Область техники, к которой относится изобретение
Настоящее изобретение относится к технологии кодирования в сети беспроводной связи, в частности к способу ортогонального или распределенного ортогонального сетевого пространственно-временного кодирования и системе ретрансляционной передачи, основанной на этом способе.
Уровень техники
Беспроводная мобильная связь следующего поколения будет предоставлять все больше высокоскоростных служб мультимедиа и служб данных. Однако многолучевое замирание в мобильном канале является одной из главных помех, влияющих на качество связи и скорость передачи. За последние годы одной из актуальных проблем исследования является использование технологии ретрансляции для обеспечения дополнительных коэффициентов усиления при разнесенном приеме пользователям мобильной связи, с тем чтобы устранить влияние многолучевого замирания. Крупномасштабная беспроводная радиорелейная сеть, как правило, включает в себя множество узлов-источников и множество ретрансляционных узлов. В традиционных схемах ретрансляции (таких как ретрансляция с применением одиночной антенны и ретрансляция с применением системы со многими входами и многими выходами (MIMO)) необходимо пересылать данные для каждого узла-источника по отдельности, что приводит к значительному уменьшению эффективности передачи, поскольку масштаб сети увеличивается.
Посредством выполнения определенной линейной или нелинейной обработки (кодирования) информации в виде данных, принимаемой на множестве входных линий связи, сетевое кодирование может повышать пропускную способность сети, уменьшать число передач пакетов данных, улучшать свойство отказоустойчивости и эксплуатационную надежность сети и, таким образом, обладать выгодной перспективой применения в беспроводной радиорелейной сети.
Наряду с увеличением числа информационных источников в сети, в случае применения к сети беспроводной связи, традиционное сетевое кодирование, которое использует коллективный способ, может достигать пропускной способности только 1/(N+1) символов в секунду для пользователя. Для решения этой проблемы предложено освоить способ сетевого кодирования в комплексной области, который работает на символьном уровне физического слоя. Этот способ может достигать пропускной способности 1/2 символов для пользователя в течение символьного периода и подходит больше для области беспроводной связи.
Однако вышеупомянутый способ предусматривает только случай, когда для ретрансляции используется одна антенна, и не принимает во внимание ситуацию, когда для ретрансляции используется множество антенн или имеется множество ретрансляционных узлов. Вместе с тем система беспроводной связи с множеством входов и множеством выходов может всесторонне использовать трехмерные ресурсы пространства, времени и частоты и обладает широкой перспективой применения в будущих системах мобильной связи.
Раскрытие изобретения
С учетом вышеизложенного один аспект настоящего изобретения заключается в предоставлении способа ортогонального сетевого пространственно-временного кодирования, решении технической проблемы низкой сетевой пропускной способности ретрансляционного(-ых) узла(-ов) и больших потерь при разнесенном приеме в сети беспроводной связи, включающей в себя целевой узел, узел-источник и ретрансляционный(-ые) узел(-ы).
Для достижения вышеупомянутой цели техническое решение настоящего изобретения реализовано следующим образом:
Способ ортогонального сетевого пространственно-временного кодирования содержит следующие этапы:
Этап А, на котором узел-источник осуществляет широковещательную передачу информации в виде данных на ретрансляционный узел и целевой узел, причем для этапа А требуется TSR символьных периодов; и
Этап В, на котором ретрансляционный узел выполняет ортогональное сетевое пространственно-временное кодирование и передает кодированные данные на целевой узел, причем для этапа В требуется два символьных периода.
Этап А представляет собой этап, на котором узел-источник осуществляет широковещательную передачу информации в виде данных. Как показывает сплошная линия на Фиг.1, на этом этапе NS узлов-источников осуществляют одновременную широковещательную передачу информации в виде данных на ретрансляционный узел R и целевой узел D. Сигналы, принимаемые ретрансляционным узлом R и целевым узлом D в t-й символьный период, обозначены как ySR(t) и ySD(t) соответственно. Для этапа требуется TSR символьных периодов.
Этап В представляет собой этап, на котором ретрансляционный узел выполняет ортогональное сетевое пространственно-временное кодирование и передачу. Как показывает пунктирная линия на Фиг.1, на этом этапе необходимо выполнить пять процессов, включающих в себя декодирование на ретрансляционном узле, группирование оценочной информации, сжатие оценочной информации, пространственно-временное кодирование сжатых данных и пространственно-временную передачу. Упомянутые пять процедур описаны далее совместно с Фиг.2.
Процесс декодирования на ретрансляционном узле состоит в том, что ретрансляционный узел R выполняет декодирование по максимальной вероятности в соответствии с принимаемым сигналом ySR(t), чтобы получить оценочную информацию
при этом
Процесс группирования оценочной информации состоит в том, что ретрансляционный узел R разделяет оценочную информацию сигнальных векторов, передаваемых всеми NS узлами-источниками от нулевого символьного периода до (TSR-1)-го символьного периода, на два вектора-столбца с размерностью
Процесс сжатия оценочной информации состоит в том, что вектор-столбец
Процесс пространственно-временного кодирования сжатых данных состоит в том, что сигналы
Процесс пространственно-временной передачи состоит в том, что матрицу 2×2 передают соответствующим образом посредством двух антенн ретрансляционного узла в течение двух символьных периодов, причем два сигнала в первой строке матрицы 2×2 передают на целевой узел посредством двух антенн ретрансляционного узла в символьном периоде TSR, т.е. первая антенна передает сигнал
Другая цель настоящего изобретения заключается в предоставлении системы ретрансляционной передачи с использованием ортогонального сетевого пространственно-временного кодирования, основанной на способе ортогонального сетевого пространственно-временного кодирования. Для достижения этой цели техническое решение настоящего изобретения реализовано следующим образом.
