СПОСОБ ТЕПЛОРАДИОТЕХНИЧЕСКИХ ИСПЫТАНИЙ РАДИОПРОЗРАЧНЫХ ОБТЕКАТЕЛЕЙ ЛЕТАТЕЛЬНЫХ АППАРАТОВ Российский патент 2014 года по МПК G01S7/40 

Описание патента на изобретение RU2525844C1

Изобретением является способ теплорадиотехнических испытаний радиопрозрачных обтекателей (РПО) летательных аппаратов.

Изобретение относится к области авиационной техники и радиолокации, а более конкретно к технологиям создания РПО, защищающих бортовую аппаратуру в полете.

Особенно высокие тепловые и механические нагрузки РПО должен выдерживать в составе высокоскоростных летательных аппаратов. РПО выполняет две основные функции: он должен обеспечивать эффективную тепломеханическую защиту аппаратуры летательного аппарата при высоких температурах и давлении, создаваемых встречным нестационарным потоком воздуха в полете, а с другой стороны - должен сохранять неизменными заданные радиотехнические характеристики (РТХ) РПО, обеспечивающие высокоточные измерения кинематических характеристик цели бортовым радиолокатором, в частности угловые измерения, в различных режимах и условиях полета летательного аппарата.

РТХ РПО большого удлинения, обычно устанавливаемого на высокоскоростных летательных аппаратах, заметно ухудшаются (радиопрозрачность падает, ошибки угловых измерений растут), если РПО неравномерно нагревается встречным аэродинамическим потоком. Величина и законы изменения температуры на боковой поверхности РПО в результате аэродинамического нагрева зависят от ряда физических факторов: скорости и высоты полета, теплофизических свойств материала, конструкции отсека, конфигурации РПО и т.д.

Важное значение для обеспечения высоких РТХ РПО приобретают теплорадиотехнические испытания (ТРТИ), которые нужно проводить как в холодном состоянии РПО, после высокотемпературного нагревания, так и в процессе его высокотемпературного нагревания, для установления зависимостей изменения РТХ РПО от внешних воздействий.

В процессе проведения ТРТИ РПО исследуют:

- коэффициент радиопрозрачности РПО;

- точность угловых измерений (погрешности коэффициента преломления луча электромагнитной волны);

- искажения пространственной диаграммы направленности (ДН) антенной системы (АС), включая боковые лепестки АС;

- искажения пеленгационной характеристики АС;

- градиенты ошибок угловых измерений;

- крутизну пеленгационной характеристики, определяющую качественные показатели режима сопровождения цели.

Базовыми физическими (электродинамическими) параметрами, определяющими РТХ РПО, являются:

- диэлектрическая проницаемость ε;

- тангенс угла потерь tg (σ).

Задачей изобретения является разработка способа проведения исследований зависимости РТХ РПО от внешних (в данном случае тепловых) воздействий с целью получения данных для прогнозирования процессов ухудшения электродинамических характеристик РПО под воздействием высокотемпературного нагревания.

Для решения поставленной задачи большой интерес представляют технические решения, представленные в патентах: ЕР 2264472 G01R 31/12; 2009 г. - на устройство для измерения потерь; ЕР 2264480 G01S 7/40, 2009 г. - на устройство для оценки данных; US 7839137 G01R 19/60 2006 г. - на распределенную систему определения мощности СВЧ-сигнала; JP 4488177 G01S 3/06, 2004 г. - на устройство для угловых измерений; US 7761756 G01R 31/28, 2000 г. - на схему с последовательным тестированием - прототип настоящего изобретения.

Недостатком рассмотренных выше изобретений является недостаточно полная оценка электродинамических параметров исследуемого образца РПО, в частности отсутствие измерений в процессе изменения температуры в условиях высокотемпературного нагревания и при достижении сверхвысоких температур.

Предметом настоящего изобретения является способ проведения ТРТИ РПО, отличающийся тем, что он позволяет производить измерения РТХ как в холодном состоянии РПО, после нагревания, так и в процессе изменения (повышения или понижения) температуры, благодаря чему не только появляется возможность исследовать РТХ РПО при предельно высоких температурах, но и исследовать динамические параметры процесса нагревания РПО, то есть определить искомую зависимость изменений РТХ РПО от величины и скорости изменения температуры, что позволяет в дальнейшем скомпенсировать искажения РТХ РПО, возникающие в полете.

