Изобретение относится к гидрометаллургии и может быть использовано для очистки нитратных растворов, содержащих редкоземельные металлы (РЗМ), от примесей. Изобретение может быть использовано, в частности, в технологии получения редкоземельных металлов из ортита на стадии очистки нитратного раствора, содержащего РЗМ, от балластных (Fe, Al, Ca, Mg) и радиоактивных примесей, в том числе от тория.
Существует способ извлечения тория из водных растворов, содержащих редкоземельные металлы [RU 2188157, МПК7 C01F 15/00. Опубл. 27.08.2002], в виде нерастворимой соли, причем к водному раствору добавляют щелочь для нейтрализации свободной азотной кислоты до концентрации ее в растворе 0,005-0,1 моль/л, бензолсульфинат натрия и коллектор - полифторированные органические соединения: кислоты, или спирты, или альдегиды, или кетоны общей формулы CxFyOzHs, где x=5-13, y=5-19, z=1-2, s=1-4, в соотношении водный раствор:коллектор (5-10):1, перемешивают, отделяют коллектор с последующим извлечением из него бензолсульфината тория.
Недостатком способа является необходимость проведения операции нейтрализации азотной кислоты и использование дополнительно нескольких неорганических и органических соединений.
Известен способ экстракционного извлечения и разделения ТПЭ и РЗЭ из азотнокислых растворов [RU 2106030, МПК6 G21C 19/46. Опубл. 27.02.1998]. Извлечение и разделение ТПЭ (трансплутониевые элементы) и РЗЭ (редкоземельные элементы) из азотнокислых жидких отходов проводят экстракцией раствором циркониевой соли фосфорорганической кислоты, преимущественно дибутилфосфорной кислоты (ДБФК) в нейтральном фосфорорганическом реагенте. В качестве органического реагента используют преимущественно трибутилфосфат концентрации 5-45 об.% в инертном разбавителе. В процессе экстракции молярное соотношение Zr/ДБФК=1/50-1/4. Экстрагент является совместимым с экстракционной технологией "Пурекс-процесса". ТПЭ и РЗЭ разделяют путем промывки экстрагента раствором азотной кислоты концентрации 3-12 моль/л, после чего проводят реэкстракцию РЗЭ. Оборотный экстрагент регенерируют путем удаления циркониевой соли фосфорорганической кислоты карбонатно-щелочной промывкой.
Недостатком этого способа является необходимость постоянного обновления состава оборотного экстрагента.
Наиболее близким к предлагаемому способу является способ очистки регенерированного урана [RU 2425804, МПК C01G 43/00, B01D 11/04. Опубл. 10.08.2011], принятый за прототип. Способ включает экстракцию уранилнитрата из водного азотнокислого раствора трибутилфосфатом в органическом разбавителе. В процессе многоступенчатой противоточной экстракции на ступени выдачи экстракта поддерживают степень насыщения экстрагента ураном более 92,5% от предельного насыщения экстрагента ураном и равновесную концентрацию азотной кислоты в водной фазе не более 0,7 моль/л при концентрации азотной кислоты в первом потоке питающего водного азотнокислого раствора уранилнитрата, подаваемом на ступень выдачи экстракта, не более 0,6 моль/л и величине насыщения экстрагента ураном более 92,5% от предельного насыщения экстрагента ураном на третьей или последующей по ходу водной фазы ступени при подаче на нее второго потока питающего водного азотнокислого раствора уранилнитрата. Растворы уранилнитрата подают на экстракцию с концентрацией по урану 400-500 г/л. Концентрация азотной кислоты в первом потоке составляет 0,03-0,04 моль/л, а во втором потоке - 0,7-0,8 моль/л. В раствор уранилнитрата вводят уран (IV), стабилизированный гидразином.
Недостатком этого способа является необходимость дополнительного расхода ценного готового продукта - концентрированного (очищенного и упаренного до 400-500 г/л раствора уранилнитрата) для промывки экстракта.