Система ретрансляционной передачи с использованием ортогонального сетевого пространственно-временного кодирования, содержащая целевой узел, узел-источник и ретрансляционный узел, отличается тем, что:
узел-источник используется для осуществления широковещательной передачи информации в виде данных на ретрансляционный узел и целевой узел в TSR символьных периодах; и
ретрансляционный узел используется для выполнения ортогонального сетевого пространственно-временного кодирования принятой информации в виде данных и передачи кодированных данных на целевой узел, причем ретрансляционный узел совершает пять процедур в течение двух символьных периодов, а именно процесс декодирования на ретрансляционном узле, процесс группирования оценочной информации, процесс сжатия оценочной информации, процесс пространственно-временного кодирования сжатых данных и процесс пространственно-временной передачи.
Этапы обработки системы ретрансляционной передачи с использованием ортогонального сетевого пространственно-временного кодирования аналогичны этапам способа ортогонального сетевого пространственно-временного кодирования.
Другими словами, в настоящем изобретении оценочные сигналы ретрансляционного узла в TSR символьных периодах разделяют на две группы для сетевого пространственно-временного кодирования и передают в двух символьных периодах, при этом пропускная способность может достигать
Сеть беспроводной связи, показанная на Фиг.7, содержит один целевой узел, множество узлов-источников, каждый из которых имеет одну антенну, и два ретрансляционных узла, каждый из которых имеет только одну антенну, формируя таким образом распределенную ретрансляционную сеть. В распределенной ретрансляционной сети необходимо управлять мощностью каждого ретрансляционного узла. Другая цель настоящего изобретения заключается в предоставлении способа распределенного ортогонального сетевого пространственно-временного кодирования. Для достижения этой цели техническое решение настоящего изобретения реализовано следующим образом:
на этапе А узлы-источники осуществляют широковещательную передачу информации в виде данных на ретрансляционные узлы и целевой узел, причем для данного этапа требуется TS символьных периодов; и
на этапе В ретрансляционные узлы R1 и R2 выполняют распределенное ортогональное сетевое пространственно-временное кодирование и передают кодированные данные на целевой узел, причем для данного этапа требуется два символьных периода.
Этап А представляет собой этап осуществления узлами-источниками широковещательной передачи информации в виде данных, на котором Ns узлов-источников осуществляют одновременную широковещательную передачу информации в виде данных на ретрансляционные узлы R1 и R2 и целевой узел D, причем сигнальный вектор, передаваемый NS узлами-источниками, обозначается как
Этап В представляет собой этап, на котором ретрансляционный узел R1 и ретрансляционный узел R2 выполняют распределенное ортогональное сетевое пространственно-временное кодирование и передачу, причем для этого требуется выполнение пяти процедур, а именно декодирование на ретрансляционных узлах, группирование оценочной информации, сжатие оценочной информации, управление мощностью ретрансляционных узлов и распределенное пространственно-временное кодирование и передачу сжатых данных.
В способе распределенного ортогонального сетевого пространственно-временного кодирования процесс декодирования на ретрансляционных узлах состоит в том, что ретрансляционные узлы R1 и R2 выполняют декодирование по максимальной вероятности в соответствии с принимаемыми сигналами
При этом
В способе распределенного ортогонального сетевого пространственно-временного кодирования процесс группирования оценочной информации состоит в том, что ретрансляционные узлы R1 и R2 группируют оценочную информацию
Ретрансляционный узел R1 разделяет оценочные сигналы
Ретрансляционный узел R2 разделяет оценочные сигналы
В способе распределенного ортогонального сетевого пространственно-временного кодирования процесс сжатия оценочной информации состоит в том, что ретрансляционные узлы R1 и R2 соответствующим образом сжимают четыре вектора-столбца
В способе распределенного ортогонального сетевого пространственно-временного кодирования процесс управления мощностью ретрансляционных узлов состоит в том, что ретрансляционный узел R1 и ретрансляционный узел R2 вычисляют евклидово расстояние
Формула для вычисления евклидова расстояния
где
Существуют два способа определения коэффициентов р1 и р2 управления мощностью в соответствии с характеристиками изменения матрицы замирания канала:
Способ 1: Когда матрица замирания канала является квазистатической матрицей с медленными изменениями, формула вычисления коэффициента управления мощностью выглядит следующим образом:
где pn - коэффициент управления мощностью n-го ретрансляционного узла,
Способ 2: Когда матрица замирания канала изменяется относительно быстро, формула вычисления коэффициента управления мощностью выглядит следующим образом:
где pn - коэффициент управления мощностью n-го ретрансляционного узла,
В способе распределенного ортогонального сетевого пространственно-временного кодирования процесс распределенного пространственно-временного кодирования и передачи сжатых данных состоит в том, что ретрансляционные узлы R1 и R2 выполняют передачу в соответствии с матрицей ортогонального пространственно-временного кодирования, используя соответствующие сжатые данные
Другая цель настоящего изобретения состоит в предоставлении системы ретрансляционной передачи с использованием распределенного ортогонального сетевого пространственно-временного кодирования, основанной на способе распределенного ортогонального сетевого пространственно-временно кодирования. Для достижения этой цели техническое решение настоящего изобретения реализовано следующим образом:
Система ретрансляционной передачи с использованием распределенного ортогонального сетевого пространственно-временного кодирования, содержащая целевой узел, узел-источник и ретрансляционный узел, отличается тем, что:
узел-источник используется для осуществления широковещательной передачи информации в виде данных на ретрансляционный узел и целевой узел в TSR символьных периодах; и
ретрансляционный узел используется для осуществления распределенного ортогонального сетевого пространственно-временного кодирования принятой информации в виде данных и передачи кодированных данных на целевой узел, при этом ретрансляционный узел совершает в течение двух символьных периодов пять процедур, а именно декодирование на ретрансляционном узле, группирование оценочной информации, сжатие оценочной информации, управление мощностью ретрансляционного узла и распределенное пространственно-временное кодирование и передачу сжатых данных.
