ФАЗОВЫЙ СПОСОБ ПЕЛЕНГАЦИИ И ФАЗОВЫЙ ПЕЛЕНГАТОР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ Российский патент 2014 года по МПК G01S3/46 

Описание патента на изобретение RU2518428C2

Предлагаемые способ и устройство относятся к области радиоэлектроники и могут быть использованы для определения координат источников излучения сложных сигналов с комбинированной фазовой и частотной манипуляциями (ФМн-ЧМн), размещенных на борту летательного аппарата (самолет, вертолет, дирижабль, зонд и т.п.), и определения их параметров.

Известны фазовые способы пеленгации и фазовые пеленгаторы (патенты РФ №№2.003.131, 2.006.872, 2.010.258, 2.012.010, 2.134.429, 2.155.352, 2.175.770, 2.290.658, 2.296.432, 2.303.274, 2.311.656, 2.365.931, 2.427.853,; патенты США №№4.380.010, 7.084.812,; патенты Великобритании №№1.395.599, 1.598.325; патенты Германии №№2.127.087, 2.710.955; Кинкулькин И.Е. и др. Фазовый метод определения координат. М.: Сов. Радио, 1979 и др.).

Из известных способов и устройств наиболее близкими к предлагаемым являются «Фазовый способ пеленгации и фазовый пеленгатор для его осуществления» (патент РФ №2.427.853, G01S3/46,2010), которые и выбраны в качестве прототипов.

Известные технические решения инвариантны к нестабильности несущей частоты принимаемых сигналов, виду их модуляции (манипуляции) и ширине спектра, а точное и однозначное измерение угловых координат α (азимут) и β (угол места) источника излучения сигнала, размещенного на борту летательного аппарата (самолет, вертолет, дирижабль, зонд и т.п.), осуществляется на стабильной частоте Ω опорного генератора.

Однако известные технические решения не позволяют измерить угловые координаты α и β источника излучения сложного сигнала с комбинированной фазовой и частотной манипуляциями (ФМн-ЧМн), размещенного на борту летательного аппарата, и осуществлять его синхронное детектирование. Указанные сигналы находят широкое применение в различных радиоэлектронных средствах, размещаемых на борту летательных аппаратов.

Технической задачей изобретения является расширение функциональных возможностей известных способа и устройства путем точного и однозначного определения азимута и угла места источника излучения сложного сигнала с комбинированной фазовой и частотной манипуляциями, размещенного на борту летательного аппарата, и его синхронного детектирования.

Поставленная задача решается тем, что фазовый способ пеленгации, основанный, в соответствии с ближайшим аналогом, на том, что принимают сигналы, усиливают и ограничивают их по амплитуде, сравнивают сигналы, прошедшие два канала, по фазе, при этом сигал одного из каналов предварительно сдвигают по фазе на 90°, устанавливают в азимутальной плоскости n приемных антенн по окружности радиусом d с возможностью их электронного вращения с угловой скоростью Ω вокруг приемной антенны, размещенной в центре окружности, коммутируют приемные антенны, размещенные по окружности, поочередно с частотой Ω, сигнал, принимаемый антенной, размещенной в центре окружности, преобразуют по частоте с использованием частоты гетеродина, выделяют напряжение промежуточной частоты, перемножают его с сигналами, поочередно принимаемыми n приемными антеннами, расположенными по окружности, выделяют фазомодулированное напряжение, перемножают его с напряжением гетеродина, выделяют первое низкочастотное напряжение с частотой Ω и сравнивают его по фазе с опорным напряжением, формируя точную, но не однозначную шкалу пеленгации источника излучения сигнала в азимутальной плоскости, одновременно фазомодулированное напряжение подвергается автокорреляционной обработке, выделяют второе низкочастотное напряжение с частотой Ω, сравнивают его по фазе с опорным напряжением, формируя грубую, но однозначную шкалу пеленгации источника излучения сигнала в азимутальной плоскости, устанавливают в угломестной плоскости вторую приемную антенну на расстоянии d2 от первой приемной антенны, принимают на нее сигнал, усиливают и ограничивают его по амплитуде, перемножают с напряжением промежуточной частоты, выделяют гармоническое напряжение на частоте гетеродина, перемножают его с напряжением гетеродина, выделяют напряжение, пропорциональное разности фаз между сигналами, принимаемыми первой и второй приемными антеннами, формируя грубую, но однозначную шкалу пеленгации источника излучения сигнала в угломестной плоскости, указанное напряжение возводят в квадрат, перемножают с исходным напряжением, одновременно исходное напряжение, пропорциональное разности фаз между сигналами, принимаемыми первой и второй антеннами, сдвигают по фазе 90°, возводят его в квадрат, перемножают со сформированным произведением с использованием масштабирующего коэффициента, равного трем, и вычитают полученное произведение из сформированного произведения, формируя точную, но неоднозначную шкалу пеленгации источника излучения сигнала в угломестной плоскости, отличается от ближайшего аналога тем, что удваивают фазу принимаемого сигнала с комбинированной фазовой и частотной манипуляциями на промежуточной частоте, устраняя фазовую и частотную манипуляции и трансформируя его сплошной спектр в три дискретные составляющие на частотах 2ω1, 2ω2 и 2ω3, осуществляют фильтрацию указанных дискретных составляющих и слежение за ними, делят фазу дискретных составляющих на два, выделяют гармонические напряжения на символьных частотах ω1, ω2 и ω3, которые выбирают следующим образом:

ω13-1/4τэ - частота сигнала, соответствующая символу «+1»;

ω23+1/4τэ - частота сигнала, соответствующая символу «-1»;

ω3пр=Ω=(ω12)/2 - средняя мнимая «частота сигнала»;

где τэ - длительность элементарных посылок;