Целью изобретения является создание способа экстракционной очистки нитратного раствора, с использованием экстрагента только с одной заданной концентрацией, без промывки экстракта готовыми концентрированными растворами, при степени извлечения РЗМ не менее 95% с балластными примесями (Fe, Al, Ca, Mg) менее 4% к сумме РЗМ и радиоактивными примесями тория, соответствующим нормам по радиационной безопасности и санитарным правилам.
Поставленная задача достигается тем, что способ экстракционной очистки нитратных растворов, содержащих РЗМ, включающий многоступенчатую противоточную экстракцию примесей из водного азотнокислого раствора трибутилфосфатом (ТБФ), применяется для очистки растворов с концентрацией РЗМ 100-150 г/л и состоит из 5 ступеней экстракции с отношением O:B=1:1,1; 3-5 ступеней промывки с отношением O:B=10:1 и 5 ступеней реэкстракции в системе 100%-ный ТБФ - водный раствор азотнокислых солей (О - органическая фаза, В - водная фаза).
Сущность изобретения заключается в следующем.
Предложен способ экстракционной очистки нитратного раствора, содержащего РЗМ, от балластных (Fe, Al, Ca, Mg) и радиоактивных примесей, в том числе от тория, до норм, соответствующих нормам по радиационной безопасности и санитарным правилам. Принципиальная схема очистки нитратных растворов, содержащих РЗМ, показана на фиг.1. Для этой схемы были экспериментально определены оптимальные условия экстракционной очистки нитратного раствора РЗМ от балластных и радиоактивных примесей.
1. Экстракционная очистка РЗМ от балластных примесей
1.1. Влияние концентрации высаливателя
Определили минимальную концентрацию высаливателя, при которой извлекаются РЗМ. Концентрацию высаливателя задавали концентрацией азотной кислоты, используемой для вскрытия минерального сырья, например ортита, и разбавлением полученных растворов промывными растворами. Провели эксперименты по противоточной экстракции РЗМ на трех ступенях из растворов с разной степенью разбавления водой. О концентрации высаливателя судили по содержанию нитратов. Результаты опытов приведены в таблице 1.
Из данных, приведенных в таблице 1, следует, что при концентрации нитратов в разбавленном водой исходном растворе РЗМ, равной 6,0 N, извлечение РЗМ составляет 96,8%. Поэтому при получении исходного раствора РЗМ в процессе вскрытия руды 8-12 N HNO3 можно обойтись без дополнительного упаривания исходного раствора РЗМ, полученного от смешения маточного раствора и промраствора, если концентрация высаливателя в нем будет выше 6,0 N.
1.2. Влияние содержания РЗМ в экстракте
Для определения влияния содержания РЗМ в экстракте на распределение балластных примесей изменяли степень насыщения ТБФ редкоземельными металлами. Результаты экспериментов представлены в таблице 2.
Из данных, представленных в таблице 2, следует, что с увеличением насыщения ТБФ редкоземельными металлами коэффициенты распределения, Кр, балластных примесей уменьшаются, но для кальция, магния, никеля и кремния даже при содержании РЗМ в экстракте 116 г/л они остаются достаточно большими
Кр(Ca)=0,11; Кр(Mg)=0,20; Кр(Ni)=0,21; Кр(Si)=0,87.
Отсюда следует, что для минерального сырья, имеющего высокое содержание кальция, магния и кремния, например ортит, эти элементы будут лимитировать экстракционную очистку РЗМ от примесей.
1.3. Влияние промывки экстракта РЗМ водой
Для определения числа теоретических ступеней очистки РЗМ от примесей на операции промывки экстракта водой были проведены эксперименты по определению коэффициентов распределения РЗМ и сопутствующих им примесей между 100% ТБФ и промывной водой. Для опытов использовали раствор, полученный упариванием растворов от вскрытия ортита, содержащий РЗМ 145 г/л. При экстракции из этого раствора на трех ступенях получили экстракт ТБФ, содержащий 116,3 г/л РЗМ, 0,34 N азотную кислоту и примеси. Из экстракта РЗМ разбавлением экстрактом, содержащим 3,7 N азотной кислоты, и чистым ТБФ получили четыре порции экстракта ТБФ, составы которых приведены в таблице 3.