Пониманию функциональных особенностей изобретения способствуют фиг. от 1 до 7.

Для реализации предложенного способа измерений РТХ РПО создан специальный стенд (фиг.1), обеспечивающий выполнение следующих действий. Испытываемый образец РПО (6) устанавливают в имитатор рабочего (штатного) отсека (4), закрепляемый на опорно-поворотном устройстве (ОПУ) стапеля (3), и сопрягают с инструментальной (измерительной) головкой самонаведения (ГСП) (5), снабженной антенной системой типа АФАР, которая юстируется относительно линии визирования радиотехнического имитатора цели (РИЦ) (10). При включении стенда инструментальная ГСН, установленная в имитаторе штатного отсека с исследуемым РПО, излучает зондирующий сигнал, который отражается РИЦ и принимается ГСН ГПКР. Радиотехническая аппаратура ГСН анализирует параметры принятого отраженного РИЦ зондирующего сигнала и определяет исследуемые РТХ в одной точке поверхности РПО, через которую в данный момент в обоих направлениях проходит луч электромагнитной МПК: G01N 33/00 волны, излучаемой и принимаемой инструментальной ГСН. При вращении имитатора отсека летательного аппарата относительно оси, проходящей через фазовый центр антенной системы ГСН, синхронно с перемещением луча АФАР из одной измерительной точки на поверхности РПО в другую, измерения проводятся уже на множестве точек боковой поверхности РПО одновременно, что позволяет исследовать состояние разных областей боковой поверхности РПО с разной интенсивностью изменения температуры, а также снимать диаграмму направленности (измерять боковые лепестки) антенной системы, пеленгационную характеристику и ряд других параметров, определяющих РТХ РПО.

Обычно для обеспечения псевдонепрерывного контроля РТХ РПО при непрерывном изменении температуры в процессе нагревания или охлаждения исследуемого образца РПО с обеспечением вращения корпуса имитатора отсека с РПО в секторе углов ±30° в целях исключения искажений электромагнитного поля в раскрыве антенны инструментальной ГСП посторонними металлическими предметами (ТЭНы и их кабельная сеть) необходимо периодически отводить ТЭНы на определенное расстояние или разводить их на требуемый угол, что требует относительно больших затрат энергии и времени, в результате чего происходят трудно учитываемые нестационарные процессы остывания испытываемого образца РПО. Кроме того, из-за значительных размеров и массы используемых для нагревания ТЭНов эти операции становятся неоправданно сложными и сопряжены с большими потерями времени, что приводит к ухудшению точности измерений.

Предложенный способ проведения ТРТИ РПО обеспечивает значительное сокращение потерь времени на непроизводительные операции и базируется на выполнении периодически повторяющихся операций нагревания образца РПО в зоне нагревания (фиг.4) - и измерения РТХ РПО (фиг.2 и 3) в измерительной зоне, куда исследуемый РПО поступает в результате быстрого разворота имитатора отсека с исследуемым РПО вокруг оси стенда на 180° в горизонтальной плоскости без отвода ТЭНов (фиг 5). В зоне проведения измерений тот же поворотный механизм выполняет несколько циклов сканирования выбранных точек боковой поверхности исследуемого РПО радиолучом для определения распределения искажений РТХ по боковой поверхности исследуемого РПО, после чего с минимальными потерями времени, сопряженными с инерционными свойствами теплоотдачи материала РПО, стенд осуществляет разворот имитатора отсека с исследуемым РПО в зону нагрева. Благодаря использованию данного способа проведения измерений стенд ТРТИ позволяет собирать наиболее достоверную информацию о процессах изменения РТХ исследуемых РПО без необходимости учитывать нестационарные процессы остывания образцов в процессе проведения измерений.

Особенностью реализации предложенного способа является также то, что при вращении корпуса в пределах заданной зоны углов лучи, сформированные радиотехническими отражателями РИК, пропускаются одновременно через измерительные точки не одного, а нескольких продольных сечений конуса РПО, что позволяет сократить время исследований и делает их более подробными (см. фиг.6).

