СПОСОБ ПОДАЧИ ТОПЛИВА В ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ Российский патент 2014 года по МПК F02C7/22 

Описание патента на изобретение RU2514522C2

Изобретение относится к области авиационной техники, в частности к способам подачи топлива в газотурбинный двигатель (ГТД), а также к топливным системам ГТД.

Известен способ подачи топлива в ГТД, заключающийся в подогреве топлива перед подачей его в топливный фильтр двигателя. Топливная система такого двигателя содержит бак, насосы, топливомасляный теплообменник (ТМТ), фильтр и регулятор расхода топлива.

В такой системе таяние льдообразований в топливе происходит в ТМТ (Руководство по эксплуатации АГТД "Д18". ЗМКБ "Прогресс", Запорожье, 1989 г.).

К недостаткам таких способов подачи топлива и топливных систем можно отнести недостаточное количество тепла в масле на выходе из двигателя для подогрева топлива до температуры, обеспечивающей таяние находящихся в нем льдообразований в самые ответственные моменты эксплуатации:

- после длительного пребывания самолета на стоянке при отрицательных температурах окружающего воздуха;

- после ухода самолета на второй круг при выполнении посадки. В этих условиях эффективность таяния льдообразований в ТМТ становится критической. Не исключена возможность обледенения трубной доски ТМТ со стороны входа топлива или обледенения фильтра с последующим заглушением двигателя.

На взлетном режиме двигателя после длительной стоянки самолета при отрицательных температурах окружающего воздуха необходимого количества тепла и масла для предотвращения обледенения трубной доски ТМТ может не хватить. Это объясняется большой разницей в величинах прокачек масла и топлива через ТМТ, особенно в двигателях с большой тягой.

В случае ухода самолета на второй круг при выполнении посадки обледенение этих элементов топливной системы может произойти из-за отсутствия подогрева холодного топлива на режиме планирования, когда количество масла, циркулирующего через двигатель, мало.

При этом учитывается, что температура масла со стороны входа топлива в ТМТ на 30…50°С ниже, чем на выходе из двигателя, поскольку масло поступает в ТМТ со стороны, противоположной стороне входа топлива. Поэтому не только топливный фильтр, но и топливная трубка ТМТ, у которых внутренний диаметр почти вдвое меньше, чем размер стороны ячейки защитной сетки подкачивающего насоса бака, могут стать объектом обледенения со стороны входа в них топлива.

При таких условиях внештатное содержание воды или противокристаллизационной жидкости в топливе может значительно увеличить риск обледенения ТМТ и фильтра.

Известен способ подачи топлива в ГТД при запуске после длительного пребывания при низких температурах, который заключается в подогреве топлива перед подачей его в топливный фильтр, а именно: смесь топлива с льдообразованиями забирают из бака подкачивающим центробежным насосом и подают к двигательному центробежному насосу. Этот насос прокачивает смесь через ТМТ, где льдообразования должны превратиться в воду и пройти вместе с топливом через фильтр и последующие агрегаты: шестеренный насос, регулятор расхода топлива и топливные форсунки, при этом топливная система содержит последовательно установленные в топливной магистрали подкачивающий насос бака, двигательный центробежный насос, ТМТ, топливный фильтр, основной шестеренный насос, регулятор расхода топлива и форсунки (Руководство по эксплуатации газотурбинного двигателя "Д-18". Издание ЗМКБ "Прогресс", Запорожье, 1989 г.; и реализуемый в ней способ подачи топлива в ГТД).

Неоднократные летные происшествия по вине обледенения агрегатов топливной системы показали, что на критических режимах работы двигателя при низких температурах окружающего воздуха количества тепла в выходящем из двигателя масле недостаточно для предотвращения находящихся в топливе льдообразований.

Известен способ подачи топлива в газотурбинный двигатель при запуске после длительного пребывания при низких температурах, заключающийся в подогреве топлива перед подачей его в топливный фильтр, при этом перед подогревом отделяют от топлива льдообразования, которые подогревают до таяния, после чего образованную воду соединяют с подогретым топливом и топливная система газотурбинного двигателя для реализации указанного способа, содержащая последовательно установленные в топливной магистрали топливомасляный теплообменник и топливный фильтр, причем в топливной магистрали перед топливомасляным теплообменником установлен отделитель льдообразований в снабженный подогревателем сборник, выход из которого соединен с топливной магистралью между топливомасляным теплообменником и топливным фильтром (Патент РФ №2163978, МПК: F02C 7/22 - прототип).