Полученные экстракты привели в равновесие с водой при соотношении органической фазы (О) и водной фазы (В) О:В=5:1. Результаты анализа полученных растворов показаны в таблице 4.
Из данных, приведенных в таблице 4, следует, что коэффициенты распределения тория, азотной кислоты и РЗМ, реализуемые на стадиях промывки и реэкстракции, располагаются в следующий ряд:
Кр(Th)>>Кр(HNO3)>Кр(РЗМ).
Поэтому торий и азотная кислота будут следовать за РЗМ на промывке. На реэкстракции РЗМ торий, у которого Кр приблизительно на два порядка выше Кр РЗМ, большей частью останется в ТБФ. Учитывая высокое содержание в ортите кальция, магния и кремния, можно предположить, что именно эти элементы будут лимитировать очистку РЗМ от примесей.
Были проведены эксперименты по переделу экстракция-промывка, которые позволили определить коэффициенты очистки, Коч, РЗМ от примесей, значения которых приведены в таблице 5.
Из данных, представленных в таблице 5, следует, что наименьшая очистка РЗМ от кремния: Коч=9,4. Поэтому содержание кремния в промытом экстракте определяет суммарное содержание примесей в реэкстракте РЗМ. В промытом экстракте оказалось много магния - 0,27% в пересчете на РЗМ, но их содержание в исходном растворе мало (меньше 0,5%) и их вклад в суммарное содержание примесей в конечном азотнокислом растворе РЗМ тоже будет незначительным. При увеличении числа промывных ступеней до 5 суммарное содержание примесей, определенных в промытом экстракте РЗМ, составило менее 0,1% за счет отмывки экстракта РЗМ от алюминия, кальция и магния.
2. Очистка раствора РЗМ от тория
Выше было показано, что торий экстрагируется 100%-ным ТБФ лучше РЗМ, поэтому при экстракции РЗМ трибутилфосфатом и в процессе промывки экстракта торий будет следовать вместе с РЗМ. В процессе реэкстракции РЗМ водой торий также должен реэкстрагироваться. Для определения поведения тория в процессах экстракции и реэкстракции РЗМ провели две серии опытов (серия опытов P1 и серия опытов P2) на противоточном экстракционном каскаде, схема которого показана на фиг.1.
Для исследований использовали маточные растворы от вскрытия ортитовой руды с максимальным содержанием Th - 1,32% масс. следующих составов:
- для серии опытов P1:[РЗМ]=110 г/л; [Th]=1,29 г/л; [HNO3]=1,44 N; суммарное содержание балластных примесей - 4,7% по отношению к РЗМ;
- для серии опытов P2:[РЗМ]=84 г/л; [Th]=0,63 г/л; [HNO3]=0,87 N; суммарное содержание балластных примесей - 3,8% по отношению к РЗМ.
Схемы экстракционной и реэкстракционной очистки показаны на фиг.2 и 3.
Составы продуктов, полученных в сериях экспериментов P1 и P2, приведены в таблице 6.
Из данных, представленных в таблице 6, следует, что РЗМ и торий из исходного раствора извлекаются практически полностью (более 99,99%). При этом содержание РЗМ в объединенном экстракте составляет не менее 84,9 г/л, а максимальное содержание РЗМ в реэкстракте - 97 г/л. Содержание тория в реэкстракте РЗМ в процессе выхода на равновесие снизилось до 65 мг/л, что соответствует общей удельной альфа-активности раствора по торию-232, торию-228 и альфа-активным продуктам его распада, равной 1,28×10-9 Ku/л. В нормативных документах [Временные санитарные правила по организации производств продукции гражданского назначения в санитарно-защитной зоне предприятий 4 ГНТУ Минатомэнергопрома (ВСП-К4-91). - М.: 1991 г.] этот параметр не должен превышать 1×10-8 Ku/л.
