ВОДОРАСТВОРИМЫЙ ИНГИБИТОР КОРРОЗИИ МЕТАЛЛОВ Российский патент 2014 года по МПК C23F11/167 

Описание патента на изобретение RU2528922C1

Изобретение относится к составам для ингибирования коррозии и солеотложений в теплообменном оборудовании систем технического водоснабжения бытового и промышленного назначения, выполненных из черных и цветных металлов, для приготовления смазочно-охлаждающих жидкостей (СОЖ) и моющих средств.

Известен водорастворимый ингибитор коррозии металлов, содержащий, мас.%: триполифосфат натрия - 10,0-20,0, борат этаноламина - 80,0-90,0. В качестве бората этаноламина используют продукт взаимодействия борной кислоты с моно-, ди- или триэтаноламином (RU 2355820, кл. C23F 11/14, 14/02, 20.05.2009).

Недостатком известного ингибитора является то, что он защищает от коррозии и солеотложений теплообменное оборудование, выполненное из черных металлов, и неэффективен для предотвращения коррозии цветных металлов.

Наиболее близким аналогом предложенного технического решения является водомаслорастворимый ингибитор коррозии металлов, содержащий, мас.%: продукт конденсации борной кислоты с моноэтаноламином и смесью жирных кислот предельного и непредельного ряда с углеводородным радикалом С26 при мольном соотношении 1:5:3 соответственно - 20,0-25,0, 2-гидроксиэтилметакрилат - 2,0-4,0 и растворитель - до 100. В качестве растворителя он содержит воду, низкозастывающие фракции углеводородов или минеральное масло (RU 2462539, кл. C23F 11/08, 27.09.2012).

Недостатком данного ингибитора является то, что входящий в его состав полимер - 2-гидроксиэтилметакрилат обладает высокими водопоглащением (40-80%) и набуханием в воде, что приводит к изменению структуры и состава ингибитора во времени, снижению его эффективности при защите от коррозии теплообменного оборудования из черных и цветных металлов.

Техническим результатом изобретения является расширение ассортимента отечественных водорастворимых ингибиторов коррозии, повышение эффективности защиты от коррозии и отложения солей теплообменного оборудования из черных и цветных металлов.

Данный результат достигается тем, что водорастворимый ингибитор коррозии металлов, включающий боразотсодержащее соединение, дополнительно содержит триэтилфосфат и имидазол, а в качестве боразотсодержащего соединения содержит продукт конденсации борной кислоты, диэтаноламина, моноэфира гликоля и смеси жирных кислот предельного и непредельного ряда с углеводородным радикалом C12-C22 при их мольном соотношении 1:2:(0,5-0,7):0,4 соответственно при следующем соотношении компонентов, мас.%:

Продукт конденсации борной кислоты, диэтаноламина, моноэфира гликоля и смеси жирных кислот 86,0-90,0 Триэтилфосфат 2,0-4,0 Имидазол 8,0-10,0

При этом при получении продукта конденсации в качестве моноэфира гликоля используют соединение, выбранное из группы: моноэтиловый эфир этиленгликоля, монобутиловый эфир этиленгликоля, моноэтиловый эфир диэтиленгликоля, монобутиловый эфир диэтиленгликоля.

Отличительной особенностью предложенного технического решения является то, что при введении продукта конденсации борной кислоты, диэтаноламина (ДЭА), моноэфира гликоля и смеси жирных кислот предельного и непредельного ряда с углеводородным радикалом C12-C22 при их мольном соотношении 1:2:(0,5-0,7):0,4 соответственно, триэтилфлсфата (ТЭФ) и имидазола при заявленном соотношении компонентов возникает синергический эффект усиления защитных свойств ингибитора, что позволяет получить стабильный водорастворимый ингибитор с высокой степенью защиты от коррозии и солеотложений теплообменного оборудования, выполненного из черных и цветных металлов.

Использование продукта конденсации при иных соотношениях реагентов, кроме заявленных, а также введение его, ТЭФ и имидазола при иных массовых соотношениях не позволяет получить водорастворимый ингибитор с высокими защитными свойствами.

