СИСТЕМА УПРАВЛЕНИЯ ГРАНАТОМЕТОМ /ВАРИАНТЫ/ Российский патент 2014 года по МПК F41G1/00 

Описание патента на изобретение RU2513629C1

Изобретение относится к переносным и передвижным пусковым устройствам и к боевым ракетам, а именно - к гранатомётам всех калибров, к пусковым установкам наземного и воздушного базирования, к снайперским винтовкам, к артиллерии при стрельбе в условиях визуальной видимости.

Известны гранатомёты, состоящие из боевой части и ракетного двигателя, см. например, интернет, википедия, РПГ-7, прицельным приспособлением которого является откидная рамка. Но точность стрельбы из них невелика. При современном уровне ракетной техники не проблема доставить боевую часть на любое расстояние, проблема - попасть! Можно выпустить 100 гранат и не попасть ни разу, а с хорошей системой управления можно попасть с первого-второго выстрела. Достижения электроники позволили сделать дешёвой и лёгкой систему определения дальности и расчёт угла возвышения и времени полёта.

Известны серийные образцы и проекты гранатомётов, имеющих лазерный дальномер и вычислитель траектории, и гранаты с таймером взрывателя, см. пат. № RU 2240485.

Задача и технический результат данного изобретения - повышение точности стрельбы и возможность подрыва гранаты в воздухе в заданной точке.

ВАРИАНТ 1. Для полёта гранаты в пределах прямой наводки (полёта гранаты по прямой линии согласно моему отдельному изобретению, пат. № RU 2499973) установка углов возвышения не нужна, но не лишним будет внесение поправок на ветер, высокогорье (то есть атмосферное давление), температуру воздуха (то есть его плотность), температуру заряда (то есть скорость его горения), угол возвышения или снижения, силу тяжести в данном месте и поправку на вращение Земли. Все поправки должны вноситься с учётом расстояния до объекта, за которым или перед которым прячется противник, то есть можно - в само значение дальности. Эти показатели будут влиять на направление прямого полёта (выше-ниже, левей-правей). Они будут незначительно влиять и на прямолинейность траектории полёта, но это влияние меньшего порядка, и им можно пренебречь. Теоретически следует вносить поправку и на ускорение Кориолиса, но в пределах прямой видимости она по сравнению с другими незначительна, и ей также можно пренебречь.

С учётом всего сказанного система управления гранатомётом состоит из лазерного дальномера, выход которого соединён со входом процессора или блока памяти, со входом последнего также соединены: задатчик ручной поправки дальности и датчики или задатчики следующих параметров: боковой и продольной (попутной или встречной) составляющих скорости ветра, и/или атмосферного давления, и/или температуры воздуха, и/или температуры заряда, и/или угла возвышения или снижения, и/или силы тяжести в данном месте, и/или поправки на вращение Земли, а выход процессора или блока памяти связан с дисплеем/дисплеями, отображающим вносимые поправки в делениях визира оптического прицела и/или в делениях лимба вертикальной наводки прицела (при любых сочетаниях альтернативных признаков с другими признаками обеспечивается один и тот же технический результат - внесение поправок и учёт их влияния на выдаваемый сигнал), причём дальномер и процессор или блок памяти включаются выключателем через реле времени. Последнее желательно для того, чтобы можно было зафиксировать результат измерения дальности и сообщить его товарищам, не имеющим дальномера.

Оптимальное расположение такого выключателя - на спусковом крючке в пределах свободного хода.

Система может иметь процессор, вычисляющий значение дальности с учётом поправок, а может иметь просто блок памяти, куда внесены все значения дальности вплоть до максимальной с определённым шагом, например 0,25 метра, и соответствующие им углы возвышения. В последнем случае система памяти получает от дальномера дальность.

Сравнивает её с ближайшей дальностью в памяти и выдаёт на дисплеи поправок соответствующие этой дальности значения. Быстродействие такой системы может быть выше, чем с процессором, что особенно важно при стрельбе по быстро движущейся цели.

В ряде случаев требуется зафиксировать значение дальности, прежде чем делать выстрел. Например, при стрельбе в окно без задней стенки, или при стрельбе по быстро движущемуся или летящему объекту, когда надо брать упреждение и выносить линию прицеливания, а значит, и линию лазерного дальномера, вперёд. И в том и в другом случаях дальномер покажет «бесконечность». То есть надо сначала наводить дальномер на стену здания чуть дальше окна, или на сам движущийся объект, или, если объект движется по дороге - на дорогу, а затем фиксировать это значение дальности. И только после этого - стрелять, в частности - с необходимым упреждением.

