ФАЗОВЫЙ СПОСОБ ПЕЛЕНГАЦИИ И ФАЗОВЫЙ ПЕЛЕНГАТОР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ Российский патент 2012 года по МПК G01S3/46 

Описание патента на изобретение RU2450283C1

Предлагаемые способ и устройство относятся к области радиоэлектроники и могут быть использованы для определения местоположения источников излучения сложных сигналов.

Известны фазовые способы пеленгации и фазовые пеленгаторы (патенты РФ №№2.003.131, 2.006.872, 2.010.258, 2.012.010, 2.134.429, 2.155.352, 2.175.770, 2.290.658, 3.365.931; Кинкулькин И.Е. и др. Фазовый метод определения координат. М.: Сов радио, 1979; Дикарев В.И. Методы и технические решения приема и обработки радиосигналов. Учебник, СПб, 2000, с.166-264 и др.)

Из известных технических решений наиболее близким к предлагаемому является «Фазовый способ пеленгации и фазовый пеленгатор для его осуществления» (патент РФ №2.365.931, G01S 3/46, 2007), которые и выбраны в качестве прототипа.

При фазовом способе пеленгации разность фаз Δφ сигналов, принимаемых двумя разнесенными в пространстве антеннами, определяется выражением

где d - расстояние между разнесенными антеннами (измерительная база);

λ - длина волны;

α - угол прихода радиоволн относительно нормали к базе.

При этом возникает противоречие между требованиями к точности измерений и однозначности отсчета угла α. Действительно, согласно вышеуказанной формуле фазовый способ пеленгации и фазовый пеленгатор тем чувствительнее к изменению угла α, чем больше относительный размер базы d/λ. Но с ростом d/λ уменьшается значение угловой координаты α, при котором разность фаз Δφ превосходит значение 2π, т.е. наступает неоднозначность отсчета.

Известные способы пеленгации и фазовый пеленгатор устраняют указанное противоречие между требованиями к точности измерения и однозначности отсчета угла α. Однако они не полностью реализуют свои потенциальные возможности по определению дальности до источника радиоизлучений (ИРИ), а следовательно и местоположение ИРИ.

Технической задачей изобретения является расширение функциональных возможностей путем определения дальности до источника радиоизлучений, а следовательно и его местоположения.

Поставленная задача решается тем, что фазовый способ пеленгации, основанный в соответствии с ближайшим аналогом на приеме сигналов, усилении и ограничении их по амплитуде, сравнении сигналов, прошедших два канала, по фазе, при этом сигнал одного из каналов предварительно сдвигают по фазе на 90°, устанавливают в азимутальной плоскости n приемных антенн по окружности радиусом d с возможностью их электронного вращения с угловой скоростью Ω вокруг приемной антенны, размещенной в центре окружности, коммутируют приемные антенны, размещенные по окружности, поочередно с частотой Ω, сигнал, принимаемый антенной, размещенной в центре окружности, преобразуют по частоте, выделяют напряжение промежуточной частоты, перемножают его с сигналами, поочередно принимаемыми n приемными антеннами, расположенными по окружности, выделяют первое фазомодулированное напряжение, выделяют низкочастотное напряжение с частотой Ω и сравнивают его по фазе с опорным напряжением, формируя точную, но неоднозначную шкалу пеленгации источника излучения сигнала, одновременно первое фазомодулированное напряжение подвергают автокорреляционной обработке, выделяют низкочастотное напряжение с частотой Ω и сравнивают его по фазе с опорным напряжением, формируют грубую, но однозначную шкалу пеленгации источника излучения сигнала, при каждой коммутации одновременно используют две приемные антенны, расположенные на концах диаметра, сигнал, принимаемый второй антенной, перемножают с напряжением промежуточной частоты, выделяют второе фазомодулированное напряжение и перемножают его с первым фазомодулированным напряжением, отличается от ближайшего аналога тем, что амплитуды сигналов, принимаемых двумя антеннами, расположенными на концах диаметра, складывают друг с другом и вычитают друг из друга, делят полученные суммарную амплитуду на разностную, сравнивают частную амплитуду с пороговым напряжением Uпор и в случае его превышения фиксируют равносигнальное направление приемных антенн, расположенных на концах диаметра, относительно источника радиоизлучений, при котором частная амплитуда достигает максимального значения и превышает пороговый уровень Uпор, при каждом превышении порогового уровня Uпор формируют короткий положительный импульс, последовательность коротких положительных импульсов, полученную при электронном вращении приемных антенн, используют для формирования последовательности прямоугольных разнополярных импульсов, длительность каждого из которых равна периоду повторения Тп равносигнального направления двух приемных антенн, расположенных на концах диаметра, относительно источника радиоизлучения, измеряют период повторения Тп счетным методом и определяют дальность до источника радиоизлучений

