190 визуализации.

На этапе 406 процедуру биопсии, такую как секстантная биопсия простаты, можно выполнять, используя зонд 75 TRUS, при этом получая и сохраняя эхограммы в реальном времени с синхронными данными слежения за зондом (или иглой для биопсии или направителем иглы). Когда иглу для биопсии выдвигают из зонда 75 TRUS посредством направителя иглы, может сохраняться совпадение иглы для биопсии с плоскостью эхограммы. Ультразвуковая визуализация позволяет идентифицировать иглу для биопсии на визуализации.

На этапе 408 может быть отмечено место или положение биопсии. Например, можно распознать иглу для биопсии и обозначить меткой 500 на фиг.5. Обозначение можно выполнять в реальном времени и/или ретроспективно, используя зарегистрированные эхограммы. В одном из вариантов осуществления можно использовать алгоритмы обработки изображений (например, способы распознавания иглы) для определения положения иглы и обозначения места биопсии без необходимости вмешательства клинициста. Система 10 может выполнять обозначение места биопсии в реальном времени и/или ретроспективно. В другом варианте осуществления для обозначения места биопсии система 10 может предоставлять метку, форма которой соответствует форме биоптата (например, цилиндрической форме). Например, форма метки биопсии может быть основана на известном типе иглы для биопсии.

На этапе 410 и как показано на фиг.6, система 10 может объединять, совмещать или иным способом соединять ультразвуковую визуализацию и МРТ-визуализацию, основываясь на зарегистрированных данных слежения из системы 100 слежения и совмещении МРТ-томограммы и системы слежения, полученном во время процедуры биопсии. Затем обозначенные места биопсии можно трансформировать в диагностическую МРТ-томограмму (например, можно перенести в соответствующее положение на МРТ-томограмме), как показано на аксиальной и сагиттальной проекциях на фиг.7 и 8. В одном из вариантов осуществления на этапе 412 к полученным данным можно применять способы коррекции изображений для обеспечения более точного объединения или совмещения изображения. Например, к полученным данным можно применять алгоритмы коррекции движения/деформации на основе изображения посредством компьютера 150, чтобы учесть несовпадение изображений вследствие движения простаты. В системе 10 можно предоставить различные графические пользовательские интерфейсы (GUI) для представления изображений и информации, полученных посредством способа 400. Например, GUI 900 на фиг.9 может предоставить клиницисту возможность вручную совместить зонд 75 и систему визуализации 190. GUI 1000 может предоставить клиницисту возможность объединить или совместить МРТ-визуализацию и ультразвуковую визуализацию. GUI 1100 может предоставить клиницисту возможность картировать размещения биопсии на МРТ-визуализации.

Таким образом, на этапе 414 обозначенные места биопсии точно локализованы и сохранены для регистрации локализации процедуры биопсии. Места биопсии можно регистрировать на МРТ-томограмме и/или на реконструированной трехмерной ТРУЗИ-эхограмме, как показано на фиг.13 и 14. Регистрацию мест биопсии можно использовать многими способами, включая способы валидации, такие как корреляция результатов патологических исследований и соответствующих локализаций на МРТ-томограмме для того, чтобы обеспечить проверку обнаружения злокачественной опухоли на основе изображения в этих локализациях экспериментально полученными данными. В одном из вариантов осуществления на этапе 416 зарегистрированные места биопсии можно использовать в качестве ориентира для планирования будущей нацеленной повторной биопсии, например, когда результаты биопсии пациента отрицательные, но у пациента продолжают сохраняться высокие уровни PSA.

В другом варианте осуществления на этапе 418 зарегистрированные места биопсии можно использовать для формирования статистической карты распределения злокачественных опухолей, которая может способствовать усовершенствованию процедуры биопсии для других пациентов. Например, карту распределения локализаций рака предстательной железы можно сформировать путем привязки мест биопсий у множества исследованных пациентов к общей системе координат. В одном из вариантов осуществления место биопсии можно привязать к фронтальной плоскости, поскольку каждая биопсия представляет собой длинный цилиндрический образец ткани (например, длиной приблизительно 15 мм), который, как правило, получают в переднее-заднем направлении. Каждую поверхность простаты пациента можно вручную сегментировать на МРТ-томограмме и спроецировать на фронтальную плоскость. Двухмерные границы каждой спроецированной простаты можно деформировать так, чтобы они во фронтальной плоскости совпадали с двухмерной моделью. Таким образом устанавливали совпадение изображений между каждым исследованным пациентом и моделью. Затем места биопсии у каждого исследованного пациента можно преобразовать в двухмерную модель, что позволяет сформировать карту распределения злокачественных опухолей, основываясь на результатах секстантной биопсии. В другом варианте осуществления можно сформировать трехмерную карту распределения, используя совпадения деформируемых изображений между изображением каждого исследованного пациента и трехмерной моделью.