Этапы обработки системы ретрансляционной передачи с использованием распределенного ортогонального сетевого пространственно-временного кодирования аналогичны этапам способа распределенного ортогонального сетевого пространственно-временного кодирования.
Согласно этому решению данные, передаваемые NS пользователями в TS временных интервалах, перенаправляются на ретрансляционный узел в течение двух временных интервалов с помощью сетевого кодирования и распределенных пространственно-временных кодов, причем пропускная способность в этом решении составляет TS/(TS+2) символов для пользователя в течение временного интервала, и когда число узлов-источников TS>2, пропускная способность больше, чем пропускная способность существующего сетевого кодирования в комплексной области. Кроме того, когда TS приближается к бесконечности, пропускная способность в этом решении стремится к 1 символу для пользователя в течение символьного периода.
Другие характеристики и преимущества настоящего изобретения будут истолкованы в нижеследующем описании, и, кроме того, части из них станут очевидными из описания или осмыслены посредством осуществления настоящего изобретения. Цель и другие преимущества настоящего изобретения могут быть осознаны и получены с помощью структуры, указанной, в частности, в описании, формуле изобретения и на сопровождающих чертежах.
Краткое описание чертежей
Чертежи используются в настоящем документе для обеспечения дополнительного понимания настоящего изобретения и формирования части описания. Варианты осуществления настоящего изобретения и их раскрытие используются для истолкования настоящего изобретения, а не для его чрезмерного ограничения. На сопровождающих чертежах:
Фиг.1 представляет собой модель сети беспроводной связи, содержащую множество узлов-источников, ретрансляционный узел и целевой узел в соответствии с настоящим изобретением;
Фиг.2 представляет собой принципиальную структурную схему технического решения настоящего изобретения;
Фиг.3 представляет собой принципиальную структурную схему Примера 1 настоящего изобретения;
Фиг.4 представляет собой кривую рабочей характеристики Примера 1 настоящего изобретения;
Фиг.5 представляет собой принципиальную структурную схему Примера 2 настоящего изобретения;
Фиг.6 представляет собой кривую рабочей характеристики Примера 1 и Примера 2 настоящего изобретения;
Фиг.7 представляет собой принципиальную структурную схему Примера 3 настоящего изобретения;
Фиг.8 представляет собой схему модулирования рабочей характеристики Примера 3 настоящего изобретения;
Фиг.9 представляет собой принципиальную структурную схему Примера 4 настоящего изобретения; и
Фиг.10 представляет собой схему модулирования рабочей характеристики Примера 4 настоящего изобретения.
Осуществление изобретения
Чтобы разъяснить цель, техническое решение и преимущества настоящего изобретения, оно описывается далее подробно с помощью примеров и со ссылками на чертежи. Первый вариант осуществления
Как показано на Фиг.3, где TSR=2, способ ортогонального сетевого пространственно-временного кодирования, предусмотренный в этом примере настоящего изобретения, завершается в два этапа, при этом первый этап представляет собой этап, на котором узел-источник осуществляет широковещательную передачу информации в виде данных, причем для этого требуется TSR=2 символьных периодов, а второй этап представляет собой этап, на котором ретрансляционный узел выполняет сетевое пространственно-временное кодирование и передачу, причем для этого требуется два символьных периода.
На этапе, на котором узел-источник осуществляет широковещательную передачу информации в виде данных, NS узлов-источников одновременно передают информацию широковещательным способом на ретрансляционный узел R и целевой узел D, при этом сигналы, принимаемые ретрансляционным узлом R и целевым узлом D в t-м символьном периоде, обозначены соответственно как ySR(t) и ySD(t). Для этого этапа требуется TSR=2 символьных периодов.
На этапе, на котором ретрансляционный узел выполняет сетевое пространственно-временное кодирование и передачу, необходимо совершить пять процедур, а именно декодирование на ретрансляционном узле, группирование оценочной информации, сжатие оценочной информации, пространственно-временное кодирование сжатых данных и пространственно-временную передачу.
На этапе, на котором ретрансляционный узел выполняет сетевое пространственно-временное кодирование и передачу, процесс декодирования на ретрансляционном узле состоит в том, что ретрансляционный узел R выполняет декодирование по максимальной вероятности в соответствии с принимаемым сигналом ySR(t), чтобы получить оценочную информацию
где
На этапе, на котором ретрансляционный узел выполняет сетевое пространственно-временное кодирование и передачу, процесс группирования оценочной информации состоит в том, что ретрансляционный узел R разделяет оценочные значения сигналов, передаваемых всеми NS узлами-источниками в нулевом символьном периоде, на два вектора-столбца с размерностью
На этапе, на котором ретрансляционный узел выполняет сетевое пространственно-временное кодирование и передачу, процесс сжатия оценочной информации состоит в том, что вектор-столбец
На этапе, на котором ретрансляционный узел выполняет сетевое пространственно-временное кодирование и передачу, процесс пространственно-временного кодирования сжатых данных состоит в том, что сигналы
На этапе, на котором ретрансляционный узел выполняет сетевое пространственно-временное кодирование и передачу, процесс пространственно-временной передачи состоит в том, что матрицу 2×2 передают соответствующим образом посредством двух антенн ретрансляционного узла в течение двух символьных периодов, при этом два сигнала в первой строке матрицы 2×2 передают на целевой узел посредством двух антенн ретрансляционного узла в символьном периоде TSR=2, т.е. первая антенна передает сигнал
В этом примере вектор Р2 выбирают следующим образом:
Поскольку TSR=2, пропускная способность решения в этом примере составляет
На Фиг.4 показана кривая моделирования для случая использования этого примера, а также сравнение рабочих характеристик между пространственно-временным кодированием, предоставляемым этим примером, и коллективным сетевым кодированием в комплексной области, при этом по оси ординат отложена частота появления ошибочных символов, а по оси абсцисс - отношение сигнал-шум для каждого символа. Решения, предоставляемые примерами настоящего изобретения, и решение сетевого кодирования в комплексной области используют двоичную фазовую (BPSK) модуляцию и имеют пропускную способность 1/2 символа для пользователя в течение символьного периода. Как видно из фигуры, когда SER=10-4, решение, предоставляемое настоящим изобретением, обладает коэффициентом усиления 5 дБ по сравнению с решением сетевого кодирования в комплексной области. Кроме того, в случае одинаковой пропускной способности решение примера настоящего изобретения может достигать дополнительных коэффициентов усиления при разнесенном приеме. Главная причина кроется в том, что в решении примера настоящего изобретения, когда ретрансляционный узел обнаруживает информацию в виде данных узла-источника, может быть использован способ объединения максимальных отношений. Таким образом, решение настоящего изобретения может достигать дополнительных коэффициентов усиления при разнесенном приеме по сравнению с решением сетевого кодирования в комплексной области с двумя ретрансляционными узлами.
