СПОСОБ ИЗВЛЕЧЕНИЯ МОЛИБДЕНА ИЗ ТЕХНОГЕННЫХ МИНЕРАЛЬНЫХ ОБРАЗОВАНИЙ Российский патент 2014 года по МПК C22B34/34 C22B3/04 C22B7/00 

Описание патента на изобретение RU2529142C1

Изобретение относится к гидрометаллургии цветных и благородных металлов, а именно к выщелачиванию молибдена из техногенных минеральных образований и предназначено для извлечения промышленно ценных металлов.

Известен способ выщелачивания молибдена из руд, включающий их дробление, измельчение, флотацию с получением из них концентрата и воздействие на него в автоклавах под высоким давлением и при повышенной температуре раствором соды с получением продуктивных растворов (см. Зеликман А.Н. Металлургия редких металлов, Металлургия 1991, с.41-60).

Недостатком данного способа является нецелесообразность его использования при переработке бедных, упорных руд и минеральной массы техногенных образований, что обусловлено значительными удельными затратами на его осуществление.

Наиболее близким к заявляемому является способ выщелачивания молибдена из минерального сырья с электрохимической обработкой приготовленной на его основе пульпы, жидкая фаза которой содержит хлорид и карбонат натрия, которые при ее циркуляции через электролитическую ячейку преобразуются в прианодной зоне в систему высокоактивных окислителей серы и молибдена, что обеспечивает переход последнего из кристаллической решетки молибденита в жидкую фазу пульпы (см. US patent №3849265 Bernard J. Sheiner at al.)

Эффективность данного способа также недостаточно велика вследствие значительных затрат электроэнергии на перекачку пульпы и синтез реагентов.

Техническим результатом предполагаемого изобретения является повышение эффективности способа извлечения молибдена из техногенных минеральных образований за счет снижения удельных затрат на электроэнергию и реагенты, при обеспечении высокого уровня его извлечения.

Указанный технический результат достигается тем, что способ извлечения молибдена из техногенных минеральных образований, включающий дробление, измельчение и выщелачивание молибдена выщелачивающим раствором, полученным электрохимическим синтезом, содержащим окислители, отличается тем, что выщелачивание молибдена из минеральной массы производят в два этапа, при этом на первом этапе - полученным при электрохимическом синтезе из раствора соды в анодной камере электролизера анолитом, представляющим собой облученную УФ-светом водно-газовую суспензию, содержащую в жидкой фазе серную и угольную кислоты, пероксид водорода, гидроксил-радикал, а в газовой фазе - углекислый газ, атомарный и двухатомарный кислород, озон, димерные карбоксильные катионы ( C 2 O 4 + ) , на втором этапе - католитом, представляющим собой полученный в катодной камере электролизера содово-щелочной раствор, содержащий карбонат, гидрокарбонат и гидроксид натрия.

Способ отличается также тем, что перед вводом католита его насыщают кислородом и подвергают УФ-облучению.

Отличительными признаками предлагаемого способа является то, что выщелачивание его из минеральной массы производят в два этапа: на первом этапе анолитом, представляющим собой полученную в анодной камере электролизера и облученную УФ-светом водно-газовую суспензию, содержащую в жидкой фазе серную и угольную кислоты, пероксид водорода, гидроксил-радикал, а в газовой фазе - углекислый газ, атомарный и двухатомарный кислород, озон, димерные карбокильные катионы ( C 2 O 4 + ) , на втором этапе - католитом, представляющим собой полученный в катодной камере электролизера содово-щелочной раствор, содержащий карбонат, гидрокарбонат и гидроксид натрия.

Указанная совокупность отличительных признаков позволяет повысить эффективность способа выщелачивания молибдена за счет снижения затрат на электроэнергию и реагенты, поскольку отпадает необходимость циркуляции пульпы через электрохимическую ячейку и возрастает доля активных, выщелачивающих молибден компонентов, синтезируемых в результате совместного использования электрохимических и фотохимических процессов.