ωпр - промежуточная частота,

осуществляют фазовую демодуляцию принимаемого сигнала с комбинированной фазовой и частотной манипуляциями на промежуточной частоте с использованием гармонических напряжений на первой ω1 и второй ω2 символьных частотах соответственно, выделяют низкочастотные напряжения на частотах ω31 и ω23 соответственно, суммируют их, осуществляют фазовую демодуляцию суммарного низкочастотного напряжение с использованием гармонического напряжения на третьей символьной частоте ω3, выделяют низкочастотное напряжение, пропорциональное первому модулирующему коду M1(t), используемому для фазовой манипуляции, и регистрируют его, осуществляют частотную демодуляцию принимаемого сигнала с комбинированной фазовой и частотной манипуляциями на промежуточной частоте с использованием гармонических напряжений на первой ω1 и второй ω2 символьных частотах, выделяют низкочастотное напряжение, пропорциональное второму модулирующему коду M2(t), используемому для частотной манипуляции, и регистрируют его, сравнивают по фазе гармоническое напряжение третьей символьной частотой ω3 с опорным напряжением на частоте Ω, если указанные напряжения отличаются друг от друга по фазе, то формируют управляющее напряжение, амплитуда и полярность которого зависят от степени и направления отклонения третьей символьной частоты ω3 от частоты Ω опорного напряжения, воздействуют им на частоту ωг гетеродина так, чтобы сохранялась симметричность частоты Ω опорного напряжения относительно символьных частот ω1 и ω2.

Поставленная задача решается тем, что фазовый пеленгатор, содержащий, в соответствии с ближайшим аналогом, последовательно включенные первую приемную антенну, первый приемник, смеситель, второй вход которого соединен с выходом гетеродина, усилитель промежуточной частоты, первый перемножитель, первый полосовой фильтр, линию задержки, второй фазовый детектор, второй вход которого соединен с выходом первого полосового фильтра, первый фазовращатель на 90°, первый фазовый детектор, второй вход которого соединен с вторым выходом опорного генератора, и индикатор, последовательно включенные опорный генератор, генератор импульсов, электронный коммутатор, n входов которого соединены с выходами n приемных антенн, размещенных по окружности радиусом d с возможностью электронного вращения вокруг первой приемной антенны, размещенной в центре окружности, и второй приемник, выход которого соединен с вторым входом первого перемножителя, последовательно подключенные к выходу первого полосового фильтра второй перемножитель, второй вход которого соединен с выходом гетеродина, второй полосовой фильтр и третий фазовый детектор, второй вход которого соединен с третьим выходом опорного генератора, а выход подключен к второму входу индикатора, последовательно включенные вторую приемную антенну, третий приемник, третий перемножитель, второй вход которого соединен с выходом усилителя промежуточной частоты, третий полосовой фильтр, четвертый фазовый детектор, второй вход которого соединен с выходом гетеродина, первый квадратор, второй вход которого соединен с выходом четвертого фазового детектора, четвертый перемножитель, второй вход которого соединен с выходом четвертого фазового детектора, и вычитатель, выход которого соединен с третьим входом индикатора, четвертый вход которого соединен с выходом четвертого фазового детектора, последовательно подключенные к выходу четвертого фазового детектора второй фазовращатель на 90°, второй квадратор, второй вход которого соединен с выходом второго фазовращателя на 90°, и масштабирующий перемножитель, второй вход которого соединен с выходом четвертого фазового детектора, а выход подключен к второму входу вычитателя, при этом вторая приемная антенна установлена в азимутальной плоскости на расстоянии d2 от первой приемной антенны, отличается от ближайшего аналога тем, что он снабжен удвоителем фазы, тремя блоками фазовой автоподстройки частоты (ФАПЧ), тремя делителями фазы на два, тремя узкополосными фильтрами, частотным демодулятором, пятым, шестым, седьмым и восьмым фазовыми детекторами, сумматором и блоком регистрации, причем к выходу усилителя промежуточной частоты последовательно подключены удвоитель фазы, первый блок ФАПЧ, первый делитель фазы на два, первый узкополосный фильтр, частотный демодулятор, второй вход которого соединен с выходом второго узкополосного фильтра, а третий вход - с выходом усилителя промежуточной частоты, и блок регистрации, к выходу удвоителя фазы последовательно подключены второй блок ФАПЧ, второй делитель фазы на два, второй узкополосный фильтр, шестой фазовый детектор, второй вход которого соединен с выходом усилителя промежуточной частоты, сумматор и седьмой фазовый детектор, выход которого соединен с вторым входом блока регистрации, к выходу удвоителя фазы последовательно подключены третий блок ФАПЧ, третий делитель фазы на два и третий узкополосный фильтр, выход которого соединен с вторым входом седьмого фазового детектора, к выходу первого узкополосного фильтра подключен пятый фазовый детектор, второй вход которого соединен с выходом усилителя промежуточной частоты, а выход подключен к второму входу сумматора, к выходу третьего узкополосного фильтра подключен восьмой фазовый детектор, второй вход которого соединен с третьим выходом опорного генератора, а выход соединен с выходом гетеродина.

Структурная схема фазового пеленгатора, реализующего предлагаемый фазовый способ пеленгации, представлена на фиг.1. Взаимное расположение приемных антенн 1,21,2.i (i=1, 2, …, n) и источника радиоизлучений ИРИ показано на фиг.2. Взаимное расположение символьных частот сложных сигналов с комбинированной фазовой и частотной манипуляциями показано на фиг.3. Временные диаграммы, иллюстрирующие демодуляцию сложных ФМн-ЧМн-сигналов, изображены на фиг.4.