Второй вариант осуществления
Как показано на Фиг.5, где TSR=4, способ ортогонального сетевого пространственно-временного кодирования, предоставляемый в примере настоящего изобретения, завершается в два этапа, причем для этого требуется TSR+2 символьных периодов; при этом первый этап, для которого требуется TSR=4 символьных периодов, состоит в том, что узел-источник осуществляет широковещательную передачу информации в виде данных, а второй этап, для которого требуется два символьных периода, состоит в том, что ретрансляционный узел выполняет сетевое пространственно-временное кодирование и передачу.
На этапе, на котором узел-источник осуществляет широковещательную передачу информации в виде данных, NS узлов-источников одновременно передают информацию широковещательным способом на ретрансляционный узел R и целевой узел D, при этом сигналы, принимаемые ретрансляционным узлом R и целевым узлом D в t-м символьном периоде, обозначаются соответственно как ySR(t) и ySD(t). Для этого этапа требуется TSR=2 символьных периодов.
На этапе, на котором ретрансляционный узел выполняет сетевое пространственно-временное кодирование и передачу, необходимо выполнить пять процедур, а именно декодирование на ретрансляционном узле, группирование оценочной информации, сжатие оценочной информации, пространственно-временную передачу сжатых данных и пространственно-временную передачу.
На этапе, на котором ретрансляционный узел выполняет сетевое пространственно-временное кодирование и передачу, процесс декодирования на ретрансляционном узле состоит в том, что ретрансляционный узел R выполняет декодирование по максимальной вероятности в соответствии с принимаемым сигналом ySR(t), чтобы получить оценочную информацию
где
На этапе, на котором ретрансляционный узел выполняет сетевое пространственно-временное кодирование и передачу, процесс группирования оценочной информации состоит в том, что ретрансляционный узел R разделяет оценочные значения сигналов, передаваемых всеми NS узлами-источниками от нулевого символьного периода до символьного периода TSR-1=3, на два вектора-столбца с размерностью
На этапе, на котором ретрансляционный узел выполняет сетевое пространственно-временное кодирование и передачу, процесс сжатия оценочной информации состоит в том, что вектор-столбец
На этапе, на котором ретрансляционный узел выполняет сетевое пространственно-временное кодирование и передачу, процесс пространственно-временного кодирования сжатых данных состоит в том, что сигналы
На этапе, на котором ретрансляционный узел выполняет сетевое пространственно-временное кодирование и передачу, процесс пространственно-временной передачи состоит в том, что матрицу 2×2 передают соответствующим образом посредством двух антенн ретрансляционного узла в течение двух символьных периодов; при этом два сигнала в первой строке матрицы 2×2 передают на целевой узел посредством двух антенн ретрансляционного узла в символьном периоде TSR=4, т.е. первая антенна передает сигнал
В этом примере вектор Р3 с размерностью 1×NS выбирают следующим образом:
Поскольку TSR=4, пропускная способность решения, обеспечиваемого этим примером, составляет
На Фиг.6 показана кривая сравнения рабочей характеристики решения настоящего изобретения с разными пропускными способностями, причем по оси ординат отложена частота появления ошибочных символов, а по оси абсцисс - отношение сигнал-шум для каждого символа. Как видно из фигуры, с увеличением пропускной способности производительность сетевого пространственно-временного кодирования слегка уменьшается, хотя нет очевидного изменения коэффициента усиления при разнесенном приеме при разных пропускных способностях.
Далее в отношении различных способов управления мощностью в описываемом решении предоставлены Пример 3 и Пример 4.
Третий вариант осуществления
Фиг.7 иллюстрирует структурную схему распределенной ретрансляционной сети, в которой имеются NS узлов-источников и два ретрансляционных узла. Когда TS=2, способ распределенного ортогонального сетевого пространственно-временного кодирования осуществляется в два этапа, при этом требуется TS+2=4 символьных периодов.
Первый этап заключается в том, что узлы-источники осуществляют широковещательную передачу информации в виде данных, причем для этого требуется TS=2 символьных периодов.
Второй этап заключается в том, что ретрансляционные узлы R1 и R2 выполняют распределенное ортогональное сетевое пространственно-временное кодирование и передачу, причем для этого требуется два символьных периода.
