Настоящее изобретение относится к способу карбонилирования метанола и/или его реакционно-способных производных в присутствии десилицированного морденитного катализатора.
Известно, что морденит используют в качестве катализатора в многочисленных технологиях конверсии углеводородов, таких как крекинг, (гидро)изомеризация и алкилирование ароматических соединений. Улучшение каталитических характеристик морденита в таких реакциях превращений углеводородов явилось предметом различных исследований.
Применение гидроксида натрия для десилицирования недеалюминированного морденита описано в WO 2008/147190. Показано, что обработанный морденит обладает улучшенными каталитическими характеристиками при алкилировании бензола.
Каталитические характеристики мезопористых морденитов при изомеризации 2-метил-2-пентена и алкилировании бензола исследованы в публикации Xianfeng et al, Synthesis and characterisation of mesoporous mordenite, Journal of Catalysis 262 (2009) 257-265. Мезопористые мордениты получали обработкой морденита гидроксидом натрия и/или азотной кислотой. Установлено, что при реакции изомеризации, степень превращения 2-метил-2-пентена над не обработанным морденитом выше, чем над обработанным кислотой морденитом. Степень превращения бензилового спирта при бензилировании бензола над не обработанным и обработанным кислотой морденитами в обоих случаях составляла менее 3%. Сообщали, что результаты реакции алкилирования отличаются от результатов реакции изомеризации вследствие различий природы реакций.
Обычно результаты обработки цеолитов кислотой и/или основаниями нельзя непосредственно экстраполировать от одного типа цеолита на другой тип цеолита или от одного типа реакции на другой тип реакции.
Морденит раскрыт для применения в качестве катализатора при газофазном карбонилировании метанола и/или его реакционно-способных производных. Например, в WO 2006/121778 описан способ получения низш. алкилового эфира низш. алифатической карбоновой кислоты путем карбонилирования в основном в безводной среде низш. алкилового простого эфира, такого как диметиловый эфир, монооксидом углерода в присутствии морденитного или феррьеритного катализатора.
Желательно улучшение каталитической активности морденита при карбонилировании и/или его селективности для продуктов технологии карбонилирования и, в особенности, при карбонилировании метанола и/или его простых эфирных и сложноэфирных производных для получения уксусной кислоты и/или метилацетата.
Согласно изобретению было установлено, что при реакциях карбонилирования, в которых в качестве катализатора используется морденит, улучшенные каталитические характеристики можно обеспечить путем использования морденита, который подвергнут десилицирующей обработке.
В соответствии с этим настоящее изобретение относится к способу получения по меньшей мере одного из следующих: уксусной кислоты или метилацетата путем карбонилирования карбонилирующегося реагента, выбранного из группы, включающей метанол, метилацетат и диметиловый эфир, монооксидом углерода в присутствии катализатора и этим катализатором является десилицированный морденит.
Структура морденита хорошо известна и определена, например, в публикации The Atlas Zeolite Framework Types (С.Baerlocher, W.M.Meier, D.H.Olson, 5th ed. Elsevier, Amsterdam, 2001). Интернет-версия (http://www.iza-structure.org/databases/) представляет собой краткое описание топологических и структурных данных цеолитов, включая морденит.
Морденит можно приобрести или его можно синтезировать. Имеющиеся в продаже формы морденита включают натриевую форму, кислотную форму и аммониевую форму.
Морденит, который необходимо подвергнуть десилицирующей обработке, далее будет называться "предшественником морденита".
Предшественник морденита может обладать отношением диоксид кремния: оксид алюминия, составляющим не менее 12:1, таким как находящееся в диапазоне от 12 до 250:1. Предпочтительно, если отношение диоксид кремния: оксид алюминия в предшественнике морденита находится в диапазоне от 20 до 100:1, например, в диапазоне от 25 до 60:1.