ПРИМЕР

Заявители получили данные, основанные на выполнении 6-12 биопсий центральной части предстательной железы десяти пациентов. Процедуры биопсии выполняли, используя способы и системы, описанные по отношению к иллюстративному варианту осуществления. На фиг.12 представлены результаты биопсий десяти пациентов. Кругами обозначены положения положительных биопсий, которые подтверждены патологическим исследованием. Положения отрицательных биопсий в нижней, средней и верхней части, которые подтверждены патологическим исследованием, показаны знаками «.», «+» и «×» соответственно. Карту вероятности рака предстательной железы можно сформировать путем вычисления гистограммы распределения.

Систему 10 и способ 500 можно использовать для установления корреляции между диагностическими изображениями и гистологическими параметрами опухоли. С достаточной точностью такая корреляция может обеспечить контроль данных для врача и/или компьютерных алгоритмов диагностики для валидации обнаружения злокачественной опухоли на основе изображения. Статистическую карту распределения злокачественных опухолей можно сформировать, основываясь на результатах биопсии, способствующую оптимизации стандартных процедур биопсии, основываясь на априорной вероятности. Только в США выполнено более 700000 биопсий простаты, так что можно обеспечить способ 500 большим количеством образцов пациентов для формирования карты вероятности рака предстательной железы, что может привести к более точному обнаружению рака предстательной железы. В другом варианте осуществления корреляцию между диагностическими изображениями и патологическим исследованием можно использовать для обучения клиницистов и/или алгоритмов обработки изображений в обнаружении рака предстательной железы, например, благодаря правильному расположению иглы для биопсии во время процедуры биопсии.

В одном из вариантов осуществления компьютер 150 может предоставить послепроцедурные данные базе данных, входящей в инфраструктуру информационной системы больницы (например, данные в формате DICOM-RT). Информационная система больницы может передавать процессору так, чтобы эти данные можно было использовать для управления второй медицинской процедурой у того же пациента. В другом варианте осуществления информационная система больницы может агрегировать данные и проводить статистический анализ по множеству пациентов. Информационная система больницы может передавать статистический анализ процессору, где статистический анализ используется для управления медицинской процедурой. В другом варианте осуществления информационная система больницы может комбинировать статистический анализ и медицинские изображения пациента для формирования персонифицированной карты целей, где карта целей связана с процессором и карту целей используют для управления медицинской процедурой.

В настоящем раскрытии предоставлен способ и система, которые можно использовать для целевой биопсии простаты в реальном времени и терапии. В настоящем описании предоставлен способ и система, которые можно использовать для регистрации локализации процедур биопсии и ретроспективно валидировать обнаружение злокачественной опухоли на основе изображений посредством установления корреляции между патологическими исследованиями биоптатов и информацией диагностических изображений (например, МРТ).

В одном из вариантов осуществления распределение образцов ткани, полученное системой 10, можно использовать для оценки надежности и выборочной погрешности, присущих используемому ультразвуковому трансдуцеру. Карта распределения может отражать достоверность способа отбора образцов, зависящую от трансдуцера, при визуализации для слежения за пациентом. Например, на карте тканей на фиг.12 показаны более высокие доли диагностики и более равномерно распределенные биопсии, которые могут отражать конкретный использованный ультразвуковой трансдуцер. В другом варианте осуществления распределение образцов ткани, полученное системой 10, можно использовать для оценки надежности и выборочной погрешности, присущих конкретному положению пациента (например, в лежачем положении левой стороной вниз). Например, нацеливание в правую сторону может быть более интуитивным и естественным или удобным для оператора (например, легче и эргономичнее осуществлять координацию рук под визуальным контролем в правую сторону вверх) по сравнению с левой стороной вниз, где трансдуцер перевернут и манипулятор для биопсии введен в обратной и повернутой ориентации. Также простата может располагаться по-разному в зависимости от направления силы тяжести. В одном из вариантов осуществления можно корректировать конкретное положение пациента 20 для оптимизации сбора данных, например для выполнения МРТ в лежачем положении левой стороной вниз для минимизации гравитации или эффектов, связанных с положением. Таким образом, способ и компоненты системы 10, включая карту распределения, можно использовать для оценки или валидации диагностической мощности и способности эффективно покрывать целевой объем при использовании комбинаций положений и трансдуцеров, например, в случае случайной секстантной биопсии. Эффективное покрытие может вести к повышенной диагностической мощности, выражающейся в более высокой чувствительности.

