Изобретение может быть использовано для получения высокоупорядоченных ансамблей покрытых оболочкой наночастиц благородных металлов в полимерных матрицах.
Известен способ получения наночастиц серебра, покрытых лигандной оболочкой 11-меркаптоундекановой кислоты, которая позволяет эффективно менять физико-химические свойства наночастиц. К недостаткам этого способа относится отсутствие полимера матрицы, в результате чего образование лигандной оболочки протекает параллельно с агрегацией наночастиц. В результате образуются ансамбли наночастиц с высокой степенью агрегации и широким распределением по размерам (RU 2364471 С1, 2009).
Ранее также был описан способ получения наночастиц серебра в матрицах полиэтилениминов и поливиниламинов восстановлением из оксида или нитрата серебра в присутствии муравьиной кислоты, формальдегида, диэтаноламина или натрий борогидрида и в отсутствие лигандов, образующих защитный слой на поверхности наночастиц. Полимерные матрицы с аминогруппами являются восстановителями, поэтому несмотря на высокую стабильность получаемых композиций недостатком данного метода является участие аминогрупп в реакции и как следствие этого широкое распределения ансамбля наночастиц по размерам (US 0020170, 2011).
Из уровня техники известен способ для получения наночастиц серебра в высоковязких растворах путем введения раствора AgNO3 в раствор желатины, казеина или модифицированных биологических макромолекул и лиганда в этиловом спирте. По мнению авторов этиловый спирт выполнял функцию не только растворителя, но и восстановителя для азотнокислого серебра (US 0142899, 2011). К недостаткам этого метода относится получение низкоразмерных наночастиц с широким распределением по размерам (3-23 нм).
Известен также способ получения наночастиц серебра в матрице поливинилового спирта или поливинилпирролидона в качестве сенсоров для гигантского комбинационного рассеяния. Авторы патента пытались найти условия, когда вся поверхность наночастиц оставалась доступной для взаимодействия с анализируемым веществом. Выбор полимера матрицы и отсутствие активных лигандов дает возможность получать пленки, содержащие наночастицы серебра, высокоактивные в качестве сенсоров. К недостаткам данного метода относится низкая стабильность незащищенных лигандной оболочкой наночастиц (US 0286684 Al, 2006).
Наиболее близким аналогом является способ получения наночастиц серебра в присутствии лиганда с последующим добавлением производных поливинилового спирта (US 0043512, 2012). В качестве лиганда используется додециламин. Затем стабилизированные лигандом наночастицы серебра добавляют в раствор поливинилбутираля. Выбранная последовательность, когда синтез наночастиц происходит главным образом на первой стадии реакции, а добавление поливинилбутираля осуществляется на второй, приводит к агрегации наночастиц на первой стадии и как следствие этого к высокой степени неоднородности системы.
Решение поставленной задачи обеспечивается тем, что наночастицы серебра получали восстановлением азотнокислого серебра натрий боргидридом в высоковязких растворах поливинилового спирта, желатины или поливинилбутираля. Реакционные растворы готовили последовательным добавлением к высоковязким растворам полимеров растворов нитрата серебра, лигандов и борогидрида натрия. Полученный раствор помещался в реактор, который в свою очередь помещали в термостатируемую камеру. Процесс получения нанокомпозиций протекал без перемешивания раствора.
Высоковязкие растворы желатины, поливинилового спирта и поливинилбутираля представляют собой гелеобразные (предгелеобразные) состояния, в которых области, содержащие макромолекулы матрицы, чередуются со свободными полостями, содержащими растворитель и низкомолекулярные реагенты. Таким образом, в высоковязких растворах желатины, поливинилового спирта и поливинилбутираля при отсутствии перемешивания в ходе реакции обеспечивается низкая подвижность наночастиц серебра в совокупности с высокой подвижностью исходных реагентов. Таким образом, высокая вязкость растворов и отсутствие перемешивания замедляют процессы агрегации, что в свою очередь повышает эффективность образования лигандной оболочки вокруг каждой отдельной наночастицы.
Показано, что проведение реакции в высоковязких растворах поливинилового спирта, желатины и поливинилбутираля при отсутствии перемешивания позволяет получать упорядоченные ансамбли покрытых лигандной оболочкой наночастиц.
Заявленный способ получения высокоупорядоченных наночастиц в полимерных матрицах осуществляется следующим образом.