Способ осуществляется следующим образом.

В электрохимический диафрагменный реактор помещают раствор технической соды и подают напряжение на электроды. При этом на аноде начинает выделяться углекислый газ и двухатомарный кислород, а в жидкой фазе образуется угольная кислота, в катодной камере - на катоде выделяется водород, а в жидкой фазе образуется дополнительная (к гидролитической) щелочь. Для повышения выхода кислорода в анодную камеру, через 30-60 мин после начала электролиза добавляют серную кислоту до достижения pH=3-3.5 и облучают прианодную зону источником УФ-излучения, чем формируют активную водно-газовую суспензию, содержащую, кроме угольной и серной кислот, пероксид водорода и гидроксил-радикал, а в газовой фазе выделяющиеся при электролизе углекислый газ, атомарный, синглетный двухатомарный кислород, озон и димерные карбоксильные катионы ( C 2 O 4 + ) . Фотоэлектрохимическую обработку анолита продолжают 15-30 мин. Полученной анолитной суспензией обрабатывают минеральную массу, содержащую молибденит, путем орошения (кучное выщелачивание) или формируя пульпу (чановое и кюветное выщелачивание). В результате чего активные окисляющие и комплексообразующие компоненты газово-жидкой суспензии начинают интенсивно окислять молибден в верхних слоях минеральных матриц молибденита с образованием молибденовой кислоты MOS2+H2CO3+3H2O2=H2MoO4+3H2O+CO2+S2,

MoS2+(C2O4)+*nH2O=H2MoO4+S2+2H2CO3+(n-6)H2O+6H+

Параллельно осуществляется кластеризация и частичное окисление серы активным кислородом, с образованием сульфатов, что обеспечивает в целом подготовку следующих слоев минеральной матрицы к выщелачиванию молибдена.

После обработки анолитом осуществляют добавление к водно-минеральной смеси католита и, соответственно, довыщелачивание молибдена активным карбонатом натрия, образуемым при реакции угольной кислоты с гидроксидом натрия (в составе католита). Предварительно, для компенсации потерь активного кислорода в анолите, католит насыщают кислородом и облучают УФ-светом. При обработке минеральной массы смесью анолита и католита, на развитой контактной поверхности частиц молибденита активно протекает реакция молибдена с карбонатом натрия и активным кислородом:

2MoS2+6Na2CO3+3O3=2Na2MoO4+6СО2+4Na2SO4

Таким образом, обеспечивается высокий уровень извлечения молибдена при относительно низких расходах электроэнергии и реагентов.

Пример конкретного использования способа.

Лежалые хвосты обогащения руд Шахтаминского месторождения, в которых находится неизвлеченный в концентрат молибден, преимущественно в составе переизмельченного в процессе рудоподготовки молибденита.

Готовили активный 1.0%-ный содовый раствор путем барботажа воздухом для насыщения кислородом в диафрагменном электрохимическом реакторе электролиза в течение 1 часа, после этого, для повышения выхода кислорода, в анодную камеру добавляли серную кислоту до достижения pH=3 и облучали прианодную зону УФ-светом в диапазоне 180-300 нанометров лампами ДРТ-230 в течение 30 мин. Полученную активную водно-газовую суспензию использовали для приготовления пульпы на основе хвостов обогащения Ж:Т=1:3, выдерживали ее в кювете в течение 3-х суток, после чего добавляли в пульпу католит, дополнительно насыщенный кислородом и прошедшим УФ-облучение. Католит вводили в пульпу до достижения pH=8.5 при Ж:Т=1:1.2 и барботировали ее в течение 2-х часов, после чего вводили ионообменную смолу, селективную по молибдену и продолжали барботаж еще в течение 3-х часов. После этого насыщенную смолу отделяли на сите.

Извлечение молибдена на смолу составило 75%, что для переработки хвостов является достаточно высоким показателем.