В качестве смеси жирных кислот используют высокомолекулярные жирные кислоты растительных масел (подсолнечного, кокосового, соевого, рапсового, льняного и т.д.) ряда C12-C22 или синтетические жирные кислоты (СЖК) соответствующих фракций.

Жирные кислоты выделяют из растительных масел путем расщепления триглицеридов, например омылением масла щелочью с последующей обработкой образовавшегося мыла минеральной кислотой (Сырье и полупродукты для лакокрасочных материалов: Справочное пособие / Под ред. М.М. Гольдберга. - М.: Химия, 1978. - С.230, 234).

Основной способ синтеза СЖК - окисление парафинов кислородом воздуха при 105-120°C и атмосферном давлении (катализатор - соединения Mn, например MnSO4, MnO2, KMnO4). Продукты окисления нейтрализуют раствором Na2CO3 и омыляют раствором NaOH; из полученных мыл кислоты выделяют обработкой H2SO4 и фракционируют / Брунштейн Б.А., Клименко В.Л., Цыркин Е.Б. Производство синтетических кислот из нефтяного сырья. - Л.: Химия, 1970. - 160 с.

В качестве моноэфира гликоля используют:

- моноэтиловый эфир этиленгликоля (этилцеллозольв) C2H5-O-CH2CH2OH по ГОСТ 8313-88;

- монобутиловый эфир этиленгликоля (бутилцеллозольв) C4H9-O-CH2CH2OH по ТУ 6-01-646-84;

- моноэтиловый эфир диэтиленгликоля (этилкарбитол) C2H5-O-CH2CH2-O-CH2CH2OH по ТУ 2422-125-05766801-2003;

- монобутиловый эфир диэтиленгликоля (бутилкарбитол) C4H9-O-CH2CH2-O-CH2CH2OH по ТУ 8-05-10-50-86.

Простые моноэфиры гликолей получают в результате реакции оксиэтилирования соответствующих спиртов при температуре 150-200°C и давлении 2-4 МПа в присутствии катализаторов (кислот, щелочей, либо цеолитов, силикагелей, алюмосиликатов).

Триэтилфосфат (Триэтиловый эфир ортофосфорной кислоты) (C2H5O)3PO является сложным эфиром этанола и фосфорной кислоты, представляет собой бесцветную, хорошо растворимую в воде жидкость с Т.кип.=216°C и относительной плотностью 1,073 г/см3.

Имидазол C3H4N2 (ТУ 6-09-37-1127-91) получают конденсацией глиоксаля с аммиаком в присутствии формальдегида. Он представляет собой бесцветные или бледно-желтые кристаллические хлопья со слабым запахом амина с температурой плавления 88,3-89,9°C и относительной плотностью 1,111 г/см3. Он хорошо растворим в воде, спирте, бензоле, плохо - в углеводородах.

Технология получения продукта конденсации заключается в следующем:

В реактор, снабженный мешалкой, насадкой Дина-Старка, обратным холодильником и термометром, при температуре 90-100°C и постоянном перемешивании загружают 210 г (2 моля) диэтаноламина (ТУ 6-09-2652-91), 61 г (1 моль) борной кислоты (ГОСТ 18704-78) и 0,5-0,7 моль моноэфира гликоля (этилцеллозольва, бутилцеллозольва, этилкарбитола или бутилкарбитола). Реакционную массу нагревают до 180-200°C и проводят реакцию конденсации в течение 45-60 мин. Затем в реактор вводят 0,4 моля смеси жирных кислот предельного и непредельного ряда с углеводородным радикалом C12-C22 и продолжают реакцию конденсации в течение 30-40 мин при температуре 200-210°C.

Полученные продукты имеют цвет от желтого до медового, хорошо растворимы в воде, не пенятся, не образуют осадки в жесткой воде и имеют следующие характеристики:

Кинематическая вязкость при 100°C, сСт - не более 55,0.

Аминное число, мг HCl/г - не менее 42.