Чтобы можно было зафиксировать дальность, определённую для одного объекта, при переводе линии прицеливания в сторону система имеет переключатель, отключающий дальномер и включающий ячейку памяти, сохраняющую последнее значение дальности. Такой переключатель может быть расположен на спусковом крючке в пределах дальнейшего свободного хода или на второй рукоятке оружия (или на педали - для артиллерии). Желательна индикация режима фиксации в виде светодиода в визире оптического прицела, особенно если переключатель расположен на спусковом крючке в области дальнейшего выбирания свободного хода, которая тактильно чувствуется слабо.

В ряде случаев требуется вносить ручную поправку дальности, например при той же стрельбе в окно, или при стрельбе вглубь кустов, или при стрельбе по быстро движущемуся объекту, который движется не строго на траверсе, а приближаясь или удаляясь. Например, линия прицела наводится на кусты, за которыми укрылся противник. Дальномер определяет дальность до первого листа этого куста, и выстрел получится вровень с кустом, но с недолётом до противника. Поэтому стрелок вручную прибавляет к дальности, измеренной дальномером несколько метров, и производит выстрел, который попадёт куда надо.

Чтобы можно было вносить ручную поправку в дальность, система имеет вспомогательный источник сигналов дальности, который имеет три кнопки, разовое нажатие на две из которых прибавляет или убавляет замеренную дальность, а долговременное нажатие включает нарастающее изменение дальности (как установка времени в электронных часах), причём поправка отображается в поле зрения визира оптического прицела, а третья кнопка обнуляет ручную поправку. Расположены эти кнопки могут быть под большим пальцем правой руки с левой стороны задней рукоятки (для правшей).

Чтобы стрелок не отвлекался от прицеливания, дисплеи поправок, измеряемых в делениях визира оптического прицела, могут быть расположены в поле зрения визира оптического прицела. А дисплей поправки, вносимой по лимбу вертикальной наводки прицела, может быть расположен около этого лимба. Там же может быть расположен дисплей, показывающий замеренную дальность, причём конструктивно это может быть один и тот же дисплей.

Поправки в визире могут быть показаны на одном дисплее, например: Н-3,5, Л-1,5, +4. Что означает, что цель должна находиться не в перекрестье, а ниже него на 3,5 деления, левее него на 1,5 деления, и имеется ручная поправки дальности +4 метра. Однако в условиях стресса и стремительности современного боя понимание такого дисплея будет отнимать лишнее время у стрелка и может вызвать ошибки. Поэтому следует применить шесть разных дисплеев, причём поправка в делениях визира показывается в той стороне от перекрестья, в которой должна располагаться цель, а ручная поправка дальности показывается под углом 45 градусов к перекрестью слева или справа от него с соответствующим знаком и/или цветом в зависимости от того, отрицательная она или положительная. То есть в описанном выше случае внизу перекрестья светилось бы 3,5, слева 1,5, и справа под углом 45 градусов (удобнее справа-ниже) светилось бы красным цветом +4. Такая индикация поправок исключает ошибки - стрелок сдвигает цель в те стороны, в которых светятся поправки.

Причём, если поправка по вертикали превышает поле зрения прицела, то дисплеи работают по следующему алгоритму: верхний и нижний дисплеи одинаково показывают измеренную дальность, или нули (при действительно нулевой поправке они не показывают ничего), или максимальные числа, или любые другие незначащие знаки, а поправка показывается около лимба вертикальной наводки оптического прицела.

Не лишним было бы показывать в этом случае в визире дальность до цели, но при этом потребуется четырёхразрядный дисплей, так как максимальная дальность до цели может превысить 1000 метров, а для артиллерийских систем - даже пятиразрядный. При этом, если число делений визира выбрано не более 16-20, то можно обойтись одноразрядным дисплеем, показывающим цифры по типу почтовых индексов. Цифры больше 9 при этом можно показывать так: 10 - наподобие буквы Д, 11 - две палочки, 12 - как палочка и двойка, 13 - так же, 14 - так же (получится буква Н, 15 - как палочка и пятёрка, но у пятёрки нижняя половина должна быть как у тройки (иначе получится буква Б), 16 - как палочка и шестёрка или как буква Б, 17 - как палочка и семёрка, 18 - как единица с «носиком» и восьмёрка, 19 - как палочка и девятка, 20 - все девять элементов дисплея включены.