Настоящее изобретение, включая описанные выше этапы способов, можно реализовать в аппаратном обеспечении, программном обеспечении или в виде комбинации аппаратного и программного обеспечения. Настоящее изобретение можно реализовать централизованным способом в виде одной компьютерной системы или распределенным способом, где различные элементы расположены в нескольких взаимосвязанных компьютерных системах. Подходит компьютерная система или устройство любого типа, приспособленное для осуществления способов, описанных в настоящем описании. Типичная комбинация аппаратного и программного обеспечения может представлять собой компьютерную систему общего назначения и компьютерную программу, которая при загрузке и исполнении управляет компьютерной системой так, что она осуществляет способы, описанные в настоящем описании.

Настоящее изобретение, включая описанные выше этапы способов, можно внедрить в компьютерный программный продукт. Компьютерный программный продукт может включать машиночитаемый носитель информации, на котором записана компьютерная программа, содержащая исполняемый компьютером код для предписания вычислительному устройству или компьютерной системе выполнять различные процедуры, процессы и способы, описанные в настоящем описании. В данном контексте компьютерная программа обозначает любое выражение, на любом языке, код или запись набора инструкций, предназначенных для предписывания системе, обладающей способностью к обработке информации, выполнять конкретную функцию, или непосредственно или после любого одного или двух следующих этапов: a) преобразование в другой язык, код или запись; b) воспроизведение в другой материальной форме.

Иллюстрации вариантов осуществления, описанных в настоящем описании, предназначены для обеспечения понимания структуры различных вариантов осуществления в целом и не предназначены для выполнения функции полного описания всех элементов и признаков устройства и систем, в которых можно использовать структуры, описанные в настоящем описании. После ознакомления с представленным выше описанием специалистам в данной области станут очевидны многие другие варианты осуществления. Другие варианты осуществления можно использовать и получать из него, так что структурные и логические замены и изменения можно выполнять без отклонения от объема настоящего раскрытия. Фигуры выполняют только иллюстративную роль и могут быть выполнены не в масштабе. Определенные их пропорции могут быть увеличены, тогда как другие могут быть уменьшены. Таким образом, настоящее описание и фигуры следует рассматривать в иллюстративном, а не в ограничивающем значении.

Таким образом, несмотря на то, что в настоящем описании проиллюстрированы и описаны конкретные варианты осуществления, следует принимать во внимание, что любые конструкции, которые предположительно позволяют достичь той же цели, можно использовать вместо приведенных конкретных вариантов осуществления. Настоящее раскрытие предназначено для того, чтобы охватывать любые и все модификации или вариации различных вариантов осуществления. После ознакомления с приведенным выше описанием специалистам в данной области будут очевидны комбинации приведенных выше вариантов осуществления и других вариантов осуществления, конкретно не описанных в настоящем описании. Следовательно, подразумевается, что настоящее описание не ограничено конкретным вариантом(ами) осуществления, раскрытого в качестве предполагаемого лучшего варианта осуществления настоящего изобретения, но что настоящее изобретение будет включать все варианты осуществления, попадающие в объем приложенной формулы изобретения.

Реферат и описание предоставлены с соблюдением требований 37 C.F.R. § 1.72(b), который требует, чтобы реферат позволял читателю быстро определить техническую природу раскрытия. Он представлен в рамках договоренности о том, что его не следует использовать для интерпретации или ограничения объема или значения формулы изобретения.