где 2d - диаметр, на концах которого располагают две приемные антенны.

Поставленная задача решается тем, что фазовый пеленгатор, содержащий в соответствии с ближайшим аналогом последовательно включенные первую приемную антенну, первый приемник, смеситель, второй вход которого соединен с выходом гетеродина, усилитель промежуточной частоты, первый перемножитель, первый полосовой фильтр, линию задержки, второй фазовый детектор, второй вход которого соединен с выходом первого полосового фильтра, фазовращатель на 90°, первый фазовый детектор, второй вход которого соединен со вторым выходом опорного генератора, и индикатор, последовательно включенные опорный генератор, генератор импульсов, электронный коммутатор, n входов которого соединены с n выходами приемных антенн, размещенных по окружности радиусом d с возможностью электронного вращения вокруг первой приемной антенны, размещенной в центре окружности, и второй приемник, выход которого соединен со вторым входом первого перемножителя, последовательно подключенные к выходу первого полосового фильтра второй перемножитель, второй полосовой фильтр и третий фазовый детектор, второй вход которого соединен с третьим выходом опорного генератора, а выход подключен ко второму входу индикатора, ко второму выходу электронного коммутатора последовательно подключены третий приемник, третий перемножитель, второй вход которого соединен с выходом усилителя промежуточной частоты, и третий полосовой фильтр, выход которого соединен со вторым входом второго перемножителя, отличается от ближайшего аналога тем, что он снабжен суммирующим устройством, вычитающим устройством, блоком деления, пороговым блоком, триггером, логическим элементом И, генератором счетных импульсов, счетчиком импульсов и вычислительным устройством, причем к первому выходу электронного коммутатора последовательно подключены суммирующее устройство, второй вход которого соединен со вторым выходом электронного коммутатора, блок деления, пороговый блок, триггер, логический элемент И, второй вход которого соединен с выходом генератора счетных импульсов, счетчик импульсов, вход сброса которого соединен с выходом порогового блока, вычислительное устройство и блок регистрации, второй вход блока деления через вычитающее устройство соединен с первым и вторым выходами электронного коммутатора.

Структурная схема фазового пеленгатора, реализующего предлагаемый способ пеленгации, представлена на фиг.1. Взаимное расположение приемных антенн 1, 2.i (i=1, 2, …, n) и источника радиоизлучений ИРИ при равносигнальном направлении двух приемных антенн 2.2 и 2.10, расположенных на концах диаметра 2d, показано на фиг.2. Пример выполнения электронного коммутатора 7 показан на фиг.3. На фиг.4 показано изменение фазы выходного напряжения электронного коммутатора 7. Временные диаграммы, иллюстрирующие процедуру измерения периода повторения Тп счетным методом, изображены на фиг.5.

