СПОСОБ ОПРЕДЕЛЕНИЯ КАСАТЕЛЬНЫХ НАПРЯЖЕНИЙ В СТАЛЬНЫХ ТРУБОПРОВОДАХ Российский патент 2014 года по МПК G01L1/00 

Описание патента на изобретение RU2514072C1

Изобретение относится к области оценки технического состояния трубопроводов и может быть использовано для определения касательных напряжений в стальных трубопроводах надземной прокладки.

Известен способ определения напряженного состояния стальных конструкций, согласно которому растягивают образец материала, вырезанного из материала, аналогичного материалу конструкции, в процессе растяжения измеряют коэрцитивную силу. Получают зависимость коэрцитивной силы от приложенного напряжения для данного материала. Затем проводят измерения коэрцитивной силы металла конструкции и определяют напряженное состояние с помощью полученной зависимости (В.Ф.Мужицкий, Б.Е.Попов, Г.Я.Безлюдько. Магнитный контроль напряженно-деформированного состояния и остаточного ресурса стальных металлоконструкций подъемных сооружений и сосудов, работающих под давлением. // Дефектоскопия. - 2001. - №1. - С.38 - 46).

Известен способ определения напряжений, основанный на получении при растяжении образцов металла с различной деградацией структуры, зависимостей анизотропии коэрцитивной силы от растягивающих напряжений в образцах и оценке напряжений в конструкции с помощью полученных зависимостей с учетом фактической структуры металла (патент РФ №2281468, опубл. 10.08.2006 г.).

Недостатками известных способов являются:

1. Значительная погрешность определения напряжений (около 30-40%), обусловленная тем, что при испытании образцов металла на растяжение происходит поперечная деформация сжатия, которая в значительной степени влияет на измеряемую коэрцитивную силу и, соответственно, на построенную зависимость.

2. Невозможность определять напряжения при сложнонапряженном состоянии металла конструкции, например осевые, кольцевые и касательные напряжения в стенках трубопроводов.

Наиболее близким к заявляемому способу является способ определения механических напряжений в стальных трубопроводах, включающий изготовление образца в виде полого цилиндра из материала, аналогичного материалу конструкции, нагружение образца созданием в нем избыточного внутреннего давления жидкой или газовой среды или его изгибом, получение зависимости коэрцитивной силы от величины напряжений в образце. Далее измеряют коэрцитивную силу действующего трубопровода и определяют его напряженное состояние с помощью полученной зависимости (патент РФ №2439530, опубл. 10.01.2012 г.).

К недостаткам способа относят невозможность определять касательные напряжения в стенках трубопроводов.

Технической задачей изобретения является расширение возможностей способа, а именно возможности определения касательных напряжений в стенках трубопроводов.

Поставленная задача решается тем, что в способе определения касательных напряжений в стальных трубопроводах, включающем изготовление образца в виде полого цилиндра из материала, аналогичного материалу конструкции, пошаговое нагружение образца, измерение показателей коэрцитивной силы на каждом шаге нагружения, с определенной ориентацией магнитного потока, формируемого в датчике коэрцитиметра, относительно образца, получение зависимости показателей коэрцитивной силы от величины напряжений в образце, измерение показателей коэрцитивной силы металла конструкции, определение величины напряжения с помощью полученной зависимости, согласно изобретению в образце создают касательные напряжения путем приложения к нему крутящего момента, коэрцитивную силу измеряют вдоль оси образца или трубопровода дважды, ориентируя магнитный поток в противоположных направлениях, при этом для определения напряжений в качестве показателя коэрцитивной силы принимают модуль разности измеренных значений коэрцитивной силы.

На чертеже представлена зависимость модуля разности значений коэрцитивной силы, измеренных вдоль оси трубопровода в двух взаимно противоположных направлениях |ΔН| от касательных напряжений τ в образце.

Приведены результаты определения касательных напряжений по результатам измерения коэрцитивной силы в контрольных точках.

Способ реализуют следующим образом.

Изготавливают цилиндрический полый образец металла из материала, аналогичного материалу трубопровода, напряженное состояние которого необходимо определить. Один конец образца жестко закрепляют, к другому - прикладывают крутящий момент для создания касательных напряжений в образце, например, при помощи рычага и грузов.

Касательные напряжения пошагово увеличивают. Для каждого шага нагружения определяют напряжения в образце расчетным или другим способом, например, с помощью электротензоизмерений.

На каждом шаге нагружения измеряют коэрцитивную силу, при этом магнитный поток датчика коэрцитиметра ориентируют вдоль оси образца. Измерения выполняют дважды во взаимно противоположных направлениях. Строят зависимость модуля разности значений коэрцитивной силы |ΔН| от касательных напряжений τ в образце (см. чертеж).

Дважды измеряют коэрцитивную силу металла конструкции, ориентируя датчик вдоль оси во взаимно противоположных направлениях.

Определяют касательные напряжения с помощью полученной зависимости.