Рассмотрим, как можно вводить указанные восемь поправок, при этом поправка на ветер считается как две поправки - вдоль и поперёк выстрела.

Задатчики поправок по вышеуказанным параметрам могут быть в виде кремальеры или ползунка с лимбом, и представлять собой переменные резисторы, дроссели или конденсаторы, причём резисторы (потенциометры) могут быть различных характеристик (линейные, нелинейные) в зависимости от прогрессии изменений, вносимых данной поправкой.

Указанные параметры могут вноситься и датчиками, но это не всегда оправдано. Рассмотрим примеры датчиков.

Датчик ветра может представлять собой накрытый металлической сеткой флюгер на стволе гранатомёта, с передачей его положения по двум осям в процессор или в блок памяти с помощью дистанционной электрической передачи, например резистивной, ёмкостной, индуктивной, сельсинной, световой типа «светодиод-заслонка-фотодиод».

Однако стрелок может находиться в ветровой тени, поэтому метод введения задатчиком представляется надёжнее.

А вот датчик атмосферного давления будет очень кстати. Он может представлять собой анероид с передачей его положения в процессор или в блок памяти с помощью дистанционной электрической передачи, например резистивной, ёмкостной, индуктивной, сельсинной, световой типа «светодиод-заслонка-фотодиод». Датчик уменьшит количество органов управления на панели гранатомёта, что уменьшит возможную путаницу.

Датчики температуры воздуха и заряда могут представлять собой термопары или терморезисторы, в том числе - полупроводниковые. Однако при быстроменяющейся обстановке, например при выходе из машины на мороз, они могут давать ложные показания. Поэтому задатчики предпочтительнее. Хотя на корпусе гранатомёта желательно иметь термометр любой конструкции, показывающий температуру окружающего воздуха.

Датчик угла возвышения или снижения может представлять собой маятник в герметичной капсуле, заполненной незамерзающей жидкостью, с передачей его положения в процессор или в блок памяти с помощью дистанционной электрической передачи, например резистивной, ёмкостной, индуктивной, сельсинной, световой типа «светодиод-заслонка-фотодиод».

Датчик силы тяжести может представлять собой груз, расположенный на пружине или на тензодатчике, с передачей его положения в процессор или в блок памяти с помощью дистанционной электрической передачи, например резистивной, ёмкостной, индуктивной, сельсинной, световой типа «светодиод-заслонка-фотодиод». Но погрешность датчика будет почти равна вносимой поправке, и лучше вносить поправку задатчиком.

Эта поправка учитывает вращение Земли. Как известно, ускорение свободного падения зависит от географической широты - на полюсе оно максимально, а на экваторе - минимально, и разница составляет 0,344%. Не так уж много, но если все остальные поправки внесены правильно, то имеет смысл внести и её. При времени полёта гранаты (пули, снаряда) 3 сек поправка составит 15 см, что существенно при прицеливании в малоразмерную цель типа амбразуры дота.

Поправка «на вращение Земли» учитывает сложение линейной скорости вращения Земли (на экваторе она равна 464 м/сек) со средней скоростью полёта гранаты (пули, снаряда). Допустим, снаряд пролетел на экваторе какое-то расстояние со средней скоростью 836 м/сек по направлению вращения Земли - на восток. То есть его скорость относительно источника гравитации составит уже 1300 м/сек (снаряд с математической точки зрения представляет собой спутник Земли, движущийся по эллиптической орбите). Тогда действующая на него центростремительная сила уменьшится на величину mV2/r, то есть на 0,265 Н, что составляет примерно 2,7% от ускорения свободного падения на широте Москвы. Это уже значительный промах - в рассмотренном выше случае с полётом гранаты в течение 3 сек промах составит 1,2 метра по высоте по сравнению с выстрелом на север или на юг. То есть можно даже не попасть в такую сравнительно большую цель, как окно здания.

При стрельбе на запад промах составит примерно 15 см верх, а при стрельбе на юг или север эта поправка равна нулю. Учитывается только поправка на силу тяжести.