Фазовый пеленгатор содержит последовательно включенные первую приемную антенну 1, первый приемник 3, смеситель 12, второй вход которого соединен с выходом гетеродина 11, усилитель 13 промежуточной частоты, первый перемножитель 14, первый полосовой фильтр 15, линию задержки 16, второй фазовый детектор 17, второй вход которого соединен с выходом полосового фильтра 15, фазовращатель 8 на 90°, первый фазовый детектор 9, второй вход которого соединен со вторым выходом опорного генератора 5, и индикатор 10, последовательно включенные опорный генератор 5, генератор 6 импульсов, электронный коммутатор 7, n входов которого соединены с выходами n приемных антенн 2.i (i=1, 2, …, n), размещенных на окружности радиусом d с возможностью электронного вращения вокруг первой приемной антенны 1, размещенной в центре окружности, и второй приемник 4, выход которого соединен со вторым входом первого перемножителя 14, последовательно подключенные к выходу первого полосового фильтра 15 второй перемножитель 18, второй полосовой фильтр 19 и третий фазовый детектор 20, второй вход которого соединен с третьим выходом опорного генератора 5, а выход подключен ко второму входу индикатора 10, последовательно подключенные ко второму выходу электронного коммутатора 7 третий приемник 21, третий перемножитель 22, второй вход которого соединен с выходом усилителя 13 промежуточной частоты, и третий полосовой с фильтр 23, выход которого соединен со вторым выходом второго перемножителя 18, последовательно подключенные к первому выходу электронного коммутатора 7 суммирующее устройство 24, второй вход которого соединен с вторым выходом электронного коммутатора 7, блок 26 деления, второй вход которого через вычитающее устройство 25 соединен с первым и вторым выходами электронного коммутатора 7, пороговый блок 27, триггер 28, логический элемент И 30, второй вход которого соединен с выходом генератора 29 счетных импульсов, счетчик 31 импульсов, вход сброса которого соединен с выходом порогового блока 27, вычислительное устройство 32 и блок 33 регистрации.

Предлагаемый способ реализуется следующим образом.

Принимаемые сложные сигналы, например, с фазовой манипуляцией (ФМн)

u1(t)=U1·Cos[(wc±Δw)t+φk(t)+φc],

где U1, U2, U3, wc, φc, Тc - амплитуды, несущая частота, начальная фаза и длительность сигнала;

±Δw - нестабильность несущей частоты сигнала, обусловленная различными дестабилизирующими факторами;

φk(t)={0, π} - манипулируемая составляющая фазы, отображающая закон фазовой манипуляции в соответствии с модулирующим кодом, причем φk(t)=const при kτэ<t<(k+1)τэ и может изменяться скачком при t=kτэ, т.е. на границах между элементарными посылками (k=1, 2, …, N-1);

τэ, N - длительность и количество элементарных посылок, из которых составлен сигнал длительностью Тсс=N·τэ);

d - радиус окружности, на которой размещены приемные антенны 2.i (i=1, 2, …, n) (измерительная база);

Ω - скорость электронного вращения приемных антенн 2.i (i=1, 2, …, n) вокруг приемной антенны 1;

α - пеленг (азимут) на источник радиоизлучения ИРИ,

с выходов приемных антенн 1, 2.i (i=1, 2, …, n) непосредственно и через электронный коммутатор 7 поступают на входы приемников 3, 4 и 21, а затем на первые входы смесителя 12, перемножителей 14 и 22 соответственно.

Знаки «+» и «-» перед величинами

соответствуют диаметрально противоположным расположениям антенн 2.2 и 2.10 относительно приемной антенны 1, размещенной в центре окружности.

Электронный коммутатор 7 может быть выполнен различными средствами. Один из вариантов - это применение полупроводниковых диодов, обладающих малой емкостью, малым сопротивлением току прямого направления и большим сопротивлением току обратного направления. Пример схемы электронной коммутации представлен на фиг.3. Каждая пара антенн включается на вход приемников 4 и 21 через такие же коммутирующие цепи, которые на фиг.3 показаны только для двух антенн 2.2 и 2.10. Точки А1 и А2 коммутирующих цепей через резисторы R1 и R2 соединяются с генератором импульсов, от которого в течение всего периода коммутации Т, за исключением лишь короткого промежутка τ, подается отрицательное напряжение. Положительные импульсы длительностью τ подаются последовательно на каждую пару антенн и за период коммутации Т проходят на все n антенн.

Отрицательное напряжение в точках А1 и А2 запирает диоды Д1 Д2, Д3 и Д4, отключая цепи антенн 2.2 и 2.10 от входа приемников 4 и 21 и включая в цепь антенн нагрузочные резисторы R3 и R4, и отпирает диоды Д5 и Д6, которые замыкают точки А1 и А2 на землю. Дроссели L1 и L2 служат для пропускания постоянного тока диодов.

Положительный импульс делает диоды Д1, Д2, Д3 и Д4 проводящими.

