СПОСОБ ПОЛУЧЕНИЯ ПЛЕНОК С НАНОСТРУКТУРИРОВАННЫМ СЕРЕБРОМ Российский патент 2015 года по МПК C08J5/18 B82B3/00 A61L15/18 

Описание патента на изобретение RU2542280C1

Изобретение относится к области получения антимикробных полимерных водорастворимых пленочных покрытий с наноразмерными структурами из серебра. Способ позволяет получать водорастворимые пленочные покрытия с антимикробными свойствами при применении только биосовместимых реагентов.

Близкими аналогами могут являться разнообразные биорастворимые и биодеградируемые полимерные пленки с антибактериальными свойствами. Конкретный аналог выделить затруднительно, вследствие весьма узких областей применения того или иного продукта в медицине.

Прототипом-продуктом, наиболее близким по признакам и свойствам, является RU 2256674 С1, 20.072005. Общим признаком прототипа и предлагаемого в данной заявке способа является конечный продукт: пленка поливинилового спирта с наноструктурированным серебром. Так как планируется биомедицинское применение продукта, то преимуществами предлагаемого способа, по сравнению с прототипом, является водорастворимость пленки (соответственно, важная в медицине биодеградация), отсутствие дополнительных стабилизаторов (в прототипе используется желатин), отсутствие необходимости получать наночастицы серебра отдельной стадией (т.е. сокращение времени технологического процесса), возможность регулировать размер наночастиц серебра в пленке.

Исследованием уровня техники установлено, что способов получения водорастворимых пленок поливинилового спирта с антимикробными свойствами с применением супрамолекулярного соединения на основе L-цистеина и нитрата серебра не обнаруживается.

Сущность изобретения заключается в следующем.

Водный раствор супрамолекулярного полимера на основе L-цистеина и нитрата серебра представляет собой раствор полимероподобного супрамолекулярного соединения, построенного из молекул меркаптида серебра и ионов серебра, с формированием линейных цепочек со связями серебро-сера: -Ag-S-Ag-S-Ag-S-.

Авторами впервые было установлено, что указанный раствор может использоваться как исходный реагент для синтеза наноструктурированного серебра в матрице поливинилового спирта, с получением водорастворимых биосовместимых пленок с антимикробными свойствами. Размер синтезируемых наночастиц серебра детерминируется размером супрамолекул и их концентрацией. Таким образом, свойства пленок могут быть заранее заданы.

Полученные водорастворимые пленки являются биологически активным продуктом медицинского назначения с антимикробными свойствами.

Целью настоящего изобретения является повышение качества антимикробных повязок для поврежденной кожи, снижение количества осложнений.

Технический результат настоящего изобретения заключается в улучшении водорастворимости пленок, снижении количества небиодеградируемых веществ, используемых в процессе получения продукта, уменьшении общего времени проведения процесса за счет сокращения количества стадий, исключении необходимости введения дополнительного стабилизатора наночастиц серебра.

Изобретение поясняется графическими материалами Фиг. 1, Фиг. 2 и Таблицей 1.

Фиг. 1. Электронные спектры поглощения пленок поливинилового спирта с введенным в состав полимера наноструктурированным серебром, полученных с разным соотношением раствора поливинилового спирта, цистеин-серебряного раствора и воды.

Фиг. 2. Микрофотографии образцов пленок поливинилового спирта, полученные методом электронной микроскопии: а - без введения восстановителя, б - с восстановителем.

Технический результат достигается в четыре этапа.

Первый этап - смешение водного раствора нитрата серебра с водным раствором L-цистеина таким образом, чтобы мольное соотношение нитрата серебра и L-цистеина находилось в диапазоне 1,25-2,00. При более низком соотношении образуется осадок меркаптида серебра и супрамолекулярная реакция не протекает, при более высоком увеличение вязкости полученного раствора препятствует проведению дальнейших операций. При этом образуется мутный раствор, который оставляют созревать в защищенном от света месте при температуре от 15 до 55°C до визуальной прозрачности. При более низких температурах время протекания процесса увеличивается до нескольких суток, что удлиняет общее время процесса, и нивелирует одно из преимуществ метода по сравнению с патентными прототипами. При более высоких температурах сформированные супрамолекулы, не достигая нужного размера, деструктурируются и протекание целевого процесса невозможно. Созревание происходит в течение от 20 минут до двух суток, в зависимости от концентрации исходных компонентов, их мольного соотношения и температуры. Полученный прозрачный вязкий раствор имеет светло-желтый цвет (RU 2423384 С1, 10.07.2011).