Результат спектрального анализа проб продуктов реэкстракции РЗМ для серии опытов P2 на содержание примесей представлен в таблице 7.
Из данных, приведенных в таблице 7, следует, что суммарное содержание примесей в пересчете на РЗМ в реэкстракте, полученном в серии опытов P2, составляет 3,8%, а содержание тория в реэкстракте до 65 мг/л (0,43×10-7 Ku/л).
Для более полной очистки реэкстракта РЗМ от тория, полученного в опыте серии P1, из объединенных проб реэкстракта с №№4 и 5 дважды экстрагировали торий трибутилфосфатом при О:В=3:6. Рафинат упаривали до [РЗМ]=228 г/л. При этом содержание тория в упаренном реэкстракте составило 2,5 мг/л или, в пересчете на общую удельную альфа-активность РЗМ по торию-232, торию-228 и альфа-активным продуктам его распада, 7,4×10-9 Ku/кг РЗМ. Таким образом, коэффициент очистки РЗМ от тория увеличился до 10700. Торий по схеме на фиг.1 уходит из блока реэкстракции РЗМ с трибутилфосфатом в блок карбонатной реэкстракции. Максимальное содержание тория в экстракте при этом составляет 1,3 г/л (см. таблицу 6). Раствор карбоната тория в соответствии с предложенной схемой нейтрализуется азотной кислотой, а выделившиеся осадки гидроксокарбоната тория (см. таблицу 8) отфильтровывают и направляют на захоронение как твердые радиоактивные отходы средней группы активности. Маточный раствор, содержащий до 2 мг/л тория, направляется на промывку нерастворившегося остатка ортита.
Для сравнения результатов аналитического определения тория в ортите с результатами гамма-спектрометрического определения сделали гамма-спектр. Результаты исследований показали, что общая удельная альфа-активность ортита, рассчитанная аналитически (8,71×10-6 Ku/кг), практически совпала с результатом гамма-спектрометрического определения: 8,94×10-6 Ku/кг. Полученные значения общей удельной альфа-активности ортита хорошо соотносятся между собой, что подтверждает достоверность полученных результатов.
Результаты проведенных опытов показывают, что предложенная схема экстракционной очистки азотнокислого раствора РЗМ от примесей тория позволяет получать товарный раствор нитратов РЗМ, удовлетворяющий требованиям нормативных документов по содержанию альфа-активных продуктов.
Предлагаемая технологическая схема позволяет очищать РЗМ от сопутствующих примесей с коэффициентами очистки, указанными в таблице 9.
Проведенные исследования показали, что для экстракционной очистки нитратных растворов с концентрацией РЗМ 110-150 г/л от балластных и радиоактивных примесей требуется 5 ступеней экстракции, 3-5 ступеней промывки, 5 ступеней реэкстракции в системе 100%-ный ТБФ - водный раствор азотнокислых солей.