Фазовый пеленгатор содержит последовательно включенные первую приемную антенну 1, первый приемник 3,смеситель 12, второй вход которого соединен с выходом гетеродина 11, усилитель 13 промежуточной частоты, первый перемножитель 14, первый полосовой фильтр 15, линию задержки 16, второй фазовый детектор 17, второй вход которого соединен с выходом первого полосового фильтра 15, первый фазовращатель 8 на 90°, первый фазовый детектор 9, второй вход которого соединен с вторым выходом опорного генератора 5, и индикатор 10. К первому выходу опорного генератора 5 последовательно подключены генератор 6 импульсов, электронный коммутатор 7, n входов которого соединены с выходами n приемных антенн 2.i (i=1, 2, …, n), размещенных по окружности радиусом d с возможностью их электронного вращения со скоростью Ω вокруг первой приемной антенны 1, размещенной в центре окружности, и второй приемник 4, выход которого соединен с входом первого перемножителя 14. К выходу первого полосового фильтра 15 последовательно подключены второй перемножитель 18, второй вход которого соединен с выходом гетеродина 11, второй полосовой фильтр 19 и третий фазовый детектор 20, второй вход которого соединен с третьим выходом опорного генератора 5, а выход подключен к второму входу индикатора 10. К выходу второй приемной антенны 21 последовательно подключены третий приемник 22, третий перемножитель 23, второй вход которого соединен с выходом усилителя 13 промежуточной частоты, третий полосовой фильтр 24, четвертый фазовый детектор 25, второй вход которого соединен с выходом гетеродина 11, первый квадратор 26, второй вход которого соединен с выходом четвертого фазового детектора 25, четвертый перемножитель 29, второй вход которого соединен с выходом четвертого фазового детектора 25, и вычитатель 31, выход которого подключен к третьему входу индикатора 10, четвертый вход которого соединен с выходом четвертого фазового детектора 25. К выходу четвертого фазового детектора 25 последовательно подключены второй фазовращатель 27 на 90°, второй квадратор 28, второй вход которого соединен с выходом второго фазовращателя 27 на 90°, и маштабирующий перемножитель 30, второй вход которого соединен с выходом четвертого фазового детектора 25, а выход подключен к второму входу вычитателя 31. К выходу усилителя 13 промежуточной частоты последовательно подключены удвоитель 32 фазы, первый блок 33 ФАПЧ, первый делитель 36 фазы на два, первый узкополосный фильтр 39, частотный демодулятор 42, второй вход которого соединен с выходом второго узкополосного фильтра 40, а третий вход - с выходом усилителя 13 промежуточной частоты, и блок 47 регистрации. К выходу удвоителя фазы 32 последовательно подключены второй блок 34 ФАПЧ, второй делитель 37 фазы на два, второй узкополосный фильтр 40, шестой фазовый детектор 44, второй вход которого соединен с выходом усилителя 13 промежуточной частоты, сумматор 45 и седьмой детектор 46, выход которого соединен с вторым входом блока 47 регистрации. К выходу удвоителя фазы 31 последовательно подключен третий блок 35 ФАПЧ, третий делитель 38 фазы на два и третий узкополосный фильтр 41, выход которого соединен с вторым входом седьмого фазового детектора 46. К выходу первого узкополосного фильтра 39 подключен пятый фазовый детектор 43, второй вход которого соединен с выходом усилителя 13 промежуточной частоты, а выход подключен к второму входу сумматора 45. К выходу третьего узкополосного фильтра 41 подключен восьмой фазовый детектор 48, второй вход которого соединен с третьим выходом опорного генератора 5, а выход соединен с входом гетеродина 11.

Предлагаемый способ реализуют следующим образом.

Принимаемые сложные сигналы с комбинированной фазовой и частотной манипуляциями (ФМн-ЧМн):

U1(t)=υ1cos[{ωm(t)±Δω}t+φк(t)+φ1],

U 2 ( t ) = υ 2 cos [ { ω m ( t ) ± Δ ω } t + ϕ к ( t ) + 2 π d λ cos ( Ω t α ) ] ,

U3(t)=υ3cos[{(ωm(t)±Δω)}t+φк(t)+φ2], 0≤t≤Tc,

где υ1, υ2, υ3, φ1, φ2, Tc - амплитуды, начальные фазы и длительность сигналов;

ωm(t)={ω12} - манипулирующая составляющая частоты, отображающая закон частотной манипуляции в соответствии с модулирующим кодом М2(t) (фиг.4.б), причем ωm(t)=const при mτэ<t<(m+1)τэ и может изменяться скачком при t=mτэ, т.е на границах между элементарными посылками (m=1,2,…,N-1);

τэ, N - длительность и количество элементарных посылок, из которых составлен сигнал длительностью Тcc=Nτэ);

±Δω - нестабильность несущих частот сигналов, обусловленная различными дестабилизирующими факторами, в том числе и эффектом Доплера;

φк(t)={0,π} - манипулируемая составляющая фазы, отображающая закон фазовой манипуляции в соответствии с модулирующим кодом M1(t) (фиг.4,а), примем

φк(t)=const при к τэ<t<(к+1)τэ

и может изменяться скачком при t=к τэ, т.е. на границах между элементарными посылками (к=1,2,…,N-1);

d - радиус окружности, на которой размещены приемные антенны 2.i (i=1,2,…,n) (измерительная база);

Ω - скорость электронного вращения приемных антенн 2.i (i=1,2,…,n) вокруг первой приемной антенны 1;

α - пеленг (азимут) на источник излучения сигнала;

с выходов приемных антенн 1,2.i (i=1,2,…,n) и 21 непосредственно и через электронный коммутатор 7 поступают на входы приемников 3, 4 и 22, а затем на первые входы смесителя 12, перемножителей 14 и 23 соответственно. На второй вход смесителя 12 с выхода гетеродина 11 поступает напряжение

Uг(t)=υгcos(ωгt+φг).