Указанный способ реализуется следующим образом. Топливо с льдообразованиями из бака забирается подкачивающим насосом и по магистрали через пожарный кран подается к центробежному насосу. Центробежный насос подводит топливо с льдообразованиями к тангенциально-наклонному входу отделителя, в результате чего поток топлива с льдообразованиями получает в отделителе поступательно-вращательное движение. При этом льдообразования под действием центробежных сил отбрасываются к периферии и сползают в сборник, а освобожденное от льдообразований топливо поступает к центру отделителя и по патрубку возвращается в магистраль и по ней в ТМТ. Поступившие в сборник льдообразования подогреваются горячим воздухом, протекающим через подогреватель. Этот воздух отбирается из-за одной из ступеней компрессора газотурбинного двигателя и по трубе подводится к входу подогревателя. После обтекания наружной поверхности сборника воздух выпускается в атмосферу через патрубок. Образовавшаяся в результате таяния вода отводится из сборника по трубе обратно в магистраль на участке за ТМТ по потоку топлива.

Полученная вода имеет температуру, близкую к температуре таяния льда, и при дальнейшем ее смешивании с топливом, имеющим более высокую температуру, происходит снижение температуры топлива. Снижение температуры топлива ведет к снижению экономичности работы газотурбинного двигателя в целом, так как поступающее в форсунки топливо с низкой температурой необходимо дополнительно предварительно разогреть до его исходной температуры для последующего его испарения и перемешивания с воздухом.

Основным недостатком указанного способа является то, что на критических режимах работы двигателя при низких температурах окружающего воздуха количества тепла в выходящем из двигателя масле недостаточно для предотвращения образования находящихся в топливе льдообразований, и снижение экономичности работы двигателя, особенно в начальный период работы.

Задачей изобретения является повышение надежности взлета самолета после его длительного нахождения при низких температурах путем создания способа устранения льдообразований в топливе подогревом отделенных от топлива льдообразований.

Решение указанной задачи достигается за счет того, что в предложенном способе подачи топлива в газотурбинный двигатель при запуске после длительного пребывания при низких температурах, заключающемся в подогреве топлива перед подачей его в топливный фильтр, причем перед подогревом отделяют от топлива льдообразования, которые подогревают до таяния, после чего воду, полученную при таянии льдообразований, соединяют с подогретым топливом, согласно изобретению упомянутую воду дополнительно подогревают до температуры не ниже температуры подогретого топлива, предпочтительно до температуры кипения.

В варианте применения способа подогрев льдообразований осуществляют отбираемым от компрессора газотурбинного двигателя воздухом.

Сущность изобретения иллюстрируется чертежами, где на фиг.1 показана схема топливной системы ГТД для реализации указанного способа, на фиг.2 - схема отделителя льдообразований в виде вихревого сепаратора для реализации указанного способа.

Топливная система ГТД, с помощью которой может быть реализован заявленный способ подачи топлива, содержит последовательно установленные в топливной магистрали 1 топливный бак 2, подкачивающий насос 3, пожарный кран 4, двигательный центробежный насос 5, ТМТ 6, топливный фильтр 7, основной насос 8, регулятор расхода топлива 9, соединенный с форсунками (не показано) двигателя 10.

Топливная система содержит также воздушную магистраль 11 отбора воздуха от одной из последних ступеней компрессора (не показано) двигателя 10. В топливной магистрали 1 перед ТМТ 6 установлен отделитель 12 льдообразований в снабженный подогревателем 13 сборник 14, выход 15 из которого соединен с топливной магистралью 1 между ТМТ 6 и топливным фильтром 7.

Отделитель 12 льдообразований выполнен в виде вихревого сепаратора. В его нижней части встроен сборник 14 отделенных льдообразований.

Вход 16 подогревателя 13 сообщен магистралью 11 с полостью за одной из ступеней компрессора (не показано) двигателя 10, а выход 17 - с атмосферой.