Похожие патенты RU2510699C2

название год авторы номер документа
СИСТЕМА И СПОСОБ ИНТЕГРИРОВАННОЙ БИОПСИИ И ЛЕЧЕНИЯ 2010
  • Сюй Шэн
  • Крюкер Йохен
  • Вуд Брэдфорд Джонс
RU2558521C2
СИСТЕМА И СПОСОБ ДЛЯ ОБЪЕДИНЕНИЯ УЛЬТРАЗВУКОВЫХ ИЗОБРАЖЕНИЙ В РЕАЛЬНОМ ВРЕМЕНИ С РАНЕЕ ПОЛУЧЕННЫМИ МЕДИЦИНСКИМИ ИЗОБРАЖЕНИЯМИ 2007
  • Крюкер Йохен
  • Сюй Шэн
  • Глоссоп Нейл
  • Чойк Питер Л.
  • Вуд Брэд
RU2468436C2
СИСТЕМА И СПОСОБ ДЕТЕКТИРОВАНИЯ РАЗМЕЩЕНИЯ ИГЛЫ ПРИ БИОПСИИ ПОД КОНТРОЛЕМ ИЗОБРАЖЕНИЯ 2012
  • Крюкер Йохен
  • Янь Пинкунь
  • Айваси Алпер
RU2591595C2
СИСТЕМА, УСТРОЙСТВО, СПОСОБ, МАШИНОЧИТАЕМЫЙ НОСИТЕЛЬ И ПРИМЕНЕНИЕ ДЛЯ ВИЗУАЛИЗАЦИИ ТКАНИ IN VIVO В АНАТОМИЧЕСКОЙ СТРУКТУРЕ 2007
  • Баккер Левинус П.
  • Ван Бек Михал К.
  • Ван Дер Марк Мартинус Б.
  • Ван Ден Хам Рене
  • Хендрикс Бернардус Х.В.
  • Хоффманн Ральф
  • Ван Дер Варт Нейс К.
  • Ван Дер Ворт Марьолейн
RU2457776C2
ИНТЕРВЕНЦИОННАЯ НАВИГАЦИЯ С ИСПОЛЬЗОВАНИЕМ ТРЕХМЕРНОГО УЛЬТРАЗВУКА С КОНТРАСТНЫМ УСИЛЕНИЕМ 2008
  • Крюкер Йохен
  • Сюй Шэн
  • Цзян Хуэй
RU2494676C2
СИСТЕМА, СПОСОБ, МАШИНОЧИТАЕМЫЙ НОСИТЕЛЬ И ИХ ПРИМЕНЕНИЕ ДЛЯ ВИЗУАЛИЗАЦИИ ТКАНИ В АНАТОМИЧЕСКОЙ СТРУКТУРЕ 2007
  • Ван Бек Михал К.
  • Ван Дер Марк Мартинус Б.
  • Баккер Левинус П.
  • Ван Ден Хам Рене
  • Хендрикс Бернардус Х.В.
  • Хоффманн Ральф
  • Ван Дер Варт Нейс К.
  • Ван Дер Ворт Марьолейн
RU2462986C2
СИСТЕМА КОНТРОЛЯ ИЗОБРАЖЕНИЙ 2016
  • Хаутваст Гийом Леопольд Теодорус Фредерик
  • Кустра Яцек Лукаш
RU2703688C2
СИСТЕМА ПЛАНИРОВАНИЯ ДОЗЫ 2016
  • Кустра Яцек Лукаш
  • Хаутваст Гийом Леопольд Теодорус Фредерик
RU2693204C1
СПОСОБ ОТБОРА ПАЦИЕНТОВ ДЛЯ УЛЬТРАЗВУКОВОЙ ГЕМИАБЛЯЦИИ ЛОКАЛИЗОВАННОГО РАКА ПРЕДСТАТЕЛЬНОЙ ЖЕЛЕЗЫ 2017
  • Абоян Игорь Артемович
  • Маликов Леонид Леонидович
  • Галстян Армен Маисович
  • Бадьян Константин Игоревич
RU2676599C1
Способ выполнения прицельной пункционной FUSION-биопсии легких 2020
  • Медына Дмитрий Юрьевич
  • Капустин Владимир Викторович
  • Кабин Юрий Вячеславович
  • Лежнев Дмитрий Анатольевич
  • Воронов Дмитрий Олегович
  • Попов Михаил Иванович
  • Блинов Дмитрий Александрович
RU2744532C1