Второй этап предполагает получение водного 10-12% раствора, по массе, поливинилового спирта. Концентрация поливинилового спирта на уровне 10-12% выбрана как оптимальная для получения раствора с вязкостью, позволяющей получать пленки методом полива. При более высоких концентрациях затруднено растекание раствора поливинилового спирта на поверхности стекла, при более низкой формируются пленки низкой прочности. Поливиниловый спирт смешивается с дистиллированной водой и нагревается на водяной бане до температуры 85-90°C при перемешивании, до полного растворения. Нагрев до 85-90°C необходим для полного растворения поливинилового спирта в воде. При более низких температурах растворение поливинилового спирта в воде затруднено. Нагрев поливинилового спирта проводят на водяной бане во избежание локальных перегревов раствора, приводящих к его деструкции и окислению. При более высоких температурах скорость растворения поливинилового спирта увеличивается незначительно, а техника работы с водяной баней затрудняется из-за сильного испарения. Полученный раствор охлаждается до комнатной температуры.

Третий этап предполагает смешение водного раствора супрамолекулярного полимера на основе L-цистеина и нитрата серебра с раствором поливинилового спирта при постоянном перемешивании. Экспериментальным путем установлено объемное соотношение растворов ПВС и ЦСР 1:1, при котором была получена пленка, проявившая наличие плазмонного резонанса наночастиц на электронных спектрах поглощения Фиг. 1, визуально различимое распределение наночастиц в пленке на микрофотографиях Фиг. 2 и хорошие антибактериальные свойства Таблица 1. При иных соотношениях растворов ПВС и ЦСР анализ электронных спектров поглощения полученных пленок показал, что процесс формирования наночастиц серебра прошел хуже (присутствовала агрегация или концентрация наночастиц серебра была низкой). Таким образом, соотношение компонентов определяет антибактериальные свойства получаемых пленок. Дополнительно, на данном этапе могут вводиться дистиллированная вода и водный раствор борогидрида натрия. При этом образуется прозрачный раствор с высокой вязкостью и с цветом от светло-желтого до красно-коричневого.

Четвертый этап предполагает получение непосредственно пленок методом налива на стекло и их сушку при 60°C.

Спектроскопическое исследование полученных образцов пленок показало, что все образцы имеют в UV-vis спектрах поглощения полосы, отвечающие плазмонному резонансу наночастиц серебра. Длины волн максимумов этих полос различны и зависят от степени агрегации наночастиц Фиг. 1.

Результаты спектроскопического исследования подтверждены методом электронной микроскопии. На полученных снимках видны наночастицы серебра с большей или меньшей степенью агрегации Фиг. 2.

Наиболее перспективными для применения оказались образцы супрамолекулярного полимера на основе L-цистеина, нитрата серебра и поливинилового спирта без использования восстановителя. В этих образцах наночастицы серебра наименее агрегированы, равномерно распределены по объему пленки, что улучшает антимикробные свойства пленок.

Было проведено тестирование образцов пленок на основе поливинилового спирта с наноструктурированным серебром на антимикробную активность на ряде тестовых культур.

Для тестирования были выбраны два опытных образца: пленка поливинилового спирта с наночастицами серебра (в образце заметна агрегация наночастиц серебра) и пленка поливинилового спирта с супрамолекулярным полимером на основе L-цистеина и нитрата серебра без использования восстановителя (образец с наиболее равномерным распределением наночастиц серебра в пленке) - Фиг. 2. В качестве контрольного образца использовалась пленка чистого поливинилового спирта. Результаты тестирования приведены в таблице 1.

Образцы показали среднюю активность в отношении всех испытуемых тест-культур микроорганизмов. Отмечена большая чувствительность дрожжевых грибов рода Candida к образцу пленки, полученной без применения восстановителя (19 мм). Образец пленки поливинилового спирта с супрамолекулярным полимером на основе L-цистеина и нитрата серебра превосходит по антимикробной активности образец поливинилового спирта с наночастицами серебра.

Пример получения водорастворимых антимикробных пленок ПВС с наночастицами серебра:

1. Растворяют 127,5 мг нитрата серебра в 25 мл дистиллированной воды.

2. Растворяют 90,8 мг L-цистеина в 25 мл дистиллированной воды.

3. К 25 мл раствора нитрата серебра приливают 155 мл дистиллированной воды и 20 мл раствора L-цистеина, смесь энергично перемешивают. Смесь оставляют созревать в защищенном от света месте на 10 часов при комнатной температуре, получают супрамолекулярное соединение на основе биосовместимой аминокислоты L-цистеина и нитрата серебра.

4. 10 г поливинилового спирта растворяют в 90 мл дистиллированной воды при нагревании до 90°C и охлаждают до комнатной температуры; получают 10% раствор ПВС.