Этап, на котором узлы-источники осуществляют широковещательную передачу информации в виде данных, состоит в том, что NS узлов-источников одновременно передают информацию широковещательным способом на ретрансляционные узлы R1 и R2 и целевой узел D, причем сигнальный вектор, передаваемый NS узлами-источниками, обозначается как
На этапе, на котором ретрансляционные узлы R1 и R2 выполняют распределенное ортогональное сетевое пространственно-временное кодирование и передачу, необходимо выполнить пять процедур, а именно декодирование на ретрансляционных узлах, группирование оценочной информации, сжатие оценочной информации, управление мощностью ретрансляционных узлов и распределенное пространственно-временное кодирование сжатых данных и передачу.
В способе распределенного ортогонального сетевого пространственно-временного кодирования процесс декодирования на ретрансляционных узлах состоит в том, что ретрансляционные узлы R1 и R2 соответствующим образом выполняют декодирование по максимальной вероятности в соответствии с принимаемыми сигналами
где
В способе распределенного ортогонального сетевого пространственно-временного кодирования процесс группирования оценочной информации состоит в том, что ретрансляционные узлы R1 и R2 соответствующим образом группируют оценочную информацию NS узлов-источников в TS символьных периодах, чтобы получить два вектора-столбца
Ретрансляционный узел R1 разделяет оценочные сигналы
Ретрансляционный узел R2 разделяет оценочные сигналы
В способе распределенного ортогонального сетевого пространственно-временного кодирования процесс сжатия оценочной информации состоит в том, что ретрансляционные узлы R1 и R2 соответствующим образом производят сжатие четырех векторов-столбцов
В способе распределенного ортогонального сетевого пространственно-временного кодирования процесс управления мощностью ретрансляционных узлов состоит в том, что ретрансляционный узел Ri вычисляет евклидовые расстояния
В способе распределенного ортогонального сетевого пространственно-временного кодирования существуют два способа определения коэффициентов р1 и р2 управления мощностью в соответствии с характеристиками изменения матрицы замирания канала:
Способ 1: Когда матрица замирания канала является квазистатической, т.е. с медленными изменениями, коэффициенты р1 и р2 управления мощностью выражаются следующим образом:
Способ 2: Когда матрица замирания канала изменяется относительно быстро, коэффициенты p1 и р2 управления мощностью выражаются следующим образом:
при этом формула для вычисления евклидова расстояния
В способе распределенного ортогонального сетевого пространственно-временного кодирования распределенное пространственно-временное кодирование сжатых данных состоит в том, что ретрансляционные узлы R1 и R2 выполняют передачу в соответствии с матрицей ортогонального пространственно-временного кодирования, используя соответствующие сжатые данные
В этом примере оценочные сигналы ретрансляционных узлов в символьных периодах TS=2 подлежат распределенному ортогональному сетевому пространственно-временному кодированию посредством двух групп разных векторов соответственно и передаются в течение двух символьных периодов, причем пропускная способность может достигать TS/(TS+2)=1/2 символов для пользователя в течение временного интервала.
В этом примере вектор сетевого кодирования выбранного единичного комплексного вектора-строки Р2 с размерностью
На Фиг.8 показана кривая модулирования настоящего примера, когда используется BPSK-модуляция, причем по оси ординат отложена частота появления ошибочных символов, а по оси абсцисс - отношение сигнал-шум для каждого символа. На представленной фигуре обозначение (2,2,1) указывает, что имеются два узла-источника, два ретрансляционных узла и один целевой узел, при этом каждый узел имеет одну антенну, и пропускная способность составляет 1/2 символов для пользователя в течение символьного периода. Как видно из Фиг.4, в случае одинаковых пропускных способностей распределенное ортогональное сетевое пространственно-временное кодирование, основанное на алгоритме 1 управления мощностью, может достигать лучшей производительности, когда частота появления ошибочных символов SER=10-4, причем решение кодирования, основанное на алгоритме 1 управления мощностью, предоставленном настоящим примером, имеет коэффициенты усиления примерно 5 дБ, а решение кодирования, основанное на алгоритме 2 управления мощностью, имеет коэффициенты усиления примерно 4 дБ.
Четвертый вариант осуществления
Фиг.9 иллюстрирует структурную схему распределенной ретрансляционной сети, в которой имеются NS узлов-источников и два ретрансляционных узла. Когда TS=4, способ распределенного ортогонального сетевого пространственно-временного кодирования осуществляется в два этапа, при этом требуется TS+2=6 символьных периодов.
Первый этап заключается в том, что узлы-источники осуществляют широковещательную передачу информации в виде данных, причем для этого требуется TS=4 символьных периодов.
Второй этап заключается в том, что ретрансляционные узлы R1 и R2 выполняют распределенное ортогональное сетевое пространственно-временное кодирование и передачу, причем для этого требуется два символьных периода.
Этап, на котором узлы-источники осуществляют широковещательную передачу информации в виде данных, состоит в том, что NS узлов-источников одновременно передают информацию широковещательным способом на ретрансляционные узлы R1 и R2 и целевой узел D, причем сигнальный вектор, передаваемый NS узлами-источниками, обозначается как
На этапе, на котором ретрансляционные узлы R1 и R2 выполняют распределенное ортогональное сетевое пространственно-временное кодирование и передачу, необходимо выполнить пять процедур, а именно декодирование на ретрансляционных узлах, группирование оценочной информации, сжатие оценочной информации, управление мощностью ретрансляционных узлов и распределенное пространственно-временное кодирование сжатых данных и передачу.