Антенны 2.2 и 2.10 соединяются с приемниками 4 и 21 при замкнутых накоротко резисторах R3 и R4. Одновременно запираются диоды Д5 и Д6 и устраняется короткое замыкание на землю. Изменение фазы напряжения на входе приемников 4 и 21 происходит скачками в соответствии с подключением новой пары антенн через промежуток времени τ. На фиг.4 показано изменение фазы выходных напряжений электронного коммутатора 7.

При любом способе коммутации на входы приемников 4 и 21 поступают напряжения высокой частоты переменной фазы, т.е. фазомодулированные. Период модуляции равен периоду коммутации, а начальная фаза кривой модуляции равна пеленгу. Фазомодулированные колебания являются также частотно-модулированными, так как частота, равная производной по времени, при переменной фазе будет переменной.

На второй вход смесителя 12 с выхода гетеродина 11 поступает напряжение

uг(t)=Uг·Cos(wгt+φг),

где Uг, wг, φг - амплитуда, частота и начальная фаза напряжения гетеродина.

На выходе смесителя 12 образуются напряжения комбинационных частот. Усилителем 13 выделяется напряжение промежуточной (разностной) частоты

uпр(t)=Uпр·Cos[(wпр±Δw)t+φk(t)+φпр], 0≤t≤Tc,

где

wпр=wc-wг - промежуточная (разностная) частота;

φпрсг,

которое подается на второй вход перемножителей 14 и 22. На выходе перемножителей 14 и 22 образуются фазомодулированные (ФМ) колебания на частоте wг гетеродина 11:

где

которые выделяются полосовыми фильтрами 15 и 23 соответственно.

Следовательно, полезная информация об угле α переносится на стабильную частоту wг гетеродина 11. Поэтому нестабильность несущей частоты принимаемых сигналов, вызванная различными дестабилизирующими факторами, не влияет на результат пеленгации, тем самым повышает точность определения местоположения источника радиоизлучений ИРИ.

Фазомодулированные колебания u4(t) и u5(t) поступают на два входа перемножителя 18, на выходе которого образуется напряжение

где

которое выделяется полосовым фильтром 19 и поступает на первый вход фазового детектора 20.

Следовательно, за счет использования при каждой коммутации одновременно двух антенн, расположенных на концах диаметра 2d, относительный размер измерительной базы увеличивается в 2 раза (2d/λ).

На второй вход фазового детектора 20 с третьего выхода опорного генератора 5 подается опорное напряжение

u0(t)=U0·CosΩt.

На выходе фазового детектора 20 образуется постоянное напряжение

uн1(α)=Uн1·Cosα,

где

пропорциональное угловой координате α, которое фиксируется индикатором 10. Так формируется шкала пеленгации, которая является точной, но неоднозначной шкалой.

Одновременно фазомодулированное колебание u4(t) подвергается автокорреляционной обработке с помощью автокоррелятора, состоящего из линии 16 задержки и фазового детектора 17.

В фазомодулированном колебании u4(t) величина

называемая индексом фазовой модуляции, характеризует максимальное значение отклонения фазы от нулевого значения, происходящего при электронном вращении приемных антенн 2.i (i=1, 2, …, n) вокруг приемной антенны 1 (фиг.2).

Приемные антенны 2.i (i=1, 2, …, n) поочередно с частотой Ω коммутируются с помощью электронного коммутатора 7, управляемого n-фазовым генератором 6 импульсов (фиг.3). Управляющие импульсы формируются генератором 6 импульсов из гармонического напряжения, вырабатываемого опорным генератором 5 (фиг.4)

u0(t)=U0·CosΩt.

Однако при d/λ>1/2 наступает неоднозначность отсчета угла α. Устранение указанной неоднозначности путем уменьшения отношения d/λ обычно себя не оправдывает, так как при этом теряется основное достоинство широкобазового пеленгатора. Кроме того, в диапазоне метровых и особенно дециметровых волн брать малые значения d/α часто не удается из-за конструктивных соображений.