Зольность, % - отсутствует.

Температура вспышки в открытом тигле, °C - не ниже 200.

Для получения активной основы ингибитора 86,0-90,0 мас.% полученного продукта при постоянном перемешивании последовательно смешивают с 2,0-4,0 мас.% ТЭФ и 8,0-10,0 мас.% имидазола до получения однородного состава. Рабочая концентрация полученного ингибитора в воде составляет 1,0-3,0 мас.%.

Составы образцов предложенного водорастворимого ингибитора коррозии представлены в табл.1. Примеры 5 и 6 являются контрольными.

Испытания на коррозию образцов из углеродистой стали марки Ст.10 и цветных металлов проводили в искусственной воде на основе оборотной промышленной воды следующего состава, мг/л: CaCl2 - 294,5; NaCl2 - 36,2; Na2SO4 - 390,5; NaOH - 37,0.

Коррозионные испытания выполняли с помощью потенциостата П-5848 на вращающемся дисковом электроде при скорости движения воды 1 м/с, температуре 20°C и концентрации ингибитора 2,0 мас.% (табл.2).

Испытания на способность ингибитора предотвращать отложения солей осуществляли в ультратермостате при 60°C и выдержке в течение 7 ч. Исследования проводили в природной грунтовой воде с общей жесткостью 15,8 мг-экв/л, содержащей HCO3- - 5,5 мг-экв/л и Ca2+ - 10,3 мг-экв/л (табл.3).

Использование предложенного водорастворимого ингибитора коррозии позволит надежно защитить от коррозии и солеотложений теплообменники систем оборотного технического водоснабжения бытового и промышленного назначения, выполненные из черных и цветных металлов.

Таблица 1 Компоненты Содержание компонентов по примерам, мас.% 1 2 3 4 5 6 Продукт конденсации борной кислоты с ДЭА, этилцеллозольвом и смесью жирных кислот растительных масел ряда C12-C22 при мольном соотношении 1:2:0,5:0,4 86,0 85,0 Продукт конденсации борной кислоты с ДЭА, этилкарбитолом и смесью жирных кислот растительных масел ряда C12-C22 при мольном соотношении 1:2:0,6:0,4 88,0 Продукт конденсации борной кислоты с ДЭА, бутилцеллозольвом и СЖК фракции C12-C22 при мольном соотношении 1:2:0,5:0,4 90,0 91,0 Продукт конденсации борной кислоты с ДЭА, бутилкарбитолом и СЖК фракции C12-C22 при мольном соотношении 1:2:0,7:0,4 87,0 Триэтилфосфат 4,0 3,0 2,0 4,0 4,5 1,5 Имидазол 10,0 9,0 8,0 9,0 10,5 7,5

Таблица 2 Результаты коррозионных испытаний предложенного состава Показатель Вода, содержащая предложенный ингибитор, по примерам Вода, содержащая ингибитор по прототипу 1 2 3 4 5 6 Скорость коррозии стали Ст.10, мА/см2 0,27 0,25 0,24 0,26 0,30 0,27 0,30-0,35 Коррозионное воздействие на металлы по потере массы при 88±2°C (336 ч), г/м2/сутки: медь M1 0,015 0,014 0,013 0,015 0,016 0,15 0,016-0,020 латунь Л-62 0,049 0,048 0,047 0,048 0,050 0,049 0,050-0,053 припой ПОС-40-2 0,16 0,15 0,14 0,15 0,17 0,15 0,17-0,20 алюминий АК-6М2 0,08 0,07 0,05 0,07 0,10 0,08 0,08-0,10 чугун СЧ-25 0,03 0,025 0,02 0,025 0,04 0,025 0,03-0,04 сталь 20 0,031 0,030 0,029 0,030 0,032 0,030 0,032-0,04 Защитная эффективность, %, через: 7 дней 97 98 99 98 96 98 96-98 30 дней 97 98 99 98 96 98 92 3 месяца 97 98 99 98 96 98 85