5. К раствору поливинилового спирта в соотношении 1:1 добавляют раствор супрамолекулярного соединения на основе L-цистеина и нитрата серебра (в некоторых случаях дополнительно вводится восстановитель - борогидрид натрия), гомогенизируют на вибрационном перемешивающем устройстве и дегазируют в течение 30 минут до прекращения выделения пузырьков газа.

6. На предварительно подготовленном стекле методом налива получают пленки композиционного материала.

7. Сушка пленок проводится в сушильном шкафу при 60°C.

Пленки могут быть использованы в области медицины, а именно: в хирургии - для лечения ран, ожогов, повреждений - в качестве минимально травматичных, биосовместимых и биорастворимых, антимикробных повязок для поврежденной кожи.

Таблица 1 Исследуемые образцы Зоны подавления роста тест-культур в мм В.subtilis 6633 S.aureus АТСС 25923 E.coli ATCC 25922 Sh.sonnei III №1908 Salmonella typhimurium 5715 P.aeruginosa ATCC 27853 C.albicans ATCC 885-653 ПВС+НЧС 13 13 13 13 13 13 14 ПВС+ЦСР 13 14 14 14 14 14 19 ПВС 0 0 0 0 0 0 0

Похожие патенты RU2542280C1

название год авторы номер документа
Способ получения макропористой пленки для регенеративной медицины на основе L-цистеина, нитрата серебра и поливинилового спирта 2020
  • Вишневецкий Дмитрий Викторович
  • Межеумов Игорь Николаевич
  • Иванова Александра Ивановна
  • Хижняк Светлана Дмитриевна
  • Пахомов Павел Михайлович
RU2746882C1
Способ получения гелей для медицинских целей на основе L-цистеина, нитрата серебра и поливинилового спирта 2019
  • Вишневецкий Дмитрий Викторович
  • Иванова Александра Ивановна
  • Межеумов Игорь Николаевич
  • Хижняк Светлана Дмитриевна
  • Пахомов Павел Михайлович
RU2709181C1
КАТИОННЫЙ АНТИСЕПТИК НА ОСНОВЕ КОМПОЗИЦИЙ L-ЦИСТЕИН-СЕРЕБРЯНОГО РАСТВОРА И ПИЩЕВОГО ХИТОЗАНА 2014
  • Овчинников Максим Максимович
  • Червинец Вячеслав Михайлович
  • Червинец Юлия Вячеславовна
  • Михайлова Елена Сергеевна
  • Хижняк Светлана Дмитриевна
  • Пахомов Павел Михайлович
RU2562113C1
СПОСОБ ПОЛУЧЕНИЯ НАНОЧАСТИЦ СЕРЕБРА 2013
  • Баранова Ольга Алексеевна
  • Пахомов Павел Михайлович
  • Хижняк Светлана Дмитриевна
RU2526390C1
КОМПОЗИЦИЯ В КАЧЕСТВЕ БАКТЕРИЦИДНОГО СРЕДСТВА, СПОСОБ ПОЛУЧЕНИЯ МАТЕРИАЛА НА ЕЕ ОСНОВЕ И МАКРОПОРИСТЫЙ БАКТЕРИЦИДНЫЙ МАТЕРИАЛ НА ОСНОВЕ ДАННОЙ КОМПОЗИЦИИ 2009
  • Аскадский Андрей Александрович
  • Курская Елена Анатольевна
  • Самойлова Надежда Аркадьевна
  • Ямсков Игорь Александрович
RU2404781C1
Способ получения коллоидного водного раствора серебра 2015
  • Кузнецов Олег Ювенальевич
  • Пятачков Андрей Александрович
  • Шашков Василий Андреевич
  • Кузнецов Антон Олегович
RU2623251C2
Композиция с супрамолекулярной структурой коллоидной смеси комплексных соединений наноструктурных частиц серебра или гидрозоля катионов серебра в водном или в водно-органическом растворе, обладающая антимикробным и антитоксическим действием (варианты), и способ ее получения 2018
  • Герасименя Валерий Павлович
  • Захаров Сергей Викторович
  • Клыков Михаил Александрович
RU2693410C1
ФОТОХИМИЧЕСКИЙ СПОСОБ ПОЛУЧЕНИЯ СТАБИЛИЗИРОВАННЫХ НАНОЧАСТИЦ СЕРЕБРА 2014
  • Варфоломеев Сергей Дмитриевич
  • Горшенев Владимир Николаевич
  • Лобанов Антон Валерьевич
  • Васильев Сергей Михайлович
  • Кононенко Анна Борисовна
  • Бритова Софья Васильевна
  • Банникова Дарья Александровна
  • Савинова Екатерина Петровна
  • Жунина Ольга Александровна
RU2569546C1
МНОГОСЛОЙНАЯ МЕДИЦИНСКАЯ ПЛЕНКА 2001
  • Махмутов Ф.А.
  • Козлова Е.В.
  • Оськин В.М.
  • Камалова А.Е.
RU2228768C2
КОМПОЗИЦИЯ БИНАРНОЙ КОЛЛОИДНОЙ СМЕСИ НАНОСТРУКТУРНЫХ ЧАСТИЦ СЕРЕБРА И ИОНОВ СЕРЕБРА В СТАБИЛИЗАТОРЕ, ОБЛАДАЮЩАЯ АНТИМИКРОБНЫМ И АНТИТОКСИЧЕСКИМ ДЕЙСТВИЕМ (ВАРИАНТЫ) И СПОСОБ ЕЕ ПОЛУЧЕНИЯ 2015
  • Герасименя Валерий Павлович
  • Клыков Михаил Александрович
  • Захаров Сергей Викторович
  • Халангот Мая Оразовна
  • Воронков Алексей Геннадьевич
  • Машков Виталий Владимирович
RU2601757C1