В связи с изложенным соображением возникает задача уменьшения индекса фазовой модуляции без уменьшения относительного размера измерительной базы d/λ. Это достигается автокорреляционной обработкой фазомодулированного колебания u4(t) с помощью линии задержки 16 и фазового детектора 17. Причем время задержки τ линии 16 задержки выбирается таким, чтобы уменьшить индекс фазовой модуляции до величины

где d1<d,

при которой справедливо неравенство d1/λ<1/2, обеспечивающее однозначную пеленгацию источника радиоизлучений ИРИ. На выходе фазового детектора 17 образуется гармоническое напряжение

u7(t)=U7·Cos(Ωt-α), 0≤t≤Tc,

где

которое через фазовращатель 8 на 90° поступает на первый вход фазового детектора 9, на второй вход которого со второго выхода опорного генератора 5 подается опорное напряжение u0(t). На выходе фазового детектора 9 образуется постоянное напряжение

uн2(α)=Uн2·Sinα,

где

пропорциональное угловой координате α, которое фиксируется индикатором 10. Так формируется шкала пеленгации, которая является грубой, но однозначной шкалой.

Фазовый сдвиг колебаний, принятых антеннами, размещенными на концах диаметра 2d, составляет

Величины 2d и λ известны, поэтому, измерив фазовый сдвиг Δφ, легко определить направляющий косинус и угол α:

А возникающая при этом неоднозначность отсчета угловой координаты α устраняется автокорреляционной обработкой принимаемых сложных сигналов. Причем предлагаемые технические решения инвариантны к нестабильности несущей частоты принимаемых сигналов виду их модуляции (манипуляции) и ширине спектра, а точное и однозначное измерение угловой координаты α осуществляется на стабильной частоте Ω опорного генератора.

За счет свертки спектра сложного ФМн-сигнала он преобразуется в узкополосные фазомодулированные (ФМ) напряжения, что дает возможность выделить их с помощью полосовых фильтров, отфильтровав при этом значительную часть шумов и помех, т.е. повысить реальную чувствительность частотно-фазового пеленгатора при сравнительно низком отношении сигнал/шум.

Расстояние R до источника радиоизлучений можно определить, используя равносигнальное направление, например, приемных антенн 2.2 и 2.10, размещенных на концах диаметра 2d, при котором амплитуды U2 и U3 сигналов, принимаемых этими антеннами, приблизительно равны (U2≈U3). Эти амплитуды суммируются в суммирующем устройстве 24 (U=U2+U3) и вычитаются в вычитающем устройстве 25 (Up=U2-U3). Полученные суммарная амплитуда UΣ и разностная амплитуда Up делятся в блоке 26 деления (Uд=U/Up). На выходе последнего образуется максимальное напряжение Uдmax, которое превышает пороговое напряжение Uпор в пороговом блоке 27 (Uдmax>Uпор).

Такое превышение возможно только тогда, когда приемные антенны 2.2 и 2.10 в процессе коммутации (электронного вращения) проходят равносигнальное направление (фиг.2). При превышении порогового уровня Uпор в пороговом блоке 27 формируются короткие положительные импульсы (фиг.5, а). За счет электронного вращения с угловой скоростью Ω приемных антенн 2.2 и 2.10 вокруг неподвижной антенны 1 источник радиоизлученной ИРИ будет периодически с периодом Тп находиться на равносигнальном направлении приемных антенн 2.2 и 2.10. При этом дальность R до ИРИ можно оценить из выражения

где Тп - период повторения (фиг.5), который измеряется счетным методом.

Для этого последовательность коротких положительных импульсов (фиг.5, а) с выхода порогового блока 27 одновременно поступает на счетный вход триггера 28 и на вход сброса счетчика 31 импульсов. Каждый поступивший короткий положительный импульс перебрасывает триггер 28 в противоположное состояние. Триггер 28 имеет два устойчивых состояния. При этом формируется последовательность разнополярных импульсов, длительность каждого из которых равна периоду повторения Тп (фиг.5, б). Эти импульсы поступают на первый вход логического элемента И 30, на второй вход которого подаются счетные импульсы с выхода генератора 29 счетных импульсов (фиг.5, в). На выходе логического элемента И 30 выделяются только счетные импульсы, соответствующие по времени положительным прямоугольным импульсам (фиг.5, г). Количество m счетных импульсов, укладывающихся в периоде повторения Тп, подсчитывается счетчиком 31 и продвигается короткими положительными импульсами (фиг.5, а) в вычислительное устройство 32. Указанные импульсы поступают на вход сброса счетчика 31 импульсов, проталкивают эти импульсы на выход и сбрасывают содержимое счетчика 31 импульсов на нулевое значение, подготавливая его к дальнейшей работе.