Вся собранная первичная и выходная дополнительно обработанная информация записывается в базу данных стенда, что позволяет осуществлять комплексные исследования и применять методы компенсации искажений РТХ РПО для каждой точки корпуса РПО индивидуально.

На фиг.7 показан примерный график нагревания одной из областей боковой поверхности исследуемого РПО, на котором показаны точки, в которых процесс нагревания РПО кратковременно прерывается для быстрого разворота имитатора отсека с исследуемым РПО с перемещением его в измерительную зону стенда для проведения измерений РТХ, из которой имитатор отсека с исследуемым РПО опять возвращается в зону нагревания.

Похожие патенты RU2525844C1

название год авторы номер документа
Способ тепловых испытаний радиопрозрачных обтекателей 2016
  • Райлян Василий Семёнович
  • Русин Михаил Юрьевич
  • Фокин Василий Иванович
  • Шадрин Александр Петрович
  • Крылов Виталий Петрович
RU2626406C1
Способ тепловых испытаний радиопрозрачных обтекателей 2018
  • Райлян Василий Семёнович
  • Русин Михаил Юрьевич
  • Алексеев Дмитрий Владимирович
  • Фокин Василий Иванович
  • Афтаев Вадим Владимирович
RU2694237C1
НАГРЕВАТЕЛЬ ДЛЯ СТЕНДА ТЕПЛОРАДИОТЕХНИЧЕСКИХ ИСПЫТАНИЙ РАДИОПРОЗРАЧНЫХ ОБТЕКАТЕЛЕЙ 2015
  • Афанасьев Владимир Николаевич
  • Бобров Александр Викторович
  • Бурцев Сергей Иванович
  • Лопухов Игорь Иванович
  • Филимонов Александр Борисович
RU2583845C1
АНТЕННЫЙ ОБТЕКАТЕЛЬ 2013
  • Бородай Феодосий Яковлевич
  • Воробьев Сергей Борисович
  • Зарюгин Геннадий Давыдович
  • Полетаев Максим Евгеньевич
  • Русин Михаил Юрьевич
  • Степанов Петр Александрович
RU2536360C1
СПОСОБ ПОЛУНАТУРНОГО МОДЕЛИРОВАНИЯ СИСТЕМЫ САМОНАВЕДЕНИЯ ЛЕТАТЕЛЬНОГО АППАРАТА И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2015
  • Елизаров Владимир Сергеевич
  • Чепкасов Алексей Владимирович
RU2610877C1
Антенный обтекатель 2017
  • Бородай Феодосий Яковлевич
  • Воробьев Сергей Борисович
  • Зарюгин Геннадий Давыдович
  • Колоколов Леонид Иванович
  • Полетаев Максим Евгеньевич
  • Русин Михаил Юрьевич
RU2659586C1
Способ взаимного размещения двух антенн с сохранением их функциональных характеристик 2019
  • Гавриков Андрей Юрьевич
  • Фадеева Мария Алексеевна
  • Чистяков Никита Сергеевич
  • Балбеков Виктор Константинович
  • Стрелец Михаил Юрьевич
RU2697889C1
БЕСПИЛОТНЫЙ ЛЕТАТЕЛЬНЫЙ АППАРАТ 2018
  • Вдовиченко Андрей Геннадьевич
  • Козин Александр Юрьевич
  • Мищенко Анатолий Петрович
  • Монахов Игорь Олегович
  • Полунин Сергей Павлович
  • Сыздыков Евтулган Кимашевич
  • Шарков Сергей Петрович
RU2699261C1
СПОСОБ УПРАВЛЕНИЯ БЕСПИЛОТНЫМ ЛЕТАТЕЛЬНЫМ АППАРАТОМ 2018
  • Вдовиченко Андрей Геннадьевич
  • Козин Александр Юрьевич
  • Мищенко Анатолий Петрович
  • Монахов Игорь Олегович
  • Полунин Сергей Павлович
  • Сыздыков Евтулган Кимашевич
  • Шарков Сергей Петрович
RU2698599C1
Антенный обтекатель 2017
  • Бережной Дмитрий Андреевич
  • Зарюгин Геннадий Давыдович
  • Колоколов Леонид Иванович
  • Полетаев Максим Евгеньевич
  • Русин Михаил Юрьевич
RU2644621C1