В способе распределенного ортогонального сетевого пространственно-временного кодирования процесс декодирования на ретрансляционных узлах состоит в том, что ретрансляционные узлы R1 и R2 соответствующим образом выполняют декодирование по максимальной вероятности в соответствии с принимаемыми сигналами
где
В способе распределенного ортогонального сетевого пространственно-временного кодирования процесс группирования оценочной информации состоит в том, что ретрансляционные узлы R1 и R2 соответствующим образом группируют оценочную информацию NS узлов-источников в TS=4 символьных периодах, чтобы получить два вектора-столбца
Ретрансляционный узел R1 разделяет оценочные сигналы
Ретрансляционный узел R2 разделяет оценочные сигналы
В способе распределенного ортогонального сетевого пространственно-временного кодирования процесс сжатия оценочной информации состоит в том, что ретрансляционные узлы R1 и R2 соответствующим образом сжимают четыре вектора-столбца
комплексный вектор-строку Р3 с размерностью
В способе распределенного ортогонального сетевого пространственно-временного кодирования управление мощностью ретрансляционных узлов заключается в том, что ретрансляционный узел Ri вычисляет евклидовые расстояния
В способе распределенного ортогонального сетевого пространственно-временного кодирования существуют два способа определения коэффициентов p1 и р2 управления мощностью в соответствии с характеристиками изменения матрицы замирания канала:
Способ 1: Когда матрица замирания канала является квазистатической, т.е. матрица замирания канала изменяется медленно, коэффициенты p1 и р2 управления мощностью выражаются следующим образом:
Способ 2: Когда матрица замирания канала изменяется относительно быстро, коэффициенты p1 и р2 управления мощностью выражаются следующим образом:
при этом формула для вычисления евклидова расстояния
В способе распределенного ортогонального сетевого пространственно-временного кодирования распределенное пространственно-временное кодирование сжатых данных состоит в том, что ретрансляционные узлы R1 и R2 выполняют передачу в соответствии с матрицей ортогонального пространственно-временного кодирования, используя соответствующие сжатые данные
В этом примере оценочные сигналы ретрансляционных узлов в символьных периодах TS=4 подлежат сетевому пространственно-временному кодированию посредством двух групп разных векторов соответственно и передаются совместно в течение двух символьных периодов, причем пропускная способность может достигать TS/(TS+2}=2/3 символов для пользователя в течение временного интервала.
В этом примере выбранный единичный комплексный вектор-строка Р3 с размерностью
На Фиг.10 показана кривая модулирования настоящего примера, когда используется BPSK-модуляция, причем по оси ординат отложена частота появления ошибочных символов, а по оси абсцисс - отношение сигнал-шум для каждого символа. На представленной фигуре обозначение (2,2,1) указывает, что имеются два узла-источника, два ретрансляционных узла и один целевой узел, при этом каждый узел имеет одну антенну, и пропускная способность составляет 2/3 символов для пользователя в течение символьного периода. Как видно из Фиг.5, в случае одинаковых пропускных способностей распределенное ортогональное сетевое пространственно-временное кодирование, основанное на алгоритме 1 управления мощностью, может достигать лучшей производительности и иметь постоянные коэффициенты усиления при разнесенном приеме.
Вышеописанное решение может быть применено к многоточечной коллективной передаче. При этом узел-источник может быть мобильным терминалом, ретрансляционный узел - коллективной базовой станцией непервичной ячейки в многоточечной коллективной передаче, а целевой узел - главной базовой станцией в многоточечной коллективной передаче.
Кроме того, настоящее изобретение может быть осуществлено без модификации системной архитектуры, и представленная последовательность операций обработки, которая может быть с легкостью реализована, удобна для использования в данной области техники и обладает преимущественной промышленной применимостью.
Вышеизложенное является лишь предпочтительными вариантами осуществления настоящего изобретения, которые не используются для ограничения объема охраны настоящего изобретения.
Настоящее изобретение относится к способу ортогонального сетевого пространственно-временного кодирования и к системе ретрансляционной передачи. Изобретение обеспечивает технический результат, заключающийся в повышении пропускной способности сети, уменьшении числа передач пакетов данных, улучшении свойства отказоустойчивости при разнесенном приеме в сети беспроводной связи, содержащей целевой узел, узел-источник и ретрансляционный узел. Способ используется в сети беспроводной связи, содержащей целевой узел, узел-источник и ретрансляционный узел, и содержит: этап А, на котором узел-источник осуществляет широковещательную передачу информации в виде данных на ретрансляционный узел и целевой узел, причем для этапа А требуется TSR символьных периодов, и этап В, на котором после приема информации в виде данных, передаваемой посредством узла-источника, ретрансляционный узел выполняет ортогональное сетевое пространственно-временное кодирование и передает кодированные данные на целевой узел, причем для этапа В требуется два символьных периода. 4 н. и 11 з.п. ф-лы, 10 ил.
1. Способ ортогонального сетевого пространственно-временного кодирования, который используется в сети беспроводной связи, содержащей целевой узел, узел-источник и ретрансляционный узел, отличающийся тем, что содержит:
этап A, на котором узел-источник осуществляет широковещательную передачу информации в виде данных на ретрансляционный узел и целевой узел, причем для этапа А требуется TSR символьных периодов; и
этап B, на котором после приема информации в виде данных, передаваемой посредством узла-источника, ретрансляционный узел выполняет ортогональное сетевое пространственно-временное кодирование и передает данные кодирования на целевой узел, причем для этапа В требуется два символьных периода;
при этом этап В содержит процесс декодирования на ретрансляционном узле, процесс группирования оценочной информации, процесс сжатия оценочной информации, процесс пространственно-временного кодирования сжатых данных и процесс пространственно-временной передачи.