Методики десилицирования цеолитов известны в данной области техники и приводят к предпочтительному удалению кремния из каркаса цеолита. Методикой, по которой предшественник морденита десилицируют с получением десилицированного морденита, предназначенного для использования в качестве катализатора в способе, предлагаемом в настоящем изобретении, может быть любая методика десилицирования, известная в данной области техники. Предпочтительно, если предшественник морденита десилицируют путем обработки водным раствором основания. Подходящие основания включают гидроксиды щелочных металлов и гидроксиды щелочноземельных металлов. Предпочтительными гидроксидами щелочных металлов являются гидроксид натрия и гидроксид калия. Обычно значение рН водного раствора основания равно 8 или более. Подходящие концентрации гидроксида щелочного или щелочноземельного металла составляют от 0,01 М до 1,0 М.
Степень десилицирования зависит от концентрации основания, температуры обработки, и длительность обработки увеличивают. При использовании растворов от 0,01 М до 1,0 М эффективное десилицирование можно обеспечить при температурах в диапазоне от 0 до 100°С в течение от 5 мин до 10 ч. Умеренные температуры, находящиеся в диапазоне от 50 до 75°С, являются предпочтительными.
После обработки основанием десилицированный морденит отфильтровывают и промывают водой для удаления избытка основания и затем сушат. Десилицированный морденит можно использовать в способе, предлагаемом в настоящем изобретении, без обработки. Альтернативно, Н-форму десилицированного морденита можно получить, например, путем его превращения в аммониевую форму с последующим прокаливанием аммониевой формы.
При типичной десилицирующей обработке раствор гидроксида натрия (0,2 М) добавляют к образцу Н-морденита, обладающему отношением диоксид кремния: оксид алюминия, составляющим от 15 до 60:1, в реакционном сосуде и нагревают при температуре, находящейся в диапазоне от 60 до 70°С, в течение от 10 до 45 мин. Затем реакцию останавливают и смесь охлаждают, например, путем погружения сосуда в смесь воды со льдом, затем фильтруют и промывают деионизированной водой. После фильтрования и промывки морденит сушат и прокаливают. Сушку обычно проводят при температуре, равной примерно 110°С. Обработка Н-морденита гидроксидом натрия дает натриевую форму десилицированного морденита. Аммониевую форму десилицированного морденита можно получить с помощью обмена натриевой формы с водным раствором соли аммония, фильтрования и сушки. Прокаливание полученной десилицированной аммониевой формы морденита при температурах, равных, например, от 450 до 550°С, дает десилицированный Н-морденит.
Десилицированные мордениты используют в качестве катализатора в способе, предлагаемом в настоящем изобретении.
Отношение диоксид кремния: оксид алюминия для десилицированного морденитного катализатора может составлять не менее 10:1, например, находиться в диапазоне от 10 до 250:1, предпочтительно находиться в диапазоне от 15 до 100:1, например, находиться в диапазоне от 25 до 60:1 и более предпочтительно в диапазоне от 15 до 40:1.
Предпочтительно, если десилицированные морденитные катализаторы, предназначенные для применения в способе, предлагаемом в настоящем изобретении, обладают отношениями диоксид кремния: оксид алюминия, находящимися в диапазоне от 15 до 40:1, и получают из предшественников морденита, которые обладают отношениями диоксид кремния: оксид алюминия, находящимися в диапазоне от 20 до 50:1.
В предпочтительном варианте осуществления десилицированный морденит катализатор получают из предшественника морденита, которым является деалюминированный морденит.
Термин "деалюминирование" при использовании в настоящем изобретении означает удаление алюминия из морденита и включает удаление каркасного и поверхностного алюминия. Способы деалюминирования известны в данной области техники и включают обработку цеолитов паром и/или выщелачивание кислотой. Например, в US 3551353 описан способ деалюминирования морденита путем взаимодействия с паром и неорганической кислотой на последовательных стадиях и в US 5238677 описан способ деалюминирования цеолита, обладающего структурой морденита, путем взаимодействия цеолита с дикарбоновой кислотой и обработки паром.