Иллюстрации к изобретению RU 2 510 699 C2

Реферат патента 2014 года СПОСОБ И СИСТЕМА ДЛЯ ВЫПОЛНЕНИЯ БИОПСИИ

Группа изобретений относится к медицине. Система для биопсии содержит: систему визуализации для получения диагностических изображений, зонд, содержащий выдвигающуюся иглу для биопсии, компьютер, связанный с системой слежения, системой визуализации и ультразвуковой системой визуализации. Машиночитаемый носитель информации содержит исполняемый компьютером код, реализующий этапы способа применения системы слежения для выполнения биопсии. Способ формирования изображения включает этапы, на которых получают диагностические изображения целевой области, включающей место биопсии. Совмещают систему слежения с диагностическими изображениями. Получают ультразвуковые изображения целевой области во время процедуры биопсии. Получают посредством системы слежения данные слежения для локализации по меньшей мере одного из: зонда, иглы для биопсии и направителя иглы во время процедуры биопсии. Обозначают локализацию в месте биопсии на ультразвуковых изображениях. Переносят обозначение локализации из ультразвуковых изображений на диагностические изображения, основываясь на данных слежения и совмещении системы слежения с диагностическими изображениями. Группа изобретений позволяет повысить точность картирования мест биопсии. 3 н. и 12 з.п. ф-лы., 14 ил., 1 пр.

Формула изобретения RU 2 510 699 C2

1. Машиночитаемый носитель информации, на котором хранится исполняемый компьютером код, причем исполняемый компьютером код сконфигурирован для предписывания вычислительному устройству, в которое загружен машиночитаемый носитель информации, выполнять этапы способа применения системы (100) слежения для выполнения биопсии, на которых:
получают диагностические изображения целевой области (200), включающей место биопсии;
совмещают систему (100) слежения с диагностическими изображениями, причем система слежения выполнена с возможностью слежения, по меньшей мере, за одним из: зонда (75), иглы для биопсии, выдвигающейся из зонда, и направителя иглы, функционально соединенного с зондом;
получают ультразвуковые изображения целевой области (200) во время процедуры биопсии; и
получают посредством системы слежения данные слежения для локализации, по меньшей мере, одного из: зонда, иглы для биопсии и направителя иглы во время процедуры биопсии;
обозначают локализацию по меньшей мере одного из: зонда, иглы для биопсии и направителя иглы в месте биопсии на ультразвуковых изображениях; и
переносят обозначение (500) локализации из ультразвуковых изображений на диагностические изображения, основываясь на данных слежения и совмещении системы слежения с диагностическими изображениями.

2. Машиночитаемый носитель информации по п.1, дополнительно содержащий исполняемый компьютером код для предписывания вычислительному устройству выполнять этап обозначения (500) локализации в месте биопсии на ультразвуковых изображениях.

3. Машиночитаемый носитель информации по п.1, дополнительно содержащий исполняемый компьютером код для предписывания вычислительному устройству выполнять этапы обнаружения положения иглы для биопсии, основываясь на ультразвуковом изображении, и определения обозначения (500) места биопсии, основываясь на обнаруженном положении.

4. Машиночитаемый носитель информации по п.1, в котором диагностические изображения сформированы, используя, по меньшей мере, одно из: магнитной резонансной томографии, компьютерной томографии, контрастного ультразвукового исследования, позитронно-эмиссионной томографии и однофотонной эмиссионной компьютерной томографии.

5. Машиночитаемый носитель информации по п.1, дополнительно содержащий исполняемый компьютером код для предписывания вычислительному устройству выполнять этап формирования карты распределения, содержащей обозначенные локализации в местах (500) биопсии для множества пациентов (20).

6. Машиночитаемый носитель информации по п.1, дополнительно содержащий исполняемый компьютером код для предписывания вычислительному устройству выполнять этап отображения обозначения (500) локализации в месте биопсии на диагностических изображениях, используя форму, соответствующую биоптату, полученному посредством иглы для биопсии.

7. Система для биопсии, содержащая:
систему (190) визуализации для получения диагностических изображений целевой области (200), включающей место биопсии;
зонд (75), содержащий выдвигающуюся иглу для биопсии, для выполнения процедуры биопсии,
систему (100) слежения для получения данных слежения для локализации, по меньшей мере, для одного из: зонда и иглы для биопсии;
ультразвуковую систему (50) визуализации для получения ультразвуковых изображений целевой области; и
компьютер (150), связанный с системой слежения, системой визуализации и ультразвуковой системой визуализации,
причем компьютер выполнен с возможностью совмещения системы слежения с диагностическими изображениями, полученными системой визуализации, обозначения локализации в месте биопсии на ультразвуковых изображениях и переноса обозначения (500) локализации в месте биопсии, связанном с процедурой биопсии, из ультразвуковых изображений на диагностические изображения, основываясь на данных слежения и совмещении системы слежения с диагностическими изображениями.