В вычислительном устройстве 32 определяется дальность R до ИРИ

которая регистрируется блоком 33 регистрации.

При определении дальности R до другого ИРИ выбирается автоматически другая пара приемных антенн, для которых ИРИ будет находиться на равносигнальном направлении.

Таким образом, предлагаемые фазовый способ пеленгации и фазовый пеленгатор для его осуществления по сравнению с прототипом обеспечивают определение дальности R до источника радиоизлучений ИРИ. Это достигается использованием диаметра 2d, на концах которого размещаются приемные антенны, скорости электронного вращения (коммутации) приемных антенн вокруг неподвижной антенны и измеренного значения периода повторения Тп равносигнального направления приемных антенн. Причем период повторения Тп измеряется счетным методом. По измеренным значениям α и R определяется местоположение источника радиоизлучений ИРИ.

Тем самым функциональные возможности фазового способа пеленгации и фазового пеленгатора для его осуществления расширены.

Похожие патенты RU2450283C1

название год авторы номер документа
ФАЗОВЫЙ СПОСОБ ПЕЛЕНГАЦИИ И ФАЗОВЫЙ ПЕЛЕНГАТОР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2007
  • Ипатов Александр Васильевич
  • Дикарев Виктор Иванович
  • Койнаш Борис Васильевич
  • Финкельштейн Андрей Михайлович
RU2365931C2
ФАЗОВЫЙ СПОСОБ ПЕЛЕНГАЦИИ И ФАЗОВЫЙ ПЕЛЕНГАТОР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2010
  • Дикарев Виктор Иванович
  • Журкович Виталий Владимирович
  • Сергеева Валентина Георгиевна
  • Рыбкин Леонид Всеволодович
  • Михайлов Виктор Анатольевич
RU2435171C1
ФАЗОВЫЙ СПОСОБ ПЕЛЕНГАЦИИ И ФАЗОВЫЙ ПЕЛЕНГАТОР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2010
  • Заренков Вячеслав Адамович
  • Заренков Дмитрий Вячеславович
  • Дикарев Виктор Иванович
RU2427853C1
ФАЗОВЫЙ СПОСОБ ПЕЛЕНГАЦИИ И ФАЗОВЫЙ ПЕЛЕНГАТОР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2009
  • Дикарев Виктор Иванович
  • Журкович Виталий Владимирович
  • Сергеева Валентина Георгиевна
  • Рыбкин Леонид Всеволодович
  • Михайлов Виктор Анатольевич
RU2426143C1
ФАЗОВЫЙ СПОСОБ ПЕЛЕНГАЦИИ И ФАЗОВЫЙ ПЕЛЕНГАТОР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2005
  • Дикарев Виктор Иванович
  • Журкович Виталий Владимирович
  • Сергеева Валентина Георгиевна
RU2290658C1
ФАЗОВЫЙ СПОСОБ ПЕЛЕНГАЦИИ И ФАЗОВЫЙ ПЕЛЕНГАТОР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2012
  • Жуков Анатолий Валерьевич
  • Гогин Валерий Леонидович
  • Зайцев Олег Викторович
  • Дикарев Виктор Иванович
RU2518428C2
ФАЗОВЫЙ ПЕЛЕНГАТОР 2007
  • Дикарев Виктор Иванович
  • Альжанов Артур Булатович
  • Коровин Евгений Александрович
RU2330304C1
СИСТЕМА ДЛЯ ОБНАРУЖЕНИЯ И ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ ЧЕЛОВЕКА, ТЕРПЯЩЕГО БЕДСТВИЕ НА ВОДЕ 2012
  • Заренков Вячеслав Адамович
  • Заренков Дмитрий Вячеславович
  • Дикарев Виктор Иванович
  • Койнаш Борис Васильевич
RU2521456C1
Фазовый пеленгатор 2016
  • Волков Алексей Витальевич
  • Кравцов Евгений Владимирович
  • Рюмшин Руслан Иванович
RU2618522C1
Фазовый пеленгатор 2018
  • Топорков Никита Валентинович
  • Потапова Татьяна Петровна
RU2684321C1