Предпочтительно, если деалюминированный морденит, использующийся в качестве предшественника морденита, можно получить путем взаимодействия морденита с паром или смеси инертного газа с паром при температуре, равной не менее 400°С, такой как равная от 400 до 600°С. Степень деалюминирования зависит от температуры, при которой проводят обработку паром, длительности обработки паром и концентрации пара, воздействующего на морденит. Обычно длительность обработки паром составляет не менее примерно 1 ч, предпочтительно не менее 3 ч.
Хотя морденит можно деалюминировать путем обработки неорганической кислотой или паром, предпочтительно использовать комбинацию этих двух обработок. Таким образом, за обработкой паром может следовать и предпочтительно следует обработка неорганической кислотой. Обработка неорганической кислотой удаляет дополнительный каркасный алюминий, образовавшийся во время обработки паром. Подходящие неорганические кислоты включают хлористоводородную кислоту и азотную кислоту. Обычно концентрация кислоты находится в диапазоне от 0,5 М до 2,0 М. Обработку проводят кислотой в течение времени, обеспечивающего удаление всего дополнительного каркасного алюминия из каналов морденита. Обычно при концентрации кислоты, равной от 0,5 М до 2,0 М, и при температуре, находящейся в диапазоне от 25 до 100°С, достаточна длительность, равная от 1 до 5 ч. Затем кислотой обработанный морденит можно отфильтровать и промывать деионизированной водой до нейтральной реакции.
До обработки паром предпочтительно частично включать в морденит одновалентный металл. Одновалентным металлом может быть, например, металл группы I или группы II Периодической системы элементов. Металлами группы I являются литий, натрий, калий, рубидий, цезий и франций. Из них литий, натрий и калий являются предпочтительными, особенно предпочтительным является натрий. Металлами группы II являются серебро, медь и золото. Серебро является предпочтительным металлом группы II.
Методики включения металлов в мордениты хорошо известны и включают, например, методики пропитки и ионного обмена. Одновалентный металл можно включить в морденит путем пропитки или ионного обмена. Для обеспечения частичного включения одновалентного металла молярное количество одновалентного металла, включаемого в морденит, должно быть меньше молярного количества алюминия, содержащегося в мордените.
До обработки паром содержащий включенный металл морденит необязательно можно прокалить. Прокаливание предпочтительно, если морденит (до частичного включения металла) находился в аммониевой форме. Прокаливание можно провести при высокой температуре, такой как равная не менее 400°С, в течение нескольких часов на воздухе или в инертном газе для удаления аммиака и превращения ионов аммония в ионы водорода.
Альтернативно, можно использовать любую другую известную методику деалюминирования. Подходящие методики включают обработку гексафторсиликатом, таким как гексафторсиликат щелочного металла и гексафторсиликат аммония. Подходящие методики описаны, например, в публикации Garralon et al. Zeolites 8 (1988) 268.
Деалюминирование увеличивает отношение диоксид кремния: оксид алюминия для морденита. Обычно увеличение отношения диоксид кремния: оксид алюминия находится в диапазоне от 5 до 100%.
Предпочтительно, если отношение диоксид кремния: оксид алюминия в деалюминированном предшественнике морденита находится в диапазоне от 25 до 50:1, например, в диапазоне от 25 до 40:1.
Предшественник морденита, который был деалюминирован, может находиться в Н-форме или в аммониевой форме.
Для применения в качестве катализатора в способе, предлагаемом в настоящем изобретении, деалюминированный предшественник морденита подвергают десилицирующей обработке с получением десилицированного морденита.
Предпочтительно, если катализатор, предназначенный для применения в способе, предлагаемом в настоящем изобретении, представляет собой десилицированный морденит в Н-форме. Предпочтительно, если катализатор, предназначенный для применения в способе, предлагаемом в настоящем изобретении, представляет собой десилицированный морденит, который является деалюминированным. Более предпочтительно, если катализатором является Н-форма деалюминированного десилицированного морденита.