Похожие патенты RU2529142C1

название год авторы номер документа
СПОСОБ ПЕРЕРАБОТКИ ТЕХНОГЕННОГО ПОЛИМЕТАЛЛИЧЕСКОГО СЫРЬЯ ДЛЯ ИЗВЛЕЧЕНИЯ СТРАТЕГИЧЕСКИХ МЕТАЛЛОВ 2019
  • Александрова Татьяна Николаевна
  • Николаева Надежда Валерьевна
  • Кузнецов Валентин Вадимович
  • Савельева Яна Сергеевна
RU2716345C1
СПОСОБ ПРИГОТОВЛЕНИЯ ВОДНОГО РАСТВОРА РЕАГЕНТОВ ДЛЯ ВЫЩЕЛАЧИВАНИЯ ЗОЛОТА ИЗ РУД И КОНЦЕНТРАТОВ 2008
  • Секисов Артур Геннадьевич
  • Резник Юрий Николаевич
  • Лавров Александр Юрьевич
  • Королев Вячеслав Сергеевич
RU2386706C1
СПОСОБ КУЧНОГО ВЫЩЕЛАЧИВАНИЯ ЗОЛОТА ИЗ УПОРНЫХ РУД И ТЕХНОГЕННОГО МИНЕРАЛЬНОГО СЫРЬЯ 2015
  • Секисов Артур Геннадиевич
  • Королев Вячеслав Сергеевич
  • Рубцов Юрий Иванович
  • Лавров Александр Юрьевич
  • Зыков Николай Васильевич
RU2608479C1
СПОСОБ ВЫЩЕЛАЧИВАНИЯ ЗОЛОТА ИЗ УПОРНЫХ РУД 2017
  • Секисов Артур Геннадиевич
  • Рассказова Анна Вадимовна
RU2647961C1
СПОСОБ ИЗВЛЕЧЕНИЯ ДИСПЕРСНОГО ЗОЛОТА ИЗ УПОРНЫХ РУД И ТЕХНОГЕННОГО МИНЕРАЛЬНОГО СЫРЬЯ 2011
  • Секисов Артур Геннадиевич
  • Резник Юрий Николаевич
  • Рубцов Юрий Иванович
  • Королев Вячеслав Сергеевич
  • Лавров Александр Юрьевич
  • Манзырев Дмитрий Владимирович
  • Конарева Татьяна Геннадьевна
  • Секисов Антон Артурович
RU2490345C1
СПОСОБ ИЗВЛЕЧЕНИЯ ДИСПЕРСНОГО ЗОЛОТА ИЗ УПОРНЫХ РУД И ТЕХНОГЕННОГО МИНЕРАЛЬНОГО СЫРЬЯ 2013
  • Секисов Артур Геннадиевич
  • Манзырев Дмитрий Владимирович
  • Лавров Александр Юрьевич
  • Зыков Николай Васильевич
  • Смолич Константин Сергеевич
RU2509166C1
СПОСОБ ВЫЩЕЛАЧИВАНИЯ МЕТАЛЛОВ ИЗ УПОРНЫХ УГЛИСТЫХ РУД (ВАРИАНТЫ) 2016
  • Секисов Артур Геннадиевич
  • Хакулов Виктор Алексеевич
  • Лавров Александр Юрьевич
  • Зыков Николай Васильевич
  • Конарева Татьяна Геннадьевна
RU2635582C1
СПОСОБ КУЧНОГО ВЫЩЕЛАЧИВАНИЯ ЗОЛОТА ИЗ УПОРНЫХ РУД И ТЕХНОГЕННОГО МИНЕРАЛЬНОГО СЫРЬЯ 2015
  • Секисов Артур Геннадиевич
  • Мязин Виктор Петрович
  • Лавров Александр Юрьевич
  • Попова Галина Юрьевна
  • Конарева Татьяна Геннадьевна
RU2585593C1
СПОСОБ КУЧНОГО ВЫЩЕЛАЧИВАНИЯ ЗОЛОТА ИЗ УПОРНЫХ РУД 2014
  • Секисов Артур Геннадиевич
  • Ланков Борис Юрьевич
  • Гринченко Ирина Васильевна
  • Лавров Александр Юрьевич
  • Королев Вячеслав Сергеевич
  • Авилов Олег Николаевич
  • Зыков Николай Васильевич
  • Рубцов Юрий Иванович
  • Ложкин Леонид Владиславович
RU2580356C1
СПОСОБ ИЗВЛЕЧЕНИЯ БЛАГОРОДНЫХ МЕТАЛЛОВ ИЗ РУД 2009
  • Секисов Артур Геннадиевич
  • Лавров Александр Юрьевич
  • Авилов Олег Николаевич
  • Мазуркевич Сергей Александрович
  • Петухов Александр Александрович
RU2413018C1