Датчик поправки на вращение Земли может представлять собой магнитный или гироскопический компас с передачей его положения в процессор или в блок памяти с помощью дистанционной электрической передачи, например, ёмкостной или световой типа «светодиод-заслонка-фотодиод». Резистивная, индуктивная и сельсинная передачи здесь практически не применимы из-за малого вращательного момента датчика и влияния магнитных полей на магнитную стрелку или гироскоп. Поэтому целесообразнее использовать задатчик, проградуированный в сторонах света.

Для поправки на упреждение при стрельбе по быстро движущейся цели на гранатомёте может иметься откидной коллиматорный прицел, особенно полезный в пределах прямого полёта гранаты.

Работает этот вариант системы так. Допустим, стоит задача поразить близко (до полукилометра) летящий вертолёт гранатой с бесконтактным лазерным взрывателем по пат № 2412427, автоматически взрывающим гранату на минимальном расстоянии от цели. Стрелок заранее вводит все поправки за исключением тех, которые вводятся автоматически. Затем выбирает часть свободного хода спускового крючка, при этом включается дальномер. Затем наводит перекрестье на вертолёт, выбирает часть свободного хода спускового крючка, при этом включается дальномер, и нажимает спусковой крючок на передней ручке, фиксируя тем самым измеренную дальность. Затем, учитывая предположительную скорость вертолёта, переводит прицельную область визира (она не совпадает с перекрестьем) вперёд вертолёта на соответствующее число делений визира, или, если поле зрения оптического прицела для этого мало (а его не хватит), то на соответствующее число делений откидного коллиматорного прицела, причём с учётом указанных на дисплее в визире боковых поправок (для быстрого пересчёта делений визира в деления коллиматорного прицела последние должны быть больше ровно в 10 раз). Производится выстрел. При пролёте на минимальном расстоянии или при прямом попадании граната взрывается.

Как видим, наводить гранатомёт на цель стрелку приходится наводить не перекрестьем, а «прицельной областью» (см. выше «ниже 3,5, слева 1,5»), что достаточно сложно, а необходимость переноса поправок из визира на коллиматорный прицел ещё более усложняет задачу стрелка. Именно поэтому целесообразны рассмотренные ниже варианты 2 и 3.

Такая система совместно с указанной гранатой является хорошим заменителем переносных зенитно-ракетных комплексов на расстояниях до километра и на высоте до 500 м. Предполагаемая вероятность поражения вертолётов гранатой калибра 76 мм опытным стрелком при стрельбе «вбок» - 25%, при стрельбе навстречу или вдогон - 75%. Предполагаемая вероятность поражения самолётов-штурмовиков соответственно 10% и 30%. Упомянутой гранатой, модернизированной так, чтобы она взрывалась при удалении от цели, совместно с данной системой можно также поражать противника в окне многоэтажного дома или за выступом скалы - граната взорвётся, пролетев раму окна или пролетев гребень скалы.

Ещё большие возможности сулит граната, имеющая аэродинамическую схему по пат. № 2439376 и оснащённая системой самонаведения по пат. № 2400590 - вероятность попадания на расстоянии 1,5 км и высоте до 1 км по вертолётам увеличится до 95%, а по самолётам - до 80%.

ВАРИАНТ 2. Выше была описана наиболее простая из рассматриваемых система управления гранатомётом. Она предусматривает только указание прицельных данных, но не установку их. Разумеется, в стрессовых условиях боя желательно было бы вводить прицельные данные автоматически. Тогда стрелок должен будет только наводить перекрестье прицела на цель и производить выстрел. Самой сложной для него задачей остался бы учёт упреждения при стрельбе по движущимся целям. Но большим подспорьем стрелку будет система, автоматически устанавливающая хотя бы угол возвышения.

Для этого система имеет электрический механизм установки угла возвышения, связанный с выходом процессора или блока памяти, причём механизм имеет датчик своего положения, выход с которого поступает на вход процессора или блока памяти (при любых сочетаниях альтернативных признаков с другими признаками обеспечивается один и тот же технический результат - внесение поправок и учёт их влияния на выдаваемый сигнал), а также выход процессора или блока памяти соединён с дисплеями боковых поправок. Работает это вариант системы так: стрелок наводит гранатомёт на цель прежде всего горизонтальной линией и затем смещает по ней точку прицеливания влево или вправо в соответствии с указанием боковых дисплеев.