Иллюстрации к изобретению RU 2 525 844 C1

Реферат патента 2014 года СПОСОБ ТЕПЛОРАДИОТЕХНИЧЕСКИХ ИСПЫТАНИЙ РАДИОПРОЗРАЧНЫХ ОБТЕКАТЕЛЕЙ ЛЕТАТЕЛЬНЫХ АППАРАТОВ

Изобретение относится к технологиям создания радиопрозрачных обтекателей (РПО), защищающих самолетную и ракетную бортовую аппаратуру в полете. Достигаемый технический результат - прогнозирование процессов искажения электродинамических характеристик исследуемого образца РПО под воздействием высокотемпературного нагревания. Согласно предложенному способу измерения радиотехнических характеристик (РТХ) исследуемого образца РПО проводят не только в холодном состоянии РПО, после его нагревания, но и в процессе изменения (повышения или понижения) температуры, благодаря чему появляется возможность измерять РТХ исследуемого образца РПО при предельно высоких температурах и определять динамические параметры процесса нагревания РПО, то есть зависимость изменения РТХ исследуемого образца РПО от величины и скорости изменения температуры, что позволяет затем скомпенсировать возникающие в полете искажения РТХ РПО. 7 ил.

Формула изобретения RU 2 525 844 C1

Способ проведения теплорадиотехнических испытаний радиопрозрачных обтекателей (РПО) летательных аппаратов, включающий измерения радиотехнических характеристик (РТХ) РПО с использованием встроенной в имитатор рабочего отсека летательного аппарата с исследуемым образцом РПО, установленным на стапеле с опорно-поворотным механизмом, измерительной бортовой радиолокационной аппаратуры после завершения процесса нагревания поверхности РПО теплонагревательными приборами (ТЭНами) с заданным распределением температур, имитирующим разогрев РПО нестационарным встречным потоком воздуха в полете, отличающийся тем, что имитатор рабочего отсека с исследуемым образцом РПО оснащают радиоизмерительной аппаратурой с активной фазовой антенной решеткой (АФАР), а рабочий отсек с исследуемым образцом РПО в процессе проведения измерений периодически разворачивают на 180° с перемещением рабочей области исследуемого образца РПО из зоны нагрева в измерительную зону стенда и обратно, при этом внутри измерительной зоны отсек с исследуемым образцом РПО вращают в пределах углового сектора ±30° синхронно с перемещением луча АФАР.

Документы, цитированные в отчете о поиске Патент 2014 года RU2525844C1

US 7761756 B2, 20.07.2010
СТЕНД ДЛЯ ИЗМЕРЕНИЯ РАДИОТЕХНИЧЕСКИХ ПАРАМЕТРОВ АНТЕННЫХ ОБТЕКАТЕЛЕЙ 2011
  • Ромашин Владимир Гаврилович
  • Шадрин Александр Петрович
  • Хамицаев Анатолий Степанович
  • Неповинных Олег Викторович
  • Назаров Алексей Вячеславович
  • Емельянов Игорь Викторович
  • Горшков Николай Анатольевич
RU2451371C1
Способ декоративной обработки содержащей никель нержавеющей стали, сплавов на никелевой основе и чистого никеля 1951
  • Гудцов Н.Т.
  • Розенблюм С.Г.
SU95903A1
СПОСОБ ИЗМЕРЕНИЯ ПЕЛЕНГАЦИОННЫХ ОШИБОК СИСТЕМ АНТЕННА-ОБТЕКАТЕЛЬ САМОЛЕТА С УСТАНОВЛЕННОЙ НА НЕМ БОРТОВОЙ РАДИОЛОКАЦИОННОЙ СТАНЦИЕЙ 2011
  • Чезганов Николай Федорович
  • Фролов Алексей Юрьевич
RU2465611C1
US 5066921 A, 19.11.1991
Устройство для измерения электропроводности жидкости 1983
  • Светлицкий Анатолий Михайлович
  • Волик Александр Владимирович
  • Бендик Бэлла Моисеевна
SU1203420A1
JP 2010043872 A, 25.02.2010

RU 2 525 844 C1

Авторы

Дергачёв Александр Анатольевич

Сливко Сергей Александрович

Бобров Александр Викторович

Шехтман Михаил Аронович

Шило Владимир Константинович

Даты

2014-08-20Публикация

2013-01-23Подача