Пример

Необходимо определить касательные напряжения в надземных трубопроводах газа компрессорной станции, которые могут быть вызваны перемещением подземного коллектора в результате подвижек грунта. Трубопровод выполнен из труб марки стали 17Г1С. Диаметр трубопровода 530 мм, толщина стенки трубы 10 мм. При помощи токарного станка из бесшовной трубы марки, выполненной из стали 17Г1С, изготавливают образец - полый цилиндр в масштабе 1:5 к реальному трубопроводу (диаметр образца 106 мм, толщина стенки 2 мм). Длина образца 1 м.

Монтируют электротензорезисторы на образце под углом 45 град относительно оси образца для измерения касательных напряжений.

Один конец образца жестко фиксируют, ко второму концу образца прикрепляют рычаг длиной 1 м. На конец рычага устанавливают грузы различной массы. Создают пошагово касательные напряжения с шагом 4,0 МПа, которые измеряют электротензорезисторами, вплоть до создания касательных напряжений 132 МПа.

На каждом шаге испытания дважды измеряют коэрцитивную силу стенки образца, ориентируя датчик коэрцитиметра вдоль оси образца: при первом измерении магнитный поток датчика коэрцитиметра направлен на рычаг, при втором - на защемленный конец образца.

Строят график зависимости модуля разности двух измеренных значений коэрцитивной силы от касательных напряжений (см. чертеж).

На контролируемом трубопроводе компрессорной станции определяют сечение, в котором необходимо провести определение касательных напряжений, отмечают три контрольные точки. Вследствие того, что касательные напряжения теоретически одинаковы по сечению трубопровода, то касательные напряжения, определяемые в контрольных точках должны быть также равны с учетом погрешности.

Фрагментарно удаляют тепло-, вибро- и шумоизоляцию с поверхности трубы в месте измерения на протяженности 0,5 м.

В каждой из контрольных точек дважды измеряют коэрцитивную силу металла трубопровода, устанавливая датчик коэрцитиметра вдоль оси трубопровода, ориентируя магнитный поток, создаваемый датчиком коэрцитиметра во взаимно противоположные стороны. Первое измерение выполняют таким образом, чтобы магнитный поток был направлен по ходу газа, второе - в противоположном направлении. Рассчитывают модуль разности измеряемых значений коэрцитивной силы.

Результаты измерения представлены в таблице

Номер Значение Значение Модуль разности значений точки коэрцитивной коэрцитивной коэрцитивной силы, измерения силы, силы, измеренных вдоль оси измеренной по измеренной трубопровода в двух взаимно ходу газа, против хода противоположных А/м газа, А/м направлениях, А/м 1 360 460 100 2 280 400 120 3 350 435 85

По полученной зависимости (см. чертеж) определяют, что касательные напряжения в выбранном сечении трубопровода составляют 120±10 МПа.

Похожие патенты RU2514072C1

название год авторы номер документа
Способ определения механических напряжений в стальном трубопроводе 2019
  • Исламов Рустэм Рильевич
  • Агиней Руслан Викторович
  • Мамедова Эльмира Айдыновна
RU2722333C1
СПОСОБ ОПРЕДЕЛЕНИЯ МЕХАНИЧЕСКИХ НАПРЯЖЕНИЙ В СТАЛЬНЫХ КОНСТРУКЦИЯХ 2010
  • Александров Юрий Викторович
  • Агиней Руслан Викторович
  • Кузьбожев Александр Сергеевич
  • Бердник Мария Михайловна
RU2439530C1
СПОСОБ ОПРЕДЕЛЕНИЯ МЕХАНИЧЕСКИХ НАПРЯЖЕНИЙ В СТАЛЬНЫХ ТРУБОПРОВОДАХ 2013
  • Агиней Руслан Викторович
  • Пужайло Александр Федорович
  • Савченков Сергей Викторович
  • Мусонов Валерий Викторович
RU2521714C1
СПОСОБ ОПРЕДЕЛЕНИЯ МЕХАНИЧЕСКИХ НАПРЯЖЕНИЙ В СТАЛЬНЫХ КОНСТРУКЦИЯХ 2009
  • Агиней Руслан Викторович
  • Кузьбожев Александр Сергеевич
  • Александров Юрий Викторович
  • Комаров Алексей Вячеславович
RU2389988C1
СПОСОБ ОПРЕДЕЛЕНИЯ МЕХАНИЧЕСКИХ НАПРЯЖЕНИЙ В СТАЛЬНЫХ КОНСТРУКЦИЯХ 2005
  • Кузьбожев Александр Сергеевич
  • Агиней Руслан Викторович
  • Попов Виктор Александрович
RU2281468C1
Способ определения ресурса стальных изделий 2019
  • Кузнецов Николай Сергеевич
RU2706106C1
СПОСОБ ОПРЕДЕЛЕНИЯ ОСТАТОЧНОГО РЕСУРСА ТРУБОПРОВОДА 2000
  • Кузнецов Н.С.
  • Тарасюк П.С.
  • Кузнецов А.Н.
RU2194967C2
Способ определения остаточного ресурса потенциально опасных конструкций из неферромагнитных материалов по изменению коэрцитивной силы стальных образцов-свидетелей 2023
  • Ермаков Валентин Алексеевич
  • Корнилова Анна Владимировна
RU2805641C1
Способ селективного контроля глубины и качества поверхностного упрочнения изделий из ферромагнитных материалов 2022
  • Костин Владимир Николаевич
  • Василенко Ольга Николаевна
  • Бызов Александр Викторович
  • Ксенофонтов Данила Григорьевич
RU2782884C1
СПОСОБ ОПРЕДЕЛЕНИЯ МЕХАНИЧЕСКИХ НАПРЯЖЕНИЙ В СТАЛЬНЫХ КОНСТРУКЦИЯХ МАГНИТНЫМ МЕТОДОМ КОНТРОЛЯ 2016
  • Мохнаткин Дмитрий Петрович
  • Лебедев Евгений Леонидович
  • Смуров Сергей Алексеевич
RU2641511C2