На выходе смесителя 12 образуются напряжения комбинационных частот. Усилителем 13 выделяется напряжение промежуточной частоты (фиг.4, в)

Uпр(t)=υпрcos[{ωпp(t)±Δω}t+φк(t)+φпр], 0≤t≤Tc,

где υ п р = 1 2 υ 1 υ г ;

ωпp(t)=ωm(t)ωг - промежуточная частота;

φпр1г.

В спектре данного сигнала с непрерывной фазой и индексом частотной манипуляции

mf=(ω21э=0,5

символьные частоты ω1 и ω2 подавлены. Указанные символьные частоты определяются следующим образом (фиг.3):

ω 1 = ω 3 1 4 τ э - частота сигнала, соответствующая символу «+1»,

ω 2 = ω 3 1 4 τ э - частоты сигнала, соответствующая символу «-1»,

ω 1 = ω п р = Ω ω 1 + ω 2 2 - средняя «мнимая»частота сигнала.

Так как в спектре принимаемого сложного ФМн-ЧМн - сигнала символьные частоты ω1 и ω2 подавлены, то приемник 3 осуществляет слежение за средней («мнимой») частотой ω3пр=Ω.

Напряжение Uпр(t) с выхода усилителя 13 промежуточной частоты подается на вторые входы перемножителей 14 и 23. На выходе перемножителя 14 образуется фазомодулированное (ФМ) колебание на частоте ωг гетеродина 11

U 4 ( t ) = υ 4 cos [ ω г t + ϕ г + 2 π d λ cos ( Ω t α ) ] , 0≤t≤Tc

где υ 4 = 1 2 υ 1 υ п р ,

которое выделяется полосовым фильтром 15 и поступает на первые входы фазового детектора 17, линии задержки 16 и перемножители 18, на второй вход последнего подается напряжение Uг(t) гетеродина 11. На выходе перемножителя 18 образуется гармоническое напряжение

U 5 ( t ) = υ 5 cos [ 2 π d λ cos ( Ω t α ) ] , 0≤t≤Tc,

где υ 5 = 1 2 υ 4 υ г

которое выделяется полосовым фильтром 19 и поступает на первый вход фазового детектора 20. На второй вход фазового детектора 20 с третьего выхода опорного генератора 5 подается опорное напряжение

U0(t)=υ0cosΩt.

На выходе фазового детектора 20 образуется низкочастотное напряжение

Uн1(α)=υн1сosα,

где υ н 1 ( α ) = 1 2 υ 5 υ 0 ,

которое фиксируется индикатором 10. Так формируется шкала пеленгации источника излучения сигнала в азимутальной плоскости, которая является точной, но неоднозначной шкалой.

Одновременно фазомодулированное колебание U4(t) подвергается автокорреляционной обработке с помощью автокоррелятора, состоящего из линии задержки 16 и фазового детектора 17.

В фазомодулированном напряжении U4(t) величина m ϕ = 2 π d λ , называемая индексом фазовой модуляции, характеризует максимальное значение отклонения фазы от нулевого значения, происходящего при электронном вращении приемных антенн 2.i (i=1, 2, …, n) вокруг приемной антенны 1. Приемные антенны 2.i (i=1, 2, …, n) поочередно с частотой Ω коммутируются с помощью электронного коммутатора 7, управляемого n-фазным генератором 6 импульсов. Управляющие импульсы формируются генератором 6 импульсов из гармонического напряжения, вырабатываемого опорным генератором 5

U0(t)=υ0cosΩt.

Однако при d/λ>1/2 наступает неоднозначность отсчета азимута α. Устранение указанной неоднозначности путем уменьшения отношения d/λ обычно себя не оправдывает, так как при этом теряется основное достоинство широкобазового пеленгатора. Кроме того, в диапазонах метровых и особенно дециметровых волн брать малые значения d/λ часто не удается из-за конструктивных соображений.

В связи с изложенным соображением возникает задача уменьшения индекса фазовой модуляции без уменьшения относительного размера измерительной базы d/λ. Это достигается автокорреляционной обработкой фазомодулированного напряжения U4(t) с помощью линии задержки 16 и фазового детектора 17. Причем время задержки τ3 линии задержки 16 выбирается таким, чтобы уменьшить индекс фазовой модуляции до величины:

m ϕ 1 = 2 π d 1 λ

где d1>d,

при котором справедливо неравенство:

d1/λ<1/2,

обеспечивающие однозначную пеленгацию источника излучения сигнала в азимутальной плоскости.

На выходе фазового детектора 17 образуется напряжение

U6(α)=u6cos(Ω-α), 0≤t≤Tc,

где υ 6 = 1 2 υ 4 2

которое через фазовращатель 8 на 90° поступает на первый вход фазового детектора 9, на второй вход которого с второго выхода опорного генератора 5 подается опорное напряжение U0(t). На выходе фазового детектора 9 образуется низкочастотное напряжение

Uн2(α)=υн2sinα,

где υ н 2 = 1 2 υ 6 υ 0

которое фиксируется индикатором 10. Так формируется грубая, но однозначная шкала пеленгации источника излучения сигнала в азимутальной плоскости.

Напряжение Uпр(t) с выхода усилителя 13 промежуточной частоты одновременно подается на второй выход перемножителя 23, на выходе которого образуется напряжение на частоте ωг гетеродина 11

U7(t)=υ7cos(ωгt+φг+Δφ), 0≤t≤Tc,

где υ 7 = 1 2 υ 3 υ п р

Δφ=φ21=2πd2/λcosβ,

где d2 - расстояние между приемными антеннами 1 и 21 (измерительная база) (фиг.2);

λ - длина волны;

β - угол места источника радиоизлучений ИРИ;

h - высота полета летательного аппарата (самолет, вертолет, дирижабль, зонд и т.п.), на борту которого размещается источник радиоизлучений ИРИ (фиг.2.2),

которое выделяется полосовым фильтром 24 и поступает на первый (информационный) вход фазового детектора 25, на второй (опорный) вход которого подается напряжение Uг(t) гетеродина 11. На выходе фазового детектора 25 образуется низкочастотное напряжение

UH3(β)=υH3cosΔφ,

где υ 3 = 1 2 υ 7 υ г

Δφ=2πd2/λcosβ,

которое фиксируется индикатором 10.