ВАРИАНТ 3. Ещё лучше автоматически вносить и боковые поправки. Для этого система управления гранатомётом содержит лазерный дальномер, выход которого соединён со входом процессора или блока памяти, а выход процессора или блока памяти связан с электрическими механизмами установки угла возвышения и боковой наводки, причём механизмы имеют датчики своего положения, выход с которых поступает обратно на вход процессора или блока памяти. Дисплеи вертикальной и боковой поправок в этом случае не нужны, в визире должны остаться только дисплеи (или один дисплей) ручной поправки дальности и светодиод сигнализации включения фиксации дальности.

Работает этот вариант системы аналогично варианту 1, но наводить оружие на неподвижную цель можно перекрестьем, а при стрельбе по подвижным целям можно вносить упреждение, вынося вперёд не «прицельную область», а перекрестье прицела, в том числе коллиматорного, что гораздо удобнее и резко повышает вероятность поражения цели.

Похожие патенты RU2513629C1

название год авторы номер документа
СИСТЕМА УПРАВЛЕНИЯ ГРАНАТОМЁТОМ И ГРАНАТОЙ 2014
  • Староверов Николай Евгеньевич
RU2550924C1
Граната для гранатомёта 2017
  • Староверов Николай Евгеньевич
RU2659434C1
Антизасадное оружие 2015
  • Староверов Николай Евгеньевич
RU2623617C2
БЕЗОПАСНЫЙ СПОСОБ СТРЕЛЬБЫ (ЕГО ВАРИАНТЫ) И БЕЗОПАСНЫЙ ПРИЦЕЛ ДЛЯ СТРЕЛЬБЫ ПО ДВИЖУЩИМСЯ ЦЕЛЯМ 2010
RU2447391C2
Граната для гранатомёта бокового поражения 2017
  • Староверов Николай Евгеньевич
RU2656979C1
РЕАКТИВНЫЙ ГРАНАТОМЕТ И РАКЕТА ДЛЯ НЕГО /ВАРИАНТЫ/ 2012
  • Староверов Николай Евгеньевич
RU2499973C1
ПРОТИВОВЕРТОЛЕТНАЯ И ПРОТИВОСТЕЛСОВАЯ РАКЕТА 2009
  • Староверов Николай Евгеньевич
RU2443968C2
Оптический прицел - З (варианты) 2017
  • Староверов Николай Евгеньевич
RU2659879C1
Способ повышения точности стрельбы артиллерийского вооружения боевой машины по цели (варианты) и система для его реализации 2018
  • Богданова Людмила Анатольевна
  • Усачев Игорь Николаевич
  • Миронов Павел Юрьевич
  • Боровых Олег Анатольевич
  • Швец Лев Михайлович
RU2692844C1
Гранатометный комплекс бокового поражения (варианты) 2017
  • Староверов Николай Евгеньевич
RU2657138C1

Реферат патента 2014 года СИСТЕМА УПРАВЛЕНИЯ ГРАНАТОМЕТОМ /ВАРИАНТЫ/

Изобретение относится к переносным и передвижным пусковым устройствам и к боевым ракетам, а именно к гранатометам всех калибров, к пусковым установкам наземного и воздушного базирования, к снайперским винтовкам, к артиллерии при стрельбе в условиях визуальной видимости. Система управления гранатомётом содержит лазерный дальномер, выход которого соединён со входом процессора или блока памяти, имеет датчик ветра, датчик атмосферного давления и датчик силы тяжести, при этом имеет вспомогательный источник сигналов дальности, который имеет три кнопки, разовое нажатие на две из которых прибавляет или убавляет замеренную дальность, а долговременное нажатие включает нарастающее изменение, причём поправка отображается в поле зрения визира оптического прицела, а третья кнопка обнуляет ручную поправку, а расположены эти кнопки под большим пальцем правой руки с левой стороны задней рукоятки. Технический результат - повышение точности стрельбы. 3 з.п. ф-лы.

Формула изобретения RU 2 513 629 C1

1. Система управления гранатомётом, содержащая лазерный дальномер, выход которого соединён с входом процессора или блока памяти, имеет датчик ветра, датчик атмосферного давления и датчик силы тяжести, отличающаяся тем, что имеет вспомогательный источник сигналов дальности, который имеет три кнопки, разовое нажатие на две из которых прибавляет или убавляет замеренную дальность, а долговременное нажатие включает нарастающее изменение, причём поправка отображается в поле зрения визира оптического прицела, а третья кнопка обнуляет ручную поправку, а расположены эти кнопки под большим пальцем правой руки с левой стороны задней рукоятки.