Реферат патента 2014 года СПОСОБ ОПРЕДЕЛЕНИЯ КАСАТЕЛЬНЫХ НАПРЯЖЕНИЙ В СТАЛЬНЫХ ТРУБОПРОВОДАХ

Изобретение относится к области оценки технического состояния трубопроводов и может быть использовано для определения касательных напряжений в стальных трубопроводах надземной прокладки. Техническая задача решается тем, что в способе определения касательных напряжений в стальных трубопроводах, включающем изготовление образца в виде полого цилиндра из материала, аналогичного материалу конструкции, пошаговое нагружение образца, измерение показателей коэрцитивной силы на каждом шаге нагружения, с определенной ориентацией магнитного потока, формируемого в датчике коэрцитиметра, относительно образца, получение зависимости показателей коэрцитивной силы от величины напряжений в образце, измерение показателей коэрцитивной силы металла конструкции, определение величины напряжения с помощью полученной зависимости, в образце создают касательные напряжения путем приложения к нему крутящего момента, коэрцитивную силу измеряют вдоль оси образца или трубопровода дважды, ориентируя магнитный поток в противоположных направлениях, при этом для определения касательных напряжений в качестве показателя коэрцитивной силы принимают модуль разности измеренных значений коэрцитивной силы. 1 ил., 1 табл., 1 пр.

Формула изобретения RU 2 514 072 C1

Способ определения касательных напряжений в стальных трубопроводах, включающий изготовление образца в виде полого цилиндра из материала, аналогичного материалу конструкции, пошаговое нагружение образца, измерение показателей коэрцитивной силы на каждом шаге нагружения с определенной ориентацией магнитного потока, формируемого в датчике коэрцитиметра, относительно образца, получение зависимости показателей коэрцитивной силы от величины напряжений в образце, измерение показателей коэрцитивной силы металла конструкции, определение величины напряжения с помощью полученной зависимости, отличающийся тем, что в образце создают касательные напряжения путем приложения к нему крутящего момента, коэрцитивную силу измеряют вдоль оси образца или трубопровода дважды, ориентируя магнитный поток в противоположных направлениях, при этом для определения касательных напряжений в качестве показателя коэрцитивной силы принимают модуль разности измеренных значений коэрцитивной силы.

Документы, цитированные в отчете о поиске Патент 2014 года RU2514072C1

СПОСОБ ОПРЕДЕЛЕНИЯ МЕХАНИЧЕСКИХ НАПРЯЖЕНИЙ В СТАЛЬНЫХ КОНСТРУКЦИЯХ 2010
  • Александров Юрий Викторович
  • Агиней Руслан Викторович
  • Кузьбожев Александр Сергеевич
  • Бердник Мария Михайловна
RU2439530C1
СПОСОБ ОПРЕДЕЛЕНИЯ МЕХАНИЧЕСКИХ НАПРЯЖЕНИЙ В СТАЛЬНЫХ КОНСТРУКЦИЯХ 2005
  • Кузьбожев Александр Сергеевич
  • Агиней Руслан Викторович
  • Попов Виктор Александрович
RU2281468C1
Способ определения касательных напряжений 1990
  • Громов Борис Николаевич
  • Максимов Олег Петрович
SU1763859A1
УСТРОЙСТВО ОПРЕДЕЛЕНИЯ НАПРЯЖЕНИЯ, ПРОПОРЦИОНАЛЬНОГО КРУТЯЩЕМУ МОМЕНТУ ВАЛА 2004
  • Ефремов Леонид Владимирович
  • Коверкин Юрий Борисович
  • Губанов Николай Николаевич
  • Юдин Юрий Васильевич
  • Чиков Константин Никитович
RU2269104C2

RU 2 514 072 C1

Авторы

Агиней Руслан Викторович

Пужайло Александр Федорович

Савченков Сергей Викторович

Спиридович Евгений Апполинарьевич

Даты

2014-04-27Публикация

2012-12-11Подача