Так формируется грубая, но однозначная шкала пеленгации источника излучения сигнала в угломестной (вертикальной) плоскости.

Напряжение ИН3(β) с выхода фазового детектора 25 одновременно поступает на входы первого квадратора 26, четвертого перемножителя 29 и второго фазовращателя 27 на 90°. На выходе квадратора 26, который представляет собой перемножитель, на два входа которого подается одно и то же напряжение UН3(β), формируется следующее напряжение.

U8(β)=υ8cos2Δφ,

где υ 8 = 1 2 υ Н 3 2

которое поступает на первый вход четвертого перемножителя 29, на второй вход которого с выхода четвертого фазового детектора 25 подается напряжение UНЗ(β). На выходе четвертого перемножителя 29 образуется напряжение

U9(β)=υ3cos3Δφ,

которое поступает на первый вход вычитателя 31.

На выходе второго фазовращателя 27 на 90° образуется напряжение:

U10(β)=-υH3sinΔφ,

которое поступает на два входа второго квадратора 28. На выходе последнего формируется напряжение: U11(β)=υ11sin2Δφ,

где υ 11 = 1 2 υ Н 3 2

Это напряжение поступает на первый вход масштабирующего перемножителя 30, на второй вход которого подается напряжение UН3(β) с выхода фазового детектора 25. Масштабирующий коэффициент Км масштабирующего перемножителя 30 выбран равным 3 (Км=3). На выходе масштабирующего перемножителя 30 формируется напряжение:

U12(β)=3υ12cosΔφsin2Δφ,

где υ 12 = 1 2 υ Н 3 υ 11

которое поступает на второй вход вычитателя 31. На выходе последнего формируется напряжение:

U13(β)=υ13cos3Δφ,

где U139-3υ12,

Δφ=2πd2/λсоsβ,

3Δφ=2π3d2/λсоsβ,

которое фиксируется индикатором 10. Это напряжение пропорционально утроенному значению разности фаз между сигналами, принимаемыми двумя приемными антеннами 1 и 21, и соответствует измерительной базе 3d2, которая построена косвенным образом.

Так формируется точная, но неоднозначная шкала пеленгации источника излучения сигнала в угломестной (вертикальной) плоскости. Причем между измерительными базами устанавливают следующее неравенство:

d 2 λ < 1 2 3 d 2 λ

Напряжение Uпp(t) (фиг.4, в) с выхода усилителя 13 промежуточной частоты поступает на первый вход частотного демодулятора 42 и на вход удвоителя 32 фазы.

При удвоении фазы принимаемый сложный ФМн-ЧМн-сигнал промежуточной частоты приобретает индекс частотный модуляции mf=l и его сплошной спектр трансформируется в три дискретных составляющие на частотах 2ω1, 2ω2, 2ω3. С помощью блоков ФАПЧ 33, 34 и 35 осуществляется фильтрация указанных дискретных составляющих и слежение за ними, а делители 36, 37 и 38 фазы на два обеспечивают соответствие частот сигналов синхронизации и принимаемого ФМн-ЧМн-сигнала. На выходе делителей 36, 37 и 38 фазы на два образуются гармонические колебания (фиг.4, г, д, е):

U14(t)=υ14cos(ω1t+φ1),

U15(t)=υ15cos(ω2t+φ2),

U16(t)=U16cos(ω3t+φ3),

которые выделяются узкополосными фильтрами 39, 40 и 41 соответственно. Гармонические колебания U14(t) и U15(t) поступают на первые входы фазовых детекторов 43 и 44, на второй вход которых подается напряжение промежуточной частоты ωпp(t).

На выходе фазовых детекторов 43 и 44 образуются напряжения соответственно:

U17(t)=υ17cos[(ω22)t+φк(t)],

U18(t)=υ18cos[(ω23)t-φк(t)],

где υ 17 = 1 2 υ п р υ 14

υ 18 = 1 2 υ п р υ 15

которое суммируется в сумматоре 45

U Σ ( t ) = U 17 ( t ) + U 18 ( t ) = υ Σ cos [ ω 3 t ( ω 2 + ω 1 ) t 2 + ϕ ( t ) ] cos ( ω 2 ω 1 ) t 2

Суммарное напряжение UΣ(t) поступает на первый (информационный) вход фазового детектора 46, на второй (опорный) вход которого подается гармоническое колебание U16(t) с выхода третьего узкополосного фильтра 41.

В результате синхронного детектирования на выходе фазового детектора 46 образуется низкочастотное напряжение

UH4(t)=υH4cos[ω3t-(ω12)/2t+φк(t)]=υH4cosφк(t),

где υH4=1/2υΣυ16; ω3-(ω12)/2=0,

так как символьные частоты ω1 и ω2 симметричны относительно частоты ω3 (фиг.3).

Низкочастотное напряжение Uнч(t) (фиг.4,ж), пропорциональное модулирующему коду M1(t) (фиг.4, а), фиксируется блоком 47 регистрации.

Гармонические колебания U14(t) и U15(t) с выхода узкополосных фильтров 39 и 40 поступают на опорные входы частотного демодулятора 42, на информационный вход которого подается напряжение Uпp(t) с выхода усилителя 13 промежуточной частоты. В результате синхронного детектирования на выходе частотного демодулятора 42 образуется низкочастотное напряжение (фиг.4,з)

UH5(t)=υH5cosφк2(t),

где UH5=1/2υпpυ17,

пропорциональное модулирующему коду M2(t). Это напряжение фиксируется блоком 47 регистрации.