Пример 1
Метод получения высоковязкого коллоидного раствора наночастиц серебра, покрытых лигандной оболочкой олеата натрия, в матрице поливинилового спирта в термостатированном реакторе при отсутствии перемешивания. К 15 мл водного раствора поливинилового спирта добавлялось 2 мл раствора азотнокислого серебра, 1 мл раствора олеата натрия и затем 2 мл раствора натрий боргидрида. Концентрация поливинилового спирта равнялась 23 г/л. Концентрация азотнокислого серебра изменялась от 3 до 6 ммоль/л. Концентрация олеата натрия 15 ммоль/л, а концентрация боргидрида натрия - 10 ммоль/л. В первые два часа реакции наблюдается появление окраски раствора с максимумом на длине волны 410 нм. При увеличении времени реакции и/или концентрации азотнокислого серебра происходит смещение полосы в спектрах поглощения в длинноволновую область. Оптические свойства пленок, полученных из композиций в поливиниловом спирте, сохраняются в течение длительного времени (больше полутора лет).
Пример 2
В этом примере в качестве матрицы использовался высоковязкий водный раствор желатины. Концентрация желатины составляла 15 г/л. Все остальные вещества и условия проведения реакции совпадали с описанными в примере 1. В результате реакции в течение часа наблюдалось появление окраски раствора с максимумом на длине волны 405 нм. Сравнение примеров 1 и 2 показывает, что переход от поливинилового спирта к желатине приводит к смещению максимума в спектре поглощения в коротковолновую область. Оптические свойства пленок, полученных из композиций в желатине, сохраняются в течение длительного времени (более двух лет).
Вода является сильным сольватирующим агентом, что приводит к диссоциации и последующей деструкции натрий боргидрида даже в отсутствие ионов серебра. Замена воды на менее полярные растворители приводит к увеличению времени жизни натрий боргидрида и уменьшению скорости реакции восстановления. Это в свою очередь позволяет получать наночастицы с меньшим содержанием дефектов.
Пример 3
Описано получение высокоупорядоченных покрытых лигандной оболочкой наночастиц серебра в растворе этилового спирта. В качестве матрицы использовался высоковязкий раствор поливинилбутираля в 96% этиловом спирте. К 15 мл раствора поливинилбутираля добавлялось 2 мл раствора азотнокислого серебра, 1 мл раствора олеата натрия и затем 2 мл раствора натрий боргидрида. Концентрация поливинилбутираля равнялась 8 г/л. Концентрация азотнокислого серебра изменялась от 2 до 4 ммоль/л. Концентрация олеата натрия 10 ммоль/л, а концентрация боргидрида натрия - 8 ммоль/л. В первый час реакции наблюдается появление окраски раствора с максимумом на длине волны 390 нм. При увеличении времени реакции и/или концентрации азотнокислого серебра происходит смещение полосы в спектрах поглощения в длинноволновую область. Оптические свойства пленок, полученных из композиций в поливиниловом спирте, сохраняются в течение длительного времени (больше двух лет).
Пример 4
Описано получение высокоупорядоченных покрытых лигандной оболочкой наночастиц серебра в растворе пропилового спирта. В качестве матрицы использовался высоковязкий раствор поливинилбутираля в пропиловом спирте. Все остальные вещества и условия проведения реакции совпадали с описанными в примере 3. В первые два часа реакции наблюдается появление окраски раствора с максимумом на длине волны 395 нм. При увеличении времени реакции и/или концентрации азотнокислого серебра происходит смещение полосы в спектрах поглощения в длинноволновую область. Оптические свойства пленок, полученных из композиций в поливиниловом спирте, сохраняются в течение длительного времени (больше двух лет).