8. Система по п.7, при этом система (100) слежения представляет собой электромагнитную систему слежения и, по меньшей мере, одно из: иглы для биопсии и зонда (75) содержит один или несколько электромагнитных датчиков (80).

9. Система по п.8, в которой зонд представляет собой зонд (75) для трансректального ультразвукового исследования (TRUS), содержащий направитель иглы для выдвигания иглы для биопсии, причем ультразвуковая визуализация получена с использованием зонда TRUS.

10. Система по п.7, в которой компьютер (150) выполнен с возможностью извлечения обозначения (500) локализации в месте биопсии в реальном времени.

11. Система по п.7, в которой система (190) визуализации представляет собой одну из: системы магнитно-резонансной томографии, системы компьютерной томографии, системы контрастного ультразвукового исследования, системы позитронной эмиссионной томографии и системы однофотонной эмиссионной компьютерной томографии.

12. Система по п.7, в которой компьютер (150) выполнен с возможностью формирования карты распределения, которая содержит обозначенные места (500) биопсии для множества пациентов (20).

13. Способ формирования изображения, включающий в себя этапы, на которых:
получают диагностическое изображение целевой области (200) пациента (20), включающей место биопсии;
совмещают систему (100) слежения с диагностическими изображениями;
получают ультразвуковые изображения целевой области во время процедуры биопсии,
получают посредством системы слежения данные слежения для локализации, по меньшей мере, одного из: иглы для биопсии или зонда во время процедуры биопсии;
обозначают локализацию в месте (500) биопсии на ультразвуковых изображениях; и
преобразуют локализацию в месте биопсии из ультразвуковых изображений в диагностическое изображение, основываясь на данных слежения и на совмещении системы слежения с диагностическим изображением.

14. Способ по п.13, дополнительно содержащий этапы, на которых:
получают локализацию мест (500) биопсии для множества пациентов (20);
устанавливают связь между локализацией мест биопсии и общей системой координат; и
формируют карту распределения, используя общую систему координат.

15. Способ по п.14, дополнительно содержащий этапы, на которых предоставляют карту распределения и осуществляют корреляцию между диагностическим изображением и патологическим исследованием для использования в обучении клиницистов.

Документы, цитированные в отчете о поиске Патент 2014 года RU2510699C2

US 2007232882 A1, 04.10.2007
СПОСОБ ДИАГНОСТИКИ КИСТ ПОДЖЕЛУДОЧНОЙ ЖЕЛЕЗЫ 1999
  • Лукин А.Ю.
  • Старых В.С.
  • Шабунин А.В.
  • Архангельский В.В.
  • Бедин В.В.
  • Радионов И.А.
RU2167595C2
СПОСОБ ВЫЯВЛЕНИЯ МЕСТНОГО РЕЦИДИВА РАКА ПРЕДСТАТЕЛЬНОЙ ЖЕЛЕЗЫ ПОСЛЕ РАДИКАЛЬНОЙ ПРОСТАТЭКТОМИИ 2003
  • Минько Б.А.
  • Евтушенко Е.В.
  • Карелин М.И.
  • Школьник М.И.
  • Тютин Л.А.
RU2224463C1
US 2003093007 A1, 15.05.2003
Sheng Xu et al, Closed-Loop Control in Fused MR-TRUS Image-Guided Prostate Biopsy, Med Image Comput Comput Assist Interv
Пресс для выдавливания из деревянных дисков заготовок для ниточных катушек 1923
  • Григорьев П.Н.
SU2007A1
Samir S
Taneja, Prostate Biopsy: Targeting Cancer for Detection and Therapy, Rev Urol
Пломбировальные щипцы 1923
  • Громов И.С.
SU2006A1

RU 2 510 699 C2

Авторы

Сюй Шэн

Крюкер Йохен

Шехтер Гай

Фармер Айан

Чойк Питер Лайл

Пинто Питер

Вуд Брэдфорд Дж.

Даты

2014-04-10Публикация

2009-06-12Подача