Для обеспечения симметричности символьных частот ω1 и ω2 относительно частоты ωз=Ω опорного генератора 5 используется система фазовой автоподстройки частоты, состоящая из опорного генератора 5, узкополосного фильтра 41 и фазового детектора 48.

Напряжение U6(t) опорного генератора 5 и гармоническое колебание

U16(t)=υ16cos(ω33)

с выхода узкополосного фильтра 41 поступают на два входа фазового детектора 48 и сравниваются по фазе. Если указанные напряжения отличаются друг от друга по фазе, то на выходе фазового детектора 48 образуется управляющее напряжение. Причем амплитуда и полярность этого напряжения зависят от степени направления отклонения промежуточной частоты ωпр3 от частоты Ω опорного генератора 5. Данное напряжение поступает на управляющий вход гетеродина 11 и воздействует на его частоту ωг так, чтобы сохранялась симметричность символьных частот ω1 и ω2 относительно частоты Ω опорного генератора 5.

Предлагаемые способ и устройство обеспечивают точное и однозначное определение угла места источника излучения сигнала, размещенного на борту летательного аппарата (самолет, вертолет, дирижабль, зонд и т.д.). При этом используются две измерительные базы: малая d2-грубая, но однозначная, и большая 3d3-точная, но неоднозначная, между которыми устанавливают следующее неравенство:

d2/λ<1/2≤3d2/λ.

Причем точную, но неоднозначную измерительную базу 3d2 формируют косвенным методом.

Таким образом, предлагаемые способ и устройство по сравнению с прототипами и другими техническими решениями аналогичного назначения обеспечивают точное и однозначное определение азимута и угла места источника излучения сложного сигнала с комбинированной фазовой и частотной манипуляциями, размещенного на борту летательного аппарата (самолет, вертолет, дирижабль, зонд и т.д.), и его синхронное детектирование.

При этом опорные напряжения, необходимые для синхронного детектирования принимаемого сложного сигнала с комбинированной фазовой и частотной манипуляциями, выделяются непосредственно из самого принимаемого сигнала. Тем самым функциональные возможности известных способа и устройства расширены.

Похожие патенты RU2518428C2

название год авторы номер документа
Способ амплитудно-фазовой пеленгации системой с вращающимися антаннами 2020
  • Голод Олег Саулович
  • Борисов Евгений Геннадьевич
RU2750335C1
СТАНЦИЯ РАДИОТЕХНИЧЕСКОГО КОНТРОЛЯ 2010
  • Заренков Вячеслав Адамович
  • Заренков Дмитрий Вячеславович
  • Дикарев Виктор Иванович
  • Маковский Вячеслав Николаевич
RU2454818C1
СТАНЦИЯ РАДИОТЕХНИЧЕСКОЙ РАЗВЕДКИ 2006
  • Дикарев Виктор Иванович
  • Журкович Виталий Владимирович
  • Сергеева Валентина Георгиевна
  • Рыбкин Леонид Всеволодович
RU2321177C1
СИСТЕМА ДЛЯ ОБНАРУЖЕНИЯ И ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ ЧЕЛОВЕКА, ТЕРПЯЩЕГО БЕДСТВИЕ НА ВОДЕ 2012
  • Заренков Вячеслав Адамович
  • Заренков Дмитрий Вячеславович
  • Дикарев Виктор Иванович
  • Койнаш Борис Васильевич
RU2521456C1
ФАЗОВЫЙ СПОСОБ ПЕЛЕНГАЦИИ И ФАЗОВЫЙ ПЕЛЕНГАТОР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2010
  • Дикарев Виктор Иванович
  • Журкович Виталий Владимирович
  • Сергеева Валентина Георгиевна
  • Рыбкин Леонид Всеволодович
  • Михайлов Виктор Анатольевич
RU2435171C1
Способ транспортировки твердых коммунальных отходов с управлением местоположением транспортного средства и система его реализации 2022
  • Коновалов Владимир Борисович
  • Кащеев Роман Леонидович
  • Саркисов Сергей Владимирович
  • Казаков Николай Петрович
  • Бондарев Алексей Валентинович
  • Лопатин Николай Владимирович
  • Дикарев Виктор Иванович
RU2773736C1
ФАЗОВЫЙ СПОСОБ ПЕЛЕНГАЦИИ И ФАЗОВЫЙ ПЕЛЕНГАТОР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2005
  • Дикарев Виктор Иванович
  • Журкович Виталий Владимирович
  • Сергеева Валентина Георгиевна
RU2290658C1
ФАЗОВЫЙ СПОСОБ ПЕЛЕНГАЦИИ И ФАЗОВЫЙ ПЕЛЕНГАТОР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2007
  • Ипатов Александр Васильевич
  • Дикарев Виктор Иванович
  • Койнаш Борис Васильевич
  • Финкельштейн Андрей Михайлович
RU2365931C2
УСТРОЙСТВО ДЛЯ КОНТРОЛЯ РАБОТЫ РАДИОСТАНЦИЙ С ПСЕВДОСЛУЧАЙНОЙ ПЕРЕСТРОЙКОЙ РАБОЧЕЙ ЧАСТОТЫ 2002
  • Дикарев В.И.
  • Зайцев И.Е.
  • Замарин А.И.
  • Андреев А.М.
  • Маковский В.Н.
RU2231926C1
Способ контроля подлинности и перемещения агропромышленной продукции и система для его реализации 2018
  • Дикарев Виктор Иванович
  • Гурьянов Андрей Владимирович
  • Терехин Андрей Николаевич
  • Дзичканец Кристина Андреевна
RU2703226C1