Иллюстрации к изобретению RU 2 542 280 C1

Реферат патента 2015 года СПОСОБ ПОЛУЧЕНИЯ ПЛЕНОК С НАНОСТРУКТУРИРОВАННЫМ СЕРЕБРОМ

Изобретение относится к способу получения антимикробных полимерных водорастворимых пленочных покрытий с наноразмерными структурами из серебра. Способ получения пленок на основе поливинилового спирта с наноструктурированным серебром включает получение наночастиц серебра, их совмещение с поливиниловым спиртом и формирование пленки. Наночастицы серебра требуемого размера получают смешиванием водных растворов нитрата серебра и L-цистеина в мольном соотношении 1,25-2,00. Совмещение наночастиц серебра с поливиниловым спиртом проводится в 10-12% по массе водном растворе поливинилового спирта при температуре 85-90°C и объемном соотношении смешиваемых растворов 1:1 с получением супрамолекулярного полимера. Полученные пленки могут быть использованы в медицине, в частности в хирургии для лечения ран, ожогов, повреждений в качестве минимально травматичных, биосовместимых и биорастворимых, антимикробных повязок для поврежденной кожи. 1 з.п. ф-лы, 1 табл., 3 ил.

Формула изобретения RU 2 542 280 C1

1. Способ получения пленок на основе поливинилового спирта с наноструктурированным серебром, содержащий получение наночастиц серебра, их совмещение с поливиниловым спиртом, формирование пленки, отличающийся тем, что наночастицы серебра получают смешиванием водных растворов нитрата серебра и L-цистеина в мольном соотношении 1,25-2,00, совмещение наночастиц серебра с поливиниловым спиртом проводится в 10-12%, по массе, водном растворе поливинилового спирта при температуре 85-90°C и объемном соотношении смешиваемых растворов 1:1 с получением супрамолекулярного полимера.

2. Способ по п.1, отличающийся тем, что в раствор, содержащий супрамолекулярный полимер на основе L-цистеина, нитрата серебра и поливинилового спирта, вводят 10-12%, по массе, водный раствор борогидрида натрия.

Документы, цитированные в отчете о поиске Патент 2015 года RU2542280C1

СПОСОБ ПОЛУЧЕНИЯ ВОДОСТОЙКОЙ ПЛЕНКИ НА ОСНОВЕ ПОЛИВИНИЛОВОГО СПИРТА 2004
  • Алексеева Н.В.
  • Евтушенко А.М.
  • Зубов В.П.
  • Чихачёва И.П.
  • Кубракова И.В.
RU2256674C1
ФУНКЦИОНАЛЬНЫЕ НАНОМАТЕРИАЛЫ С АНТИБАКТЕРИАЛЬНОЙ И АНТИВИРУСНОЙ АКТИВНОСТЬЮ 2006
  • Биньоцци Карло Альберто
  • Диссете Валериа
  • Кораллини Альфредо
  • Карра Джакомо
  • Делла Валле Ренато
RU2404988C2
ПОВЯЗКА ДЛЯ ЛЕЧЕНИЯ РАН И СПОСОБ ЕЕ ПОЛУЧЕНИЯ 1996
  • Акимова Алла Яковлевна
  • Чигирь Анатолий Николаевич
  • Солодовник Валентин Дмитриевич
RU2107516C1
CN 102573835 A, 11.07.2012
KR 1007910039 В1, 03.01.2008
.

RU 2 542 280 C1

Авторы

Баранова Ольга Алексеевна

Пахомов Павел Михайлович

Даты

2015-02-20Публикация

2013-11-19Подача