2. Способ по п.1, в котором на этапе В
процесс декодирования на ретрансляционном узле состоит в том, что ретрансляционный узел выполняет декодирование по максимальной вероятности в соответствии с принимаемым сигналом, чтобы получить оценочную информацию сигнальных векторов, передаваемых посредством NS узлов-источников, число которых соответствует числу NS узлов-источников;
процесс группирования оценочной информации состоит в том, что ретрансляционный узел R разделяет оценочную информацию сигнальных векторов, передаваемых посредством всех NS узлов-источников от нулевого символьного периода до (TSR-1)-го символьного периода, на два вектора-столбца с размерностью ;
процесс сжатия оценочной информации состоит в том, что два вектора-столбца с размерностью , получаемые в процессе группирования оценочной информации, соответствующим образом сжимают в два комплексных сигнала и ;
процесс пространственно-временного кодирования сжатых данных состоит в том, что два комплексных сигнала и , получаемые в процессе сжатия оценочной информации, формируют матрицу 2×2; и
процесс пространственно-временной передачи состоит в том, что матрицу 2×2 передают соответствующим образом посредством двух антенн ретрансляционного узла в течение двух символьных периодов.
3. Способ по п.2, отличающийся тем, что процесс группирования оценочной информации состоит в следующем:
первый вектор содержит оцениваемую посредством ретрансляционного узла оценочную информацию сигнальных векторов, передаваемых посредством NS узлов-источников от нулевого символьного периода до символьного периода; и
второй вектор содержит оцениваемую посредством ретрансляционного узла оценочную информацию сигнальных векторов, передаваемых посредством NS узлов-источников от символьного периода до (TSR-1)-го символьного периода.
4. Способ по п.3, отличающийся тем, что процесс сжатия оценочной информации состоит в следующем:
векторы и , получаемые в процессе группирования оценочной информации, умножают слева соответствующим образом на единичный комплексный вектор-строку Pj значения весового коэффициента сетевого кодирования с размерностью , чтобы получить сжатые комплексные сигналы и .
5. Способ по п.4, отличающийся тем, что в матрице 2×2, формируемой в процессе пространственно-временного кодирования сжатых данных, элемент в первой строке и первом столбце представляет собой сжатый комплексный сигнал , элемент в первой строке и втором столбце представляет собой сжатый комплексный сигнал , элемент во второй строке и первом столбце представляет собой отрицательное сопряжение сжатого комплексного сигнала , и элемент во второй строке и втором столбце представляет собой сопряжение сжатого комплексного сигнала .
6. Способ по п.5, отличающийся тем, что в процессе пространственно-временной передачи ретрансляционный узел передает два сигнала в первой строке в матрице 2×2 на целевой узел через две антенны ретрансляционного узла в TSR-м символьном периоде и передает два сигнала во второй строке в матрице 2×2 на целевой узел через две антенны ретрансляционного узла в (TSR+1)-м символьном периоде.
7. Способ по любому из пп.1-6, отличающийся тем, что узел-источник представляет собой мобильный терминал, ретрансляционный узел представляет собой коллективную базовую станцию непервичной ячейки в многоточечной коллективной передаче, а целевой узел представляет собой основную базовую станцию в многоточечной коллективной передаче.
8. Система ретрансляционной передачи с использованием ортогонального сетевого пространственно-временного кодирования, основанная на вышеупомянутом способе ортогонального сетевого пространственно-временного кодирования, которая содержит целевой узел, множество узлов-источников и ретрансляционный узел, причем система отличается тем, что:
узел-источник выполнен с возможностью осуществлять широковещательную передачу информации в виде данных на ретрансляционный узел и целевой узел в TSR символьных периодах; и
ретрансляционный узел выполнен с возможностью осуществлять ортогональное сетевое пространственно-временное кодирование принятой информации в виде данных и передавать данные кодирования на целевой узел, при этом ретрансляционный узел совершает в течение двух символьных периодов пять процессов, включающих в себя процесс декодирования на ретрансляционном узле, процесс группирования оценочной информации, процесс сжатия оценочной информации, процесс пространственно-временного кодирования сжатых данных и процесс пространственно-временной передачи.
9. Система по п.8, отличающаяся тем, что:
процесс декодирования на ретрансляционном узле состоит в том, что ретрансляционный узел выполняет декодирование по максимальной вероятности в соответствии с принимаемым сигналом, чтобы получить оценочную информацию сигнальных векторов, передаваемых посредством NS узлов-источников, число которых соответствует числу NS узлов-источников;
процесс группирования оценочной информации состоит в том, что ретрансляционный узел R разделяет оценочную информацию сигнальных векторов, передаваемых посредством всех NS узлов-источников от нулевого символьного периода до (TSR-1)-го символьного периода, на два вектора-столбца с размерностью ;
процесс сжатия оценочной информации состоит в том, что два вектора-столбца с размерностью , получаемые в процессе группирования оценочной информации, соответствующим образом сжимают в два комплексных сигнала и ;
процесс пространственно-временного кодирования сжатых данных состоит в том, что два комплексных сигнала и , получаемые в процессе сжатия оценочной информации, формируют матрицу 2×2; и
процесс пространственно-временной передачи состоит в том, что матрицу 2×2 передают соответствующим образом посредством двух антенн ретрансляционного узла в течение двух символьных периодов.
10. Способ распределенного ортогонального сетевого пространственно-временного кодирования, который используется в сети беспроводной связи, содержащей целевой узел, узел-источник и ретрансляционные узлы, причем способ отличается тем, что содержит:
этап А, на котором узел-источник осуществляет широковещательную передачу информации в виде данных на ретрансляционные узлы и целевой узел, причем для этапа А требуется TS символьных периодов; и
этап В, на котором ретрансляционный узел R1 и ретрансляционный узел R2 осуществляют распределенное ортогональное сетевое пространственно-временное кодирование и передают данные кодирования на целевой узел, причем для этапа В требуется два символьных периода;
при этом этап В содержит процесс декодирования на ретрансляционном узле, процесс группирования оценочной информации, процесс сжатия оценочной информации, процесс пространственно-временного кодирования сжатых данных и процесс пространственно-временной передачи.