В центре отделителя 12 льдообразований установлен патрубок 18 отвода в топливную магистраль 1 освобожденного от льдообразований топлива.

В сборнике 14 установлены отсекатель 19 льдообразований и сливной кран 20.

Предложенный способ реализуется следующим образом.

Топливо с льдообразованиями из бака 2 забирается подкачивающим насосом 3 и по магистрали 1 через пожарный кран 4 подается к центробежному насосу 5. Центробежный насос 5 подводит топливо с льдообразованиями к тангенциально-наклонному входу отделителя 12. В результате поток топлива с льдообразованиями получает в отделителе 12 поступательно-вращательное движение. При этом льдообразования под действием центробежных сил отбрасываются к периферии и сползают в сборник 14, а освобожденное от льдообразований топливо поступает к центру отделителя 12 и по патрубку 18 возвращается в магистраль 1 и по ней в ТМТ 6. Поступившие в сборник 14 льдообразования подогреваются горячим воздухом, протекающим через подогреватель 13. Этот воздух отбирается из-за одной из ступеней компрессора двигателя 10 и по трубе 11 подводится к входу 16 подогревателя 13. После обтекания наружной поверхности сборника 14 воздух выпускается в атмосферу через патрубок 17. Образовавшаяся в результате таяния льда вода отводится из сборника 14, подогревается до температуры топлива и по трубе 15 сбрасывается обратно в магистраль 1 на участке за ТМТ 6 по потоку топлива.

Изобретение обеспечивает взлет самолета без отказа двигателя после длительного нахождения при низких температурах даже при нештатном содержании воды в топливе и без каких-либо противокристаллизационных присадок к топливу.

Похожие патенты RU2514522C2

название год авторы номер документа
СПОСОБ ПОДАЧИ ТОПЛИВА В ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ ПРИ ЗАПУСКЕ ПОСЛЕ ДЛИТЕЛЬНОГО ПРЕБЫВАНИЯ ПРИ НИЗКИХ ТЕМПЕРАТУРАХ И ТОПЛИВНАЯ СИСТЕМА ГАЗОТУРБИННОГО ДВИГАТЕЛЯ 1999
  • Франкштейн Л.И.
RU2163978C2
ГАЗОТУРБИННАЯ УСТАНОВКА 2007
  • Бондаренко Леонид Маркович
  • Гришанов Олег Алексеевич
  • Игначков Станислав Михайлович
  • Коссов Валерий Семенович
  • Нестеров Эдуард Иванович
  • Федорченко Дмитрий Геннадиевич
RU2353787C1
СИСТЕМА ТОПЛИВОПОДАЧИ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ 2008
  • Жодзишский Валерий Аронович
  • Кокин Геннадий Васильевич
  • Слотин Олег Борисович
  • Мельников Игорь Анатольевич
RU2368794C1
УСТРОЙСТВО ПОДОГРЕВА ТОПЛИВА В ТОПЛИВНОЙ СИСТЕМЕ ЛЕТАТЕЛЬНОГО АППАРАТА 2002
  • Грачев С.М.
RU2225807C2
МАСЛЯНАЯ СИСТЕМА АВИАЦИОННОГО ГАЗОТУРБИННОГО ДВИГАТЕЛЯ 2009
  • Голубов Александр Николаевич
  • Семенов Вадим Георгиевич
  • Фомин Вячеслав Николаевич
RU2402686C1
Маслосистема авиационного газотурбинного двигателя с форсажной камерой 2018
  • Голубов Александр Николаевич
  • Марчуков Евгений Ювенальевич
  • Фомин Вячеслав Николаевич
RU2705501C1
Масляная система газотурбинного двигателя 2021
  • Скиба Владимир Васильевич
RU2779209C1
СПОСОБ ОЧИСТКИ КОЛЛЕКТОРА С ФОРСУНКАМИ КАМЕРЫ СГОРАНИЯ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ ОТ ПРОДУКТОВ КОКСОВАНИЯ ТОПЛИВА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2002
  • Скибин В.А.
  • Яновский Л.С.
  • Иванов В.Ф.
  • Шамбан М.А.
RU2224126C1
ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ 2011
  • Голубов Александр Николаевич
  • Семенов Вадим Георгиевич
  • Фомин Вячеслав Николаевич
RU2458233C1
Маслосистема газотурбинного двигателя 2021
  • Колобков Валерий Владимирович
  • Новгородцев Андрей Владимирович
  • Яук Рудольф Владимирович
RU2758809C1