Иллюстрации к изобретению RU 2 450 283 C1

Реферат патента 2012 года ФАЗОВЫЙ СПОСОБ ПЕЛЕНГАЦИИ И ФАЗОВЫЙ ПЕЛЕНГАТОР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Предлагаемые способ и устройство относятся к области радиоэлектроники и могут быть использованы для определения местоположения источников излучения сложных сигналов. Достигаемый технический результат изобретения - расширение функциональных возможностей путем определения дальности до источника радиоизлучений, а следовательно и его местоположения. Фазовый пеленгатор, реализующий предлагаемый фазовый способ пеленгации, содержит приемные антенны, три приемника, опорный генератор, генератор импульсов, электронный коммутатор, фазовращатель на 90°, три фазовых детектора, индикатор, гетеродин, смеситель, усилитель промежуточной частоты, два перемножителя, три полосовых фильтра, линию задержки, суммирующее устройство, вычитающее устройство, блок деления, пороговый блок, триггер, генератор счетных импульсов, логический элемент И, счетчик импульсов, вычислительное устройство и блок регистрации, определенным образом соединенные между собой. 2 н.п. ф-лы, 5 ил.

Формула изобретения RU 2 450 283 C1

1. Фазовый способ пеленгации, основанный на приеме сигналов, усилении и ограничении их по амплитуде, сравнении сигналов, прошедших два канала, по фазе, при этом сигнал одного из каналов предварительно сдвигают по фазе на 90°, устанавливают в азимутальной плоскости n приемных антенн по окружности радиусом d с возможностью их электронного вращения с угловой скоростью Ω вокруг приемной антенны, размещенной в центре окружности, коммутируют приемные антенны, размещенные по окружности, поочередно с частотой Ω, сигнал, принимаемый антенной, размещенной в центре окружности, преобразуют по частоте, выделяют напряжение промежуточной частоты, перемножают его с сигналами, поочередно принимаемыми n приемными антеннами, расположенными по окружности, выделяют первое фазомодулированное напряжение, выделяют низкочастотное напряжение с частотой Ω и сравнивают его по фазе с опорным напряжением, формируя точную, но неоднозначную шкалу пеленгации источника излучения сигнала, одновременно первое фазомодулированное напряжение подвергают автокорреляционной обработке, выделяют низкочастотное напряжение с частотой Ω и сравнивают его по фазе с опорным напряжением, формируют грубую, но однозначную шкалу пеленгации источника излучения сигнала, при каждой коммутации одновременно используют две приемные антенны, расположенные на концах диаметра, сигнал, принимаемый второй антенной, перемножают с напряжением промежуточной частоты, выделяют второе фазомодулированное напряжение и перемножают его с первым фазомодулированным напряжением, отличающийся тем, что амплитуды сигналов, принимаемых двумя антеннами, расположенными на концах диаметра, складывают друг с другом и вычитают друг из друга, делят полученные суммарную амплитуду на разностную, сравнивают частную амплитуду с пороговым напряжением Uпор и в случае его превышения фиксируют равносигнальное направление приемных антенн, расположенных на концах диаметра, относительно источника радиоизлучений, при котором частная амплитуда достигает максимального значения и превышает пороговый уровень Uпор, при каждом превышении порогового уровня Uпор формируют короткий положительный импульс, последовательность коротких положительных импульсов, полученную при электронном вращении приемных антенн, используют для формирования последовательности прямоугольных разнополярных импульсов, длительность каждого из которых равна периоду повторения Тп равносигнального направления двух приемных антенн, расположенных на концах диаметра, относительно источника радиоизлучения, измеряют период повторения Тп счетным методом и определяют дальность до источника радиоизлучений
,
где 2d - диаметр, на концах которого располагают две приемные антенны, по измеренным значения пеленга (азимута) и дальности определяют местоположение источник радиоизлучений.