Таблица 3 Степень защиты (Z) от солеотложений в природной грунтовой воде при 60°C Среда, концентрация ингибитора, мас.% Общая жесткость, мг-экв/л HCO3- мг-экв/л Ca2+ мг-экв/л Z, % Исходная вода 15,8 5,5 10,3 - Прототип 0,5 13,1 4,6 8,5 83 1,0 14,5 5,0 9,5 92 2,0 15,5 5,4 10,1 98 Предложенный ингибитор 0,5 13,6 4,7 8,9 86 1,0 15,3 5,3 10,0 97 2,0 15,8 5,5 10,3 100

Похожие патенты RU2528922C1

название год авторы номер документа
АНТИФРИЗ 2013
  • Давидовская Наталья Юрьевна
RU2540545C2
ОХЛАЖДАЮЩАЯ ЖИДКОСТЬ 2013
  • Давидовская Наталья Юрьевна
RU2540543C2
ИНГИБИТОР КОРРОЗИИ МЕТАЛЛОВ 2015
  • Гайдар Сергей Михайлович
  • Карелина Мария Юрьевна
  • Пыдрин Александр Викторович
  • Петровский Дмитрий Иванович
  • Петровская Елена Андреевна
  • Быкова Елена Владимировна
  • Быков Константин Владимирович
  • Голубев Михаил Иванович
  • Шлыков Алексей Евгеньевич
RU2597442C1
СОСТАВ ДЛЯ ЗАЩИТЫ МЕТАЛЛОВ ОТ КОРРОЗИИ И СОЛЕОТЛОЖЕНИЙ 2011
  • Гайдар Сергей Михайлович
  • Пучин Евгений Александрович
  • Прохоренков Вячеслав Дмитриевич
  • Низамов Руслан Каримович
  • Голубев Михаил Иванович
  • Кузнецова Екатерина Геннадиевна
RU2462538C1
ИНГИБИТОР КОРРОЗИИ МЕТАЛЛОВ 2011
  • Гайдар Сергей Михайлович
  • Пучин Евгений Александрович
  • Прохоренков Вячеслав Дмитриевич
  • Низамов Руслан Каримович
  • Голубев Михаил Иванович
  • Кузнецова Екатерина Геннадиевна
RU2462539C1
Рецептура автомобильной охлаждающей жидкости, совместимой с другими охлаждающими жидкостями 2019
  • Вишнякова Елена Евгеньевна
RU2748915C2
СОСТАВ ДЛЯ РАЗРУШЕНИЯ СТОЙКИХ ВОДОНЕФТЯНЫХ ЭМУЛЬСИЙ И ЗАЩИТЫ НЕФТЕПРОМЫСЛОВОГО ОБОРУДОВАНИЯ ОТ АСФАЛЬТЕНО-СМОЛО-ПАРАФИНОВЫХ ОТЛОЖЕНИЙ И КОРРОЗИИ 2002
  • Лебедев Н.А.
  • Юдина Т.В.
  • Сафаров Р.Р.
  • Варнавская О.А.
  • Хлебников В.Н.
  • Хватова Л.К.
  • Трофимов Л.В.
  • Меречина М.М.
RU2227154C2
КОНЦЕНТРАТ СМАЗОЧНО-ОХЛАЖДАЮЩЕЙ ЖИДКОСТИ ДЛЯ МЕХАНИЧЕСКОЙ ОБРАБОТКИ МЕТАЛЛОВ 2003
  • Сайдаков Ю.Н.
  • Кузнецова М.А.
  • Ваганов В.К.
  • Полежаев А.В.
RU2255965C2
ТОРМОЗНАЯ ЖИДКОСТЬ И СПОСОБ ЕЕ ПОЛУЧЕНИЯ 2004
  • Братчиков Константин Дмитриевич
  • Громова Валентина Васильевна
  • Васильев Валентин Всеволодович
  • Потехин Вячеслав Матвеевич
RU2295560C2
КОНЦЕНТРАТ СМАЗОЧНО-ОХЛАЖДАЮЩЕЙ ЖИДКОСТИ ДЛЯ МЕХАНИЧЕСКОЙ ОБРАБОТКИ МЕТАЛЛОВ 2003
  • Сайдаков Ю.Н.
  • Кузнецова М.А.
  • Ваганов В.К.
  • Полежаев А.В.
RU2255964C2