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ НАНОЧАСТИЦ СЕРЕБРА В ПОЛИМЕРНЫХ МАТРИЦАХ ПРИ ЛАЗЕРНОМ ОБЛУЧЕНИИ | 2012 |
|
RU2510310C1 |
СПОСОБ ФОРМИРОВАНИЯ ПОВЕРХНОСТИ СИНТЕЗИРОВАННЫХ НАНОЧАСТИЦ | 2007 |
|
RU2364471C1 |
ФОТОХИМИЧЕСКИЙ СПОСОБ ПОЛУЧЕНИЯ СТАБИЛИЗИРОВАННЫХ НАНОЧАСТИЦ СЕРЕБРА | 2014 |
|
RU2569546C1 |
СПОСОБ ПОЛУЧЕНИЯ КОНЦЕНТРАТОВ НАНОДИСПЕРСИЙ НУЛЬВАЛЕНТНЫХ МЕТАЛЛОВ С АНТИСЕПТИЧЕСКИМИ СВОЙСТВАМИ | 2010 |
|
RU2445951C1 |
СПОСОБ ПОЛУЧЕНИЯ ПЛЕНОК С НАНОСТРУКТУРИРОВАННЫМ СЕРЕБРОМ | 2013 |
|
RU2542280C1 |
Способ получения водных растворов наночастиц серебра с природным восстановителем | 2016 |
|
RU2618270C1 |
НАНОЧАСТИЦА, СОДЕРЖАЩЕЕ ЕЕ КОНТРАСТНОЕ ВЕЩЕСТВО ДЛЯ МАГНИТНО-РЕЗОНАНСНОЙ ТОМОГРАФИИ И ЛИГАНДНОЕ СОЕДИНЕНИЕ | 2018 |
|
RU2767430C2 |
НАНОЧАСТИЦЫ СУЛЬФИДА СЕРЕБРА В ЛИГАНДНОЙ ОРГАНИЧЕСКОЙ ОБОЛОЧКЕ И СПОСОБ ИХ ПОЛУЧЕНИЯ | 2015 |
|
RU2603666C1 |
ТЕПЛОУСТОЙЧИВЫЕ ПРЕПАРАТЫ НАНОЧАСТИЦ И АССОЦИИРОВАННЫЕ С НИМИ СПОСОБЫ | 2013 |
|
RU2649765C2 |
СПОСОБ ПОЛУЧЕНИЯ ПОЛУПРОВОДНИКОВЫХ КОЛЛОИДНЫХ КВАНТОВЫХ ТОЧЕК СУЛЬФИДА СЕРЕБРА | 2013 |
|
RU2538262C1 |
Изобретение относится к нанотехнологии и может быть использовано для эффективного изменения оптоэлектронных свойств ансамблей покрытых лигандной оболочкой наночастиц серебра в вязких средах и пленках. Изобретение может быть использовано для создания фотонных кристаллов, оптических фильтров и нового поколения Рамановских лазеров. Для получения высокоупорядоченных ансамблей наночастиц серебра с лигандной оболочкой в высоковязкий водный раствор поливинилового спирта или желатины добавляют 3-6 ммоль/г раствора азотнокислого серебра, 15 ммоль/г олеата натрия и 10 ммоль/г боргидрида натрия. Реакция протекает без перемешивания. Изобретение позволяет получать в высоковязких средах и пленках ансамбли покрытых лигандной оболочкой наночастиц с низкой степенью агрегации. 4 пр.
Способ получения высокоупорядоченных покрытых лигандной оболочкой наночастиц серебра в матрице поливинилового спирта или желатины, включающий синтез наночастиц путем восстановления азотнокислого серебра в высоковязком растворе поливинилового спирта или желатины, отличающийся тем, что к водному раствору поливинилового спирта или желатины добавляют 3-6 ммоль/л раствора азотнокислого серебра, 15 ммоль/л олеата натрия и 10 ммоль/л боргидрида натрия и реакция протекает при отсутствии перемешивания.
СПОСОБ ФОРМИРОВАНИЯ ПОВЕРХНОСТИ СИНТЕЗИРОВАННЫХ НАНОЧАСТИЦ | 2007 |
|
RU2364471C1 |
СПОСОБ ПОЛУЧЕНИЯ НАНОЧАСТИЦ С МОДИФИЦИРОВАННОЙ ЛИГАНДНОЙ ОБОЛОЧКОЙ | 2007 |
|
RU2367512C1 |
СПОСОБ ПОЛУЧЕНИЯ ЛЕКАРСТВЕННОГО СРЕДСТВА | 2008 |
|
RU2395268C2 |
КОЛЛОИДНЫЙ РАСТВОР НАНОСЕРЕБРА И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2011 |
|
RU2456356C1 |
US 20080038552A1,14.02.2008 |
Авторы
Даты
2014-08-27—Публикация
2012-11-29—Подача