2. Система по п.1, отличающаяся тем, что датчик ветра представляет собой накрытый металлической сеткой флюгер на стволе гранатомёта с передачей его положения по двум осям в процессор или в блок памяти с помощью дистанционной электрической передачи, например резистивной, ёмкостной, индуктивной, сельсинной, световой типа «светодиод-заслонка-фотодиод».

3. Система по п.1, отличающаяся тем, что датчик атмосферного давления представляет собой анероид с передачей его положения в процессор или в блок памяти с помощью дистанционной электрической передачи, например резистивной, ёмкостной, сельсинной, индуктивной, световой типа «светодиод-заслонка-фотодиод».

4. Система по п.1, отличающаяся тем, что датчик силы тяжести представляет собой груз, расположенный на пружине или на тензодатчике, с передачей его положения в процессор или в блок памяти с помощью дистанционной электрической передачи, например резистивной, ёмкостной, индуктивной, сельсинной, световой типа «светодиод-заслонка-фотодиод».

Документы, цитированные в отчете о поиске Патент 2014 года RU2513629C1

УСТРОЙСТВО ДЛЯ АВТОМАТИЗИРОВАННОГО ПРИЦЕЛИВАНИЯ И ВЫСТРЕЛА ИЗ СТРЕЛКОВОГО ОРУЖИЯ (ЕГО ВАРИАНТЫ) 2002
  • Алексеев Е.Г.
  • Банкгальтер Р.И.
  • Гоев А.И.
  • Зенкин С.М.
  • Злобина Е.В.
  • Кокорина В.Я.
  • Мартиросов А.В.
  • Моченов В.А.
  • Обручникова И.А.
  • Слободянюк В.С.
  • Федченко Г.И.
  • Феклин А.А.
  • Щукина А.А.
RU2240485C2
НАВИГАЦИОННЫЙ КОМПЛЕКС, УСТРОЙСТВО ВЫЧИСЛЕНИЯ СКОРОСТИ И КООРДИНАТ, БЕСПЛАТФОРМЕННАЯ ИНЕРЦИАЛЬНАЯ КУРСОВЕРТИКАЛЬ, СПОСОБ КОРРЕКЦИИ ИНЕРЦИАЛЬНЫХ ДАТЧИКОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2007
  • Кизимов Алексей Тимофеевич
  • Фролова Людмила Евгеньевна
  • Алексеев Станислав Михайлович
  • Фролов Василий Федорович
RU2373498C2
СИСТЕМА ОБНАРУЖЕНИЯ И ОПОЗНАВАНИЯ 1996
  • Александров А.В.
  • Ковалев В.П.
  • Кравцев А.О.
  • Павлов Ю.П.
  • Салтан В.И.
  • Старостин М.М.
  • Ткаченко В.И.
  • Ткаченко Е.В.
RU2115955C1
ДАТЧИК УГЛА НАКЛОНА ОДНОПЛОСКОСТНОЙ 2006
  • Зотов Михаил Витальевич
  • Тищенко Сергей Георгиевич
  • Евтушенко Сергей Иванович
  • Рудов Никита Владимирович
RU2344369C2
RU 2174218 C2, 27.09.2001
КОМПЛЕКС ВООРУЖЕНИЯ БОЕВОЙ МАШИНЫ И СТАБИЛИЗАТОР ВООРУЖЕНИЯ 2007
  • Степаничев Игорь Вениаминович
  • Сальников Сергей Сергеевич
  • Матвеев Игорь Александрович
  • Богданова Людмила Анатольевна
  • Власов Евгений Валентинович
  • Ширяев Геннадий Станиславович
  • Попов Владимир Викторович
RU2360208C2
ГРАНАТОМЕТНАЯ СИСТЕМА 2010
  • Сидоров Павел Михайлович
  • Токарев Виктор Степанович
RU2421676C1
СНАРЯД 2005
  • Юровский Евгений Кузьмич
  • Ланг Виктор Фридрихович
  • Иванов Владимир Иванович
  • Скударнов Анатолий Яковлевич
  • Лукичев Николай Михайлович
RU2305250C1
WO 2012007820 A1, 19.01.2012

RU 2 513 629 C1

Авторы

Староверов Николай Евгеньевич

Даты

2014-04-20Публикация

2012-10-08Подача