Реферат патента 2014 года ВОДОРАСТВОРИМЫЙ ИНГИБИТОР КОРРОЗИИ МЕТАЛЛОВ

Изобретение относится к составам для ингибирования коррозии и солеотложений в теплообменном оборудовании систем технического водоснабжения бытового и промышленного назначения, выполненных из черных и цветных металлов, для приготовления смазочно-охлаждающих жидкостей (СОЖ) и моющих средств. Водорастворимый ингибитор коррозии содержит продукт конденсации борной кислоты, диэтаноламина, моноэфира гликоля и смеси жирных кислот предельного и непредельного ряда с углеводородным радикалом C12-C22 при их мольном соотношении 1:2:(0,5-0,7):0,4 соответственно, триэтилфосфат и имидазол при следующем соотношении компонентов, мас.%: продукт конденсации борной кислоты, диэтаноламина, моноэфира гликоля и смеси жирных кислот 86,0-90,0; триэтилфосфат 2,0-4,0; имидазол 8,0-10,0. Техническим результатом изобретения является расширение ассортимента отечественных водорастворимых ингибиторов коррозии, повышение эффективности защиты от коррозии и отложения солей теплообменного оборудования из черных и цветных металлов. 1 з.п. ф-лы, 3 табл.

Формула изобретения RU 2 528 922 C1

1. Водорастворимый ингибитор коррозии металлов, включающий боразотсодержащее соединение, отличающийся тем, что он дополнительно содержит триэтилфосфат и имидазол, а в качестве боразотсодержащего соединения содержит продукт конденсации борной кислоты, диэтаноламина, моноэфира гликоля и смеси жирных кислот предельного и непредельного ряда с углеводородным радикалом C12-C22 при их мольном соотношении 1:2:(0,5-0,7):0,4 соответственно при следующем соотношении компонентов, мас.%:
продукт конденсации борной кислоты диэтаноламина, моноэфира гликоля и смеси жирных кислот 86,0-90,0 триэтилфосфат 2,0-4,0 имидазол 8,0-10,0

2. Водорастворимый ингибитор по п.1, отличающийся тем, что в качестве моноэфира гликоля использовано соединение, выбранное из группы: моноэтиловый эфир этиленгликоля, монобутиловый эфир этиленгликоля, моноэтиловый эфир диэтиленгликоля, монобутиловый эфир диэтиленгликоля.

Документы, цитированные в отчете о поиске Патент 2014 года RU2528922C1

ИНГИБИТОР КОРРОЗИИ МЕТАЛЛОВ 2011
  • Гайдар Сергей Михайлович
  • Пучин Евгений Александрович
  • Прохоренков Вячеслав Дмитриевич
  • Низамов Руслан Каримович
  • Голубев Михаил Иванович
  • Кузнецова Екатерина Геннадиевна
RU2462539C1
ИНГИБИТОР КОРРОЗИИ МЕТАЛЛОВ В ВОДНО-НЕФТЯНЫХ СЕРОВОДОРОДСОДЕРЖАЩИХ СРЕДАХ 2002
  • Селезнев А.Г.
  • Крянев Д.Ю.
  • Лазарев В.А.
  • Макаршин С.В.
RU2207402C1
СОСТАВ ДЛЯ ЗАЩИТЫ МЕТАЛЛОВ ОТ КОРРОЗИИ И СОЛЕОТЛОЖЕНИЙ 2008
  • Гайдар Сергей Михайлович
  • Лазарев Владимир Алексеевич
RU2355821C1
DE 19520269 А1, 05.12.1996

RU 2 528 922 C1

Авторы

Давидовская Наталья Юрьевна

Даты

2014-09-20Публикация

2013-07-05Подача