11. Способ по п.10, в котором на этапе В
процесс декодирования на ретрансляционном узле состоит в том, что ретрансляционный узел R1 и ретрансляционный узел R2 соответствующим образом выполняют декодирование по максимальной вероятности в соответствии с принимаемыми сигналами и , чтобы соответствующим образом получить оценочную информацию и сигнальных векторов, передаваемых посредством NS узлов-источников;
процесс группирования оценочной информации состоит в том, что ретрансляционные узлы R1 и R2 соответствующим образом группируют соответствующим образом декодируемую оценочную информацию и сигнальных векторов, которые передаются посредством NS узлов-источников, чтобы получить четыре вектора- столбца с размерностью , соответственно представляющие собой , , и ;
процесс сжатия оценочной информации состоит в том, что ретрансляционные узлы R1 и R2 соответствующим образом умножают слева , , и на единичный комплексный вектор-строку Pi, значения весового коэффициента сетевого кодирования с размерностью , чтобы получить четыре сжатых комплексных вектора , , и ;
процесс управления мощностью ретрансляционных узлов состоит в том, что ретрансляционный узел R1 и ретрансляционный узел R2 соответствующим образом вычисляют евклидово расстояние между ретрансляционным узлом R1 и NS узлами-источниками и евклидово расстояние между ретрансляционным узлом R2 и NS узлами-источниками в соответствии со способом модуляции, используемым NS узлами-источниками, матрицу замирания канала между узлами-источниками и ретрансляционным узлом R1 и матрицу замирания канала между узлами-источниками и ретрансляционным узлом R2, и определяют коэффициенты p1 и p2 управления мощностью на ретрансляционном узле R1 и ретрансляционном узле R2 в соответствии с и ; и
процесс передачи с использованием распределенного пространственно-временного кодирования сжатых данных состоит в том, что ретрансляционные узлы R1 и R2 выполняют передачу в соответствии с матрицей ортогонального пространственно-временного кодирования, используя соответствующие сжатые данные , , и , получаемые в процессе сжатия оценочной информации, и коэффициенты p1 и p2 управления мощностью, получаемые в процессе управления мощностью ретрансляционных узлов.
12. Способ по п.11, отличающийся тем, что, когда матрицы замирания канала между узлами-источниками и ретрансляционными узлами представляют собой квазистатические матрицы с медленными изменениями, формула для вычисления коэффициентов управления мощностью выглядит следующим образом:
,
при этом pn - коэффициент управления мощностью n-го ретрансляционного узла, - евклидово расстояние от информационного источника до n-го ретрансляционного узла, - изменение импульсного отклика канала между информационным источником и n-м ретрансляционным узлом, - матрица замирания канала между n-м ретрансляционным узлом и целевым узлом D, и - изменение импульсного отклика канала между n-м ретрансляционным узлом и целевым узлом.
13. Способ по п.11, отличающийся тем, что, если матрицы замирания канала между узлами-источниками и ретрансляционными узлами изменяются относительно быстро, формула для вычисления коэффициента управления мощностью выглядит следующим образом:
,
при этом pn - коэффициент управления мощностью n-го ретрансляционного узла, - евклидово расстояние от информационного источника до n-го ретрансляционного узла, - изменение импульсного отклика канала между информационным источником и n-м ретрансляционным узлом, и - изменение импульсного отклика канала между n-м ретрансляционным узлом и целевым узлом.
14. Способ по любому из пп.10-13, отличающийся тем, что узел(ы)-источник(и) представляет(ют) собой мобильный(ые) терминал(ы), ретрансляционные узлы представляют собой коллективные базовые станции непервичной ячейки в многоточечной коллективной передаче, а целевой(ые) узел(ы) представляет(ют) собой основную(ые) базовую(ые) станцию(ии) в многоточечной коллективной передаче.
15. Система ретрансляционной передачи с использованием распределенного ортогонального сетевого пространственно-временного кодирования, основанная на вышеупомянутом способе распределенного ортогонального сетевого пространственно-временного кодирования, содержащая целевой узел, узел-источник и ретрансляционные узлы R1 и R2, причем система отличается тем, что:
узел-источник выполнен с возможностью осуществлять широковещательную передачу информации в виде данных на ретрансляционный узел и целевой узел в TSR символьных периодах; и
ретрансляционные узлы R1 и R2 выполнены с возможностью осуществлять распределенное ортогональное сетевое пространственно-временное кодирование принятой информации в виде данных и передавать данные кодирования на целевой узел, при этом ретрансляционный узел совершает в течение двух символьных периодов пять процессов, включающих в себя декодирование на ретрансляционном узле, группирование оценочной информации, сжатие оценочной информации, управление мощностью ретрансляционного узла и передачу с использованием распределенного пространственно-временного кодирования сжатых данных;
при этом процесс передачи с использованием распределенного пространственно-временного кодирования сжатых данных состоит в том, что ретрансляционные узлы R1 и R2 выполняют передачу в соответствии с матрицей ортогонального пространственно-временного кодирования, используя соответствующие сжатые данные, получаемые в процессе сжатия оценочной информации, и коэффициенты управления мощностью, получаемые в процессе управления мощностью ретрансляционного узла.
CH 101316155 A, 03.12.2008 | |||
CH 1013231144 A, 10.12.2008 | |||
Станок для изготовления деревянных ниточных катушек из цилиндрических, снабженных осевым отверстием, заготовок | 1923 |
|
SU2008A1 |
СПОСОБ И СИСТЕМА ДЛЯ СЕТЕЙ БЕСПРОВОДНОЙ СВЯЗИ, ИСПОЛЬЗУЮЩИХ РЕТРАНСЛЯЦИЮ | 2004 |
|
RU2342800C2 |
Пломбировальные щипцы | 1923 |
|
SU2006A1 |
Авторы
Даты
2014-05-10—Публикация
2009-10-21—Подача