Иллюстрации к изобретению RU 2 514 522 C2

Реферат патента 2014 года СПОСОБ ПОДАЧИ ТОПЛИВА В ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ

Изобретение относится к области авиационной техники, в частности к способам подачи топлива в газотурбинный двигатель (ГТД), а также к топливным системам ГТД. Способ подачи топлива в газотурбинный двигатель при запуске после длительного пребывания при низких температурах заключается в подогреве топлива перед подачей его в топливный фильтр, причем перед подогревом отделяют от топлива льдообразования, которые подогревают до таяния, после чего воду, полученную при таянии льдообразований, соединяют с подогретым топливом. Упомянутую воду дополнительно подогревают до температуры не ниже температуры подогретого топлива, предпочтительно до температуры, близкой к температуре кипения, подогрев льдообразований и воды осуществляют отбираемым от компрессора газотурбинного двигателя воздухом. Технический результат изобретения - повышение надежности взлета самолета после его длительного нахождения при низких температурах. 1 з.п. ф-лы, 2 ил.

Формула изобретения RU 2 514 522 C2

1. Способ подачи топлива в газотурбинный двигатель при запуске после длительного пребывания при низких температурах, заключающийся в подогреве топлива перед подачей его в топливный фильтр, причем перед подогревом отделяют от топлива льдообразования, которые подогревают до таяния, после чего воду, полученную при таянии льдообразований, соединяют с подогретым топливом, отличающийся тем, что упомянутую воду дополнительно подогревают до температуры не ниже температуры подогретого топлива, предпочтительно до температуры, близкой к температуре кипения.

2. Способ по п.1, отличающийся тем, что подогрев льдообразований осуществляют отбираемым от компрессора газотурбинного двигателя воздухом.

Документы, цитированные в отчете о поиске Патент 2014 года RU2514522C2

СПОСОБ ПОДАЧИ ТОПЛИВА В ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ ПРИ ЗАПУСКЕ ПОСЛЕ ДЛИТЕЛЬНОГО ПРЕБЫВАНИЯ ПРИ НИЗКИХ ТЕМПЕРАТУРАХ И ТОПЛИВНАЯ СИСТЕМА ГАЗОТУРБИННОГО ДВИГАТЕЛЯ 1999
  • Франкштейн Л.И.
RU2163978C2
СПОСОБ И УСТРОЙСТВО ДЛЯ УВЕЛИЧЕНИЯ МОЩНОСТИ В ГАЗОВЫХ ТУРБИНАХ ПОСРЕДСТВОМ МОКРОГО СЖАТИЯ 1997
  • Зачари Ричард Е.
  • Хадсон Роджер Д.
  • Генри Джеймс Е.
  • Лайвли Вильям Е.
RU2178532C2
СПОСОБ РАБОТЫ И УСТРОЙСТВО ГАЗОТУРБИННОЙ УСТАНОВКИ С КОМПЛЕКСНОЙ СИСТЕМОЙ ГЛУБОКОЙ УТИЛИЗАЦИИ ТЕПЛОТЫ И СНИЖЕНИЯ ВРЕДНЫХ ВЫБРОСОВ В АТМОСФЕРУ 2000
  • Акчурин Х.И.
RU2194870C2
ГЛУБИННЫЙ ПАРОЖИДКОСТНЫЙ НАСОС 1997
  • Черномуров Федор Максимович
  • Югай Феликс Сергеевич
  • Александров Михаил Христофорович
  • Захаров Геннадий Сидорович
  • Таран Николай Михайлович
RU2099509C1
GB1559828A,30.01.1980
СПОСОБ ИЗВЛЕЧЕНИЯ РЕНИЯ 2002
  • Меезе-Марктшеффель Юлианэ
  • Штоллер Виктор
  • Ольбрих Армин
  • Мати Вольфганг
  • Ерб Михаэль
RU2323884C2

RU 2 514 522 C2

Авторы

Черниченко Владимир Викторович

Солженикин Павел Анатольевич

Стогней Владимир Григорьевич

Даты

2014-04-27Публикация

2012-02-03Подача