2. Фазовый пеленгатор, содержащий последовательно включенные первую приемную антенну, первый приемник, смеситель, второй вход которого соединен с выходом гетеродина, усилитель промежуточной частоты, первый перемножитель, первый полосовой фильтр, линию задержки, второй фазовый детектор, второй вход которого соединен с выходом первого полосового фильтра, фазовращатель на 90°, первый фазовый детектор, второй вход которого соединен со вторым выходом опорного генератора, и индикатор, последовательно включенные опорный генератор, генератор импульсов, электронный коммутатор, n входов которого соединены с n выходами приемных антенн, размещенных по окружности радиусом d с возможностью электронного вращения вокруг первой приемной антенны, размещенной в центре окружности, и второй приемник, выход которого соединен со вторым входом первого перемножителя, последовательно подключенные к выходу первого полосового фильтра второй перемножитель, второй полосовой фильтр и третий фазовый детектор, второй вход которого соединен с третьим выходом опорного генератора, а выход подключен ко второму входу индикатора, ко второму выходу электронного коммутатора последовательно подключены третий приемник, третий перемножитель, второй вход которого соединен с выходом усилителя промежуточной частоты, и третий полосовой фильтр, выход которого соединен со вторым входом второго перемножителя, отличающийся тем, что он снабжен суммирующим устройством, вычитающим устройством, блоком деления, пороговым блоком, триггером, логическим элементом И, генератором счетных импульсов, счетчиком импульсов и вычислительным устройством, предназначенным для определения дальности до источника радиоизлучений, причем к первому выходу электронного коммутатора последовательно подключены суммирующее устройство, второй вход которого соединен со вторым выходом электронного коммутатора, блок деления, пороговый блок, триггер, логический элемент И, второй вход которого соединен с выходом генератора счетных импульсов, счетчик импульсов, вход сброса которого соединен с выходом порогового блока, вычислительное устройство и блок регистрации, второй вход блока деления через вычитающее устройство соединен с первым и вторым выходами электронного коммутатора, по измеренным значениям пеленга (азимута) и дальности определяют местоположение источника радиоизлучений.

Документы, цитированные в отчете о поиске Патент 2012 года RU2450283C1

ФАЗОВЫЙ СПОСОБ ПЕЛЕНГАЦИИ И ФАЗОВЫЙ ПЕЛЕНГАТОР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2007
  • Ипатов Александр Васильевич
  • Дикарев Виктор Иванович
  • Койнаш Борис Васильевич
  • Финкельштейн Андрей Михайлович
RU2365931C2
ФАЗОВЫЙ СПОСОБ ПЕЛЕНГАЦИИ И ФАЗОВЫЙ ПЕЛЕНГАТОР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1999
  • Дикарев В.И.
  • Гумен С.Г.
  • Журкович В.В.
  • Замарин А.И.
  • Карелов И.Н.
  • Кармазинов Ф.В.
  • Рыбкин Л.В.
  • Сергеева В.Г.
RU2155352C1
ФАЗОВЫЙ СПОСОБ ПЕЛЕНГАЦИИ 1997
  • Дикарев В.И.
  • Карелов И.Н.
  • Замарин А.И.
RU2134429C1
СПОСОБ И УСТРОЙСТВО ОПРЕДЕЛЕНИЯ КООРДИНАТ ИСТОЧНИКА РАДИОИЗЛУЧЕНИЯ 2005
  • Терентьев Алексей Васильевич
  • Соломатин Александр Иванович
  • Смирнов Павел Леонидович
  • Царик Олег Владимирович
  • Шепилов Александр Михайлович
  • Шишков Вячеслав Александрович
RU2283505C1
ПЬЕЗОЭЛЕКТРИЧЕСКИЙ ШАГОВЫЙ ДВИГАТЕЛЬ 1996
  • Окатов Ю.В.
  • Буров С.В.
RU2167486C2
US 4062015 A, 06.12.1977
WO 2006087783 A1, 24.08.2006.

RU 2 450 283 C1

Авторы

Дикарев Виктор Иванович

Шубарев Валерий Антонович

Петрушин Владимир Николаевич

Даты

2012-05-10Публикация

2011-02-08Подача