Предлагаемый способ экстракционной очистки нитратных растворов позволяет получать раствор, содержащий РЗМ 100-150 г/л, с содержанием балластных примесей (Fe, Al, Ca, Mg) менее 4% к сумме РЗМ и общей удельной альфа-активностью менее 1·10-8 Ku/(кг РЗМ) с использованием только одного экстрагента - 100%-ного ТБФ. Полученный раствор РЗМ удовлетворяет требованиям потребителя по концентрации и содержанию примесей и требованиям санитарных правил по содержанию радионуклидов.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ЭКСТРАКЦИОННОГО АФФИНАЖА УРАНА | 2013 |
|
RU2554830C2 |
СПОСОБ ОЧИСТКИ РЕГЕНЕРИРОВАННОГО УРАНА | 2010 |
|
RU2447523C2 |
СПОСОБ ПЕРЕРАБОТКИ МОНАЦИТА | 2016 |
|
RU2633859C1 |
СПОСОБ РАЗДЕЛЕНИЯ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ ЭКСТРАКЦИЕЙ | 2015 |
|
RU2596245C1 |
СПОСОБ ПЕРЕРАБОТКИ ХИМИЧЕСКОГО КОНЦЕНТРАТА ПРИРОДНОГО УРАНА | 2009 |
|
RU2398036C1 |
СПОСОБ ПЕРЕРАБОТКИ ХИМИЧЕСКОГО КОНЦЕНТРАТА ПРИРОДНОГО УРАНА | 2012 |
|
RU2490348C1 |
СПОСОБ ОЧИСТКИ РЕГЕНЕРИРОВАННОГО УРАНА | 2010 |
|
RU2425804C1 |
СПОСОБ ЭКСТРАКЦИОННОГО АФФИНАЖА УРАНА | 2014 |
|
RU2562604C1 |
СПОСОБ ЭКСТРАКЦИОННОГО РАЗДЕЛЕНИЯ СКАНДИЯ И ТОРИЯ | 2016 |
|
RU2611001C1 |
СПОСОБ ПЕРЕРАБОТКИ КРЕМНИЙСОДЕРЖАЩЕГО ХИМИЧЕСКОГО КОНЦЕНТРАТА ПРИРОДНОГО УРАНА | 2013 |
|
RU2517633C1 |
Изобретение относится к экстракционной очистке нитратных растворов, содержащих редкоземельные металлы (РЗМ), от примесей, в частности от Fe, Al, Ca, Mg и радиоактивных примесей, в том числе от тория. Способ включает многоступенчатую противоточную экстракцию примесей из водного азотнокислого раствора трибутилфосфатом. Для очистки используют раствор с концентрацией РЗМ 100-150 г/л. При этом применяют 5 ступеней экстракции с отношением О:В=1:1,1, 3-5 ступеней промывки с отношением О:В=10:1 и 5 ступеней реэкстракции в системе 100%-ный ТБФ - водный раствор азотнокислых солей. Техническим результатом является получение раствора с содержанием балластных примесей менее 4% к сумме РЗМ и общей удельной альфа-активностью менее 1·10-8 Ku/(кг РЗМ). Полученный раствор РЗМ удовлетворяет требованиям потребителя по концентрации и содержанию примесей и требованиям санитарных правил по содержанию радионуклидов. 3 ил., 9 табл.
Способ экстракционной очистки нитратных растворов, содержащих редкоземельные металлы (РЗМ), включающий многоступенчатую противоточную экстракцию примесей из водного азотнокислого раствора трибутилфосфатом (ТБФ), отличающийся тем, что очистке подвергают раствор с концентрацией РЗМ 100-150 г/л, при этом проводят 5 ступеней экстракции с отношением органической и водной фаз О:В=1:1,1, после которой проводят 3-5 ступеней промывки с отношением О:В=10:1 и 5 ступеней реэкстракции в системе 100%-ный ТБФ - водный раствор азотнокислых солей.
СПОСОБ ОЧИСТКИ РЕГЕНЕРИРОВАННОГО УРАНА | 2010 |
|
RU2425804C1 |
СПОСОБ ИЗВЛЕЧЕНИЯ ТОРИЯ ИЗ ВОДНЫХ РАСТВОРОВ, СОДЕРЖАЩИХ РЕДКОЗЕМЕЛЬНЫЕ МЕТАЛЛЫ | 2000 |
|
RU2188157C2 |
СПОСОБ ОПРЕДЕЛЕНИЯ КОРОТКОЗАМКНУТЫХ ВИТКОВ В ЭЛЕКТРИЧЕСКИХ ОБМОТКАХ | 2006 |
|
RU2305291C1 |
US 4339416 A, 13.07.1982 | |||
Прибор для определения наивыгоднейших условий разметки кряжей на клепку | 1935 |
|
SU43765A1 |
US 4943318 A, 24.07.1990 |
Авторы
Даты
2014-05-27—Публикация
2013-05-07—Подача