Иллюстрации к изобретению RU 2 518 428 C2

Реферат патента 2014 года ФАЗОВЫЙ СПОСОБ ПЕЛЕНГАЦИИ И ФАЗОВЫЙ ПЕЛЕНГАТОР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Предлагаемые способ и устройство относятся к области радиоэлектроники и могут быть использованы для определения координат источников излучения сложных сигналов с комбинированной фазой и частотной манипуляциями (ФМн-ЧМн), размещенных на борту летательного аппарата (самолет, вертолет, дирижабль, зонд и т.п.), и определения их параметров. Достигаемый технический результат - расширение функциональных возможностей известных способа и устройства путем точного и однозначного определения азимута и угла места источника излучения сложного сигнала с комбинированной фазовой и частотной манипуляциями, размещенного на борту летательного аппарата, и его синхронного детектирования. Фазовый пеленгатор, реализующий предлагаемый фазовый способ пеленгации, содержит приемные антенны, три приемника, опорный генератор, генератор импульсов, электронный коммутатор, два фазовращателя на 90°, восемь фазовых детекторов, индикатор, гетеродин, смеситель, усилитель промежуточной частоты, четыре перемножителя, три полосовых фильтра, линию задержки, два квадратора, масштабирующий перемножитель, вычитатель, удвоитель фазы, три блока фазовой автоподстройки частоты, два делителя фазы на два, три узкополосных фильтра, частотный демодулятор, сумматор и блок регистрации, определенным образом соединенные между собой. 2 н.п. ф-лы, 4 ил.

Формула изобретения RU 2 518 428 C2

1. Фазовый способ пеленгации, основанный на том, что принимают сигналы, усиливают и ограничивают их по амплитуде, сравнивают сигналы, прошедшие два канала, по фазе, при этом сигнал одного из каналов предварительно сдвигают по фазе на 90°, устанавливают в азимутальной плоскости n приемных антенн по окружности радиусом d с возможностью их электронного вращения с угловой скоростью Ω вокруг приемной антенны, размещенной в центре окружности, коммутируют приемные антенны, размещенные по окружности, поочередно с частотой Ω, сигнал, принимаемый антенной, размещенной в центре окружности, преобразуют по частоте с использованием частоты гетеродина, выделяют напряжения промежуточной частоты, перемножают его с сигналами, поочередно принимаемыми n приемными антеннами, расположенными по окружности, выделяют фазомодулированное напряжение, перемножают его с напряжением гетеродина, выделяют первое низкочастотное напряжение с частотой Ω и сравнивают его по фазе с опорным напряжением, формируя точную, но неоднозначную шкалу пеленгации источника излучения сигнала, в азимутальной плоскости, одновременно фазомодулированное напряжение подвергают автокорреляционной обработке, выделяют второе низкочастотное напряжение с частотой Ω, сравнивают его по фазе с опорным напряжением, формируя грубую, но однозначную шкалу пеленгации источника излучения сигнала в азимутальной плоскости, устанавливают в угломестной плоскости вторую приемную антенну на расстоянии d2 от первой приемной антенны, принимают на нее сигнал, усиливают и ограничивают его по амплитуде, перемножают с напряжением промежуточной частоты, выделяют гармоническое напряжение на частоте гетеродина, перемножают его с напряжением гетеродина, выделяют напряжение, пропорциональное разности фаз между сигналами, принимаемыми первой и второй приемными антеннами, формируя грубую, но однозначную шкалу пеленгации источника излучения сигнала в угломестной плоскости, указанное напряжение возводят в квадрат, перемножают с исходным напряжением, формируя произведение, одновременно исходное напряжение, пропорциональное разности фаз между сигналами, принимаемыми первой и второй антеннами, сдвигают по фазе на 90°, возводят его в квадрат, перемножают со сформированным произведением с использованием масштабирующего коэффициента, равного трем, и вычитают полученное произведение из сформированного произведения, формируя точную, но неоднозначную шкалу пеленгации источника излучения сигнала в угломестной плоскости, отличающийся тем, что удваивают фазу принимаемого сигнала с комбинированной фазовой и частотной манипуляциями на промежуточной частоте, устраняя фазовую и частотную манипуляции и трансформируя его сплошной спектр в три дискретные составляющие на частотах 2ω1, 2ω2 и 2ω3, осуществляют фильтрацию указанных дискретных составляющих и слежение за ними, делят фазу дискретных составляющих на два, выделяют гармонические напряжения на символьных частотах ω1, ω2 и ω3, которые выбирают следующим образом:
ω13-1/4τэ - частота сигнала, соответствующая символу «+1»;
ω23+1/4τ3 - частота сигнала, соответствующая символу «-1»;
ω3пр=Ω=(ω12)/2 - средняя «мнимая» частота сигнала,
где τэ - длительность элементарных посылок,
ωпр - промежуточная частота,
осуществляют фазовую демодуляцию принимаемого сигнала с комбинированной фазовой и частотной манипуляциями на промежуточной частоте с использованием гармонических напряжений на первой ω1 и второй ω2 символьных частотах соответственно, выделяют низкочастотные напряжения на частотах ω31 и ω23 соответственно, суммируют их, осуществляют фазовую демодуляцию суммарного низкочастотного напряжения с использованием гармонического напряжения на третьей символьной частоте ω3, выделяют низкочастотное напряжение, пропорциональное первому модулирующему коду M1(t), используемому для фазовой манипуляции, и регистрируют его, осуществляют частотную демодуляцию принимаемого сигнала с комбинированной фазовой и частотной манипуляциями на промежуточной частоте с использованием гармонических напряжений на первой ω1 и второй ω2 символьных частотах, выделяют низкочастотное напряжение, пропорциональное второму модулирующему коду M2(t), используемому для частотной манипуляции, и регистрируют его, сравнивают по фазе гармоническое напряжение третьей символьной частотой ω3 с опорным напряжением на частоте Ω, если указанные напряжения отличаются друг от друга по фазе, то формируют управляющее напряжение, амплитуда и полярность которого зависят от степени и направления отклонения третьей символьной частоты ω3 от частоты Ω опорного напряжения, воздействуют им на частоту ωг гетеродина так, чтобы сохранялась симметричность частоты Ω опорного напряжения относительно символьных частот ω1 и ω2.