Реферат патента 2014 года СПОСОБ ИЗВЛЕЧЕНИЯ МОЛИБДЕНА ИЗ ТЕХНОГЕННЫХ МИНЕРАЛЬНЫХ ОБРАЗОВАНИЙ

Изобретение относится к гидрометаллургии, а именно к выщелачиванию молибдена из техногенных минеральных образований, и предназначено для извлечения молибдена. Способ включает электрохимический и фотохимический синтез в выщелачивающем растворе активных окислителей и комплексообразователей с получением анолита и католита. Затем проводят последовательную обработку ими минеральной массы, содержащей молибден, что обеспечивает его переход в жидкую фазу, из которой он может быть извлечен методами экстракции или сорбции. Техническим результатом является повышение эффективности процесса за счет снижения затрат на реагенты и электроэнергию. 1 з.п. ф-лы, 1 пр.

Формула изобретения RU 2 529 142 C1

1. Способ извлечения молибдена из техногенных минеральных образований, включающий дробление, измельчение и выщелачивание молибдена выщелачивающим раствором, полученным электрохимическим синтезом, содержащим окислители, отличающийся тем, что выщелачивание молибдена из минеральной массы производят в два этапа, при этом на первом этапе - полученным при электрохимическом синтезе из раствора соды в анодной камере электролизера анолитом, представляющим собой облученную УФ-светом водно-газовую суспензию, содержащую в жидкой фазе серную и угольную кислоты, пероксид водорода, гидроксил-радикал, а в газовой фазе - углекислый газ, атомарный и двухатомарный кислород, озон, димерные карбоксильные катионы (С2О4+), а на втором этапе - католитом, представляющим собой полученный в катодной камере электролизера содово-щелочной раствор, содержащий карбонат, гидрокарбонат и гидроксид натрия.

2. Способ по п.1, отличающийся тем, что перед выщелачиванием католитом его насыщают кислородом и подвергают УФ-облучению.

Документы, цитированные в отчете о поиске Патент 2014 года RU2529142C1

US 3849265 A, 19.11.1974
СПОСОБ ПЕРЕРАБОТКИ МОЛИБДЕНОВОГО СЫРЬЯ 2003
  • Клячко Л.И.
  • Румянцев В.К.
RU2241051C1
Способ извлечения молибдена 1981
  • Ежов А.П.
  • Тумашев Ф.Н.
  • Хабиров В.В.
  • Кузьмин В.А.
  • Шаймуратов А.А.
  • Орлов А.В.
  • Клячко Л.И.
  • Априамов Р.А.
  • Тараканов Б.М.
  • Клеандров Т.Н.
  • Степанов А.В.
  • Румянцев В.К.
  • Гедгагов Э.И.
SU982362A1
US 2005019247 А, 27.01.2005
Трубодержатель 1978
  • Югов Евгений Васильевич
SU832040A1
JP 2002037627 А, 06.02.2002

RU 2 529 142 C1

Авторы

Секисов Артур Геннадиевич

Хакулов Виктор Алексеевич

Рубцов Юрий Иванович

Лавров Александр Юрьевич

Манзырев Дмитрий Владимирович

Смолич Константин Сергеевич

Даты

2014-09-27Публикация

2013-02-20Подача