2. Фазовый пеленгатор, содержащий последовательно включенные первую приемную антенну, первый приемник, смеситель, второй вход которого соединен с выходом гетеродина, усилитель промежуточной частоты, первый перемножитель, первый полосовой фильтр, линию задержки, второй фазовый детектор, второй вход которого соединен выходом первого полосового фильтра, первый фазовращатель на 90°, первый фазовый детектор, второй вход которого соединен с вторым выходом опорного генератора, и индикатор, последовательно включенные опорный генератор, генератор импульсов, электронный коммутатор, n входов которого соединены с выходами n приемных антенн, размещенных по окружности радиусом d с возможностью электронного вращения вкруг первой приемной антенны, размещенной в центре окружности, и второй приемник, выход которого соединен с вторым входом первого перемножителя, последовательно подключенные к выходу первого полосового фильтра второй перемножитель, второй вход которого соединен с выходом гетеродина, второй полосовой фильтр и третий фазовый детектор, второй вход которого соединен с третьим выходом опорного генератора, а выход подключен к второму входу индикатора, последовательно включенные вторую приемную антенну, третий приемник, третий перемножитель, второй вход которого соединен с выходом усилителя промежуточной частоты, третий полосовой фильтр, четвертый фазовый детектор, второй вход которого соединен с выходом гетеродина, первый квадратор, второй вход которого соединен с выходом четвертого фазового детектора, четвертый перемножитель, второй вход которого соединен с выходом четвертого фазового детектора, и вычитатель, выход которого соединен с третьим входом индикатора, четвертый вход которого соединен с выходом четвертого фазового детектора, последовательно подключенные к выходу четвертого фазового детектора второй фазовращатель на 90°, второй квадратор, второй вход которого соединен с выходом второго фазовращателя на 90°, и масштабирующий перемножитель, второй вход которого соединен с выходом четвертого фазового детектора, а выход подключен к второму входу вычитателя, при этом вторая приемная антенна установлена в азимутальной плоскости на расстоянии d2 от первой приемной антенны, отличающийся тем, что он снабжен удвоителем фазы, тремя блоками фазовой автоподстройки частоты (ФАПЧ), тремя делителями фазы на два, тремя узкополосными фильтрами, частотным демодулятором, пятым, шестым, седьмым и восьмым фазовыми детекторами, сумматором и блоком регистрации, причем к выходу усилителя промежуточной частоты последовательно подключены удвоитель фазы, первый блок ФАПЧ, первый делитель фазы на два, первый узкополосный фильтр, частотный демодулятор, второй вход которого соединен с выходом второго узкополосного фильтра, а третий вход - с выходом усилителя промежуточной частоты, и блок регистрации, к выходу удвоителя фазы последовательно подключены второй блок ФАПЧ, второй делитель фазы на два, второй узкополосный фильтр, шестой фазовый детектор, второй вход которого соединен с выходом усилителя промежуточной частоты, сумматор и седьмой фазовый детектор, выход которого соединен с вторым входом блока регистрации, к выходу удвоителя фазы последовательно подключены третий блок ФАПЧ, третий делитель фазы на два и третий узкополосный фильтр, выход которого соединен с вторым входом седьмого фазового детектора, к выходу первого узкополосного фильтра подключен пятый фазовый детектор, второй вход которого соединен с выходом усилителя промежуточной частоты, а выход подключен к второму входу сумматора, к выходу третьего узкополосного фильтра подключен восьмой фазовый детектор, второй вход которого соединен с третьим выходом опорного генератора, а выход соединен с входом гетеродина.

Документы, цитированные в отчете о поиске Патент 2014 года RU2518428C2

ФАЗОВЫЙ СПОСОБ ПЕЛЕНГАЦИИ И ФАЗОВЫЙ ПЕЛЕНГАТОР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2010
  • Заренков Вячеслав Адамович
  • Заренков Дмитрий Вячеславович
  • Дикарев Виктор Иванович
RU2427853C1
ФАЗОВЫЙ РАДИОПЕЛЕНГАТОР 2009
  • Грибанов Александр Сергеевич
  • Ульянкина Ирина Юрьевна
RU2403582C1
ФАЗОВЫЙ ПЕЛЕНГАТОР 2010
  • Смирнов Владимир Николаевич
  • Шереметьев Андрей Владимирович
  • Кульпин Сергей Николаевич
  • Иванов Владимир Владимирович
  • Тимофеев Михаил Николаевич
RU2449306C1
ФАЗОВЫЙ СПОСОБ ПЕЛЕНГАЦИИ И ФАЗОВЫЙ ПЕЛЕНГАТОР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2011
  • Дикарев Виктор Иванович
  • Шубарев Валерий Антонович
  • Петрушин Владимир Николаевич
RU2450283C1
US 6791493 B1, 14.09.2004
JP 2009300284 A, 24.12.2009
WO 1998029756 A1, 09.07.1998
US 6049307 A,11.04.2000

RU 2 518 428 C2

Авторы

Жуков Анатолий Валерьевич

Гогин Валерий Леонидович

Зайцев Олег Викторович

Дикарев Виктор Иванович

Даты

2014-06-10Публикация

2012-06-26Подача