Катализатор можно использовать в способе, предлагаемом в настоящем изобретении, в любой подходящей форме, такой как порошки, пеллеты или другая форма экструдатов.
Катализатор можно объединить со связующим. Предпочтительно, если катализатор, объединенный со связующим, является деалюминированным. Можно использовать любые подходящие связующие. Особенно подходящими связующими являются неорганические оксидные материалы, такие как один или большее количество, выбранных из группы, включающей диоксид кремния, оксид алюминия, алюмосиликат, силикат магния и алюмосиликат магния, предпочтительно, оксид алюминия или алюмосиликат. Примеры подходящих оксидов алюминия включают оксид алюминия типа бомита и гамма-оксид алюминия.
Предпочтительно, если связующим является тугоплавкий неорганический оксид, причем этот неорганический оксид стабилен при высокой температуре и, в особенности, стабилен при температурах, которые можно использовать для прокаливания катализатора, таких как температура не ниже 400°С, например, температура, находящаяся в диапазоне от 400 до 550°С.
Подходящие связующие могут быть мезопористыми, например, неорганические оксиды, обладающие мезопористостью, находящейся в диапазоне от 1 до 500 м2/г. Мезопористость означает сумму полных площадей поверхности мезопор и наружной площади поверхности связующего, определенной по адсорбции азота с помощью методики БЭТ (Брунауэра-Эметта-Теллера). Мезопорой является пора, обладающая диаметром, находящимся в диапазоне от 2 до 50 нм.
Предпочтительно, если мезопористые связующие также обладают низкой микропористостью, такой как микропористость, находящаяся в диапазоне от 1 до 100 м2/г, предпочтительно в диапазоне от 1 до 10 м2/г. Микропористость означает сумму полных площадей поверхности микропор и наружной площади поверхности связующего, определенной по адсорбции азота с помощью методики БЭТ. Микропорой является пора, обладающая диаметром, равным менее 2 нм.
Предпочтительно, если связующее может содержаться в количестве, находящемся в диапазоне от 10% до 80 мас.% катализатора, предпочтительно, в диапазоне от 20% до 65 мас.% катализатора, и более предпочтительно в количестве, находящемся в диапазоне от 35 до 65 мас.% катализатора.
Предпочтительно, если катализаторы, предназначенные для применения в способе, предлагаемом в настоящем изобретении, и, в частности, деалюминированные катализаторы, можно объединить со связующим, которым является тугоплавкий неорганический оксид, выбранный из группы, включающей один или большее количество из следующих: диоксид кремния, оксид алюминия и алюмосиликат, и неорганический оксид является мезопористым и предпочтительно, если неорганический оксид обладает мезопористостью, находящейся в диапазоне от 50 до 500 м2/г.
В способе, предлагаемом в настоящем изобретении, метанол и/или его реакционно-способное производное карбонилируют монооксидом углерода. Реакционно-способные производные метанола, которые можно использовать в качестве альтернативы или в дополнение к метанолу, включают метилацетат и диметиловый эфир. Можно использовать смесь метанола и его реакционно-способного производного, например, смесь метанола и метилацетата. Если карбонилирующимся реагентом является диметиловый эфир, его можно образовать in situ из любого подходящего источника, такого как диметилкарбонат. Например, жидкий диметилкарбонат можно ввести во взаимодействие с гамма-оксидом алюминия для разложения диметилкарбоната на диметиловый эфир и диоксид углерода.
В зависимости от природы использующегося карбонилирующегося реагента способ, предлагаемый в настоящем изобретении, можно проводить в безводной или в основном в безводной среде.
Предпочтительно, если в качестве карбонилирующегося реагента используют метилацетат, способ проводят в присутствии воды. Вода может содержаться в загрузке в молярном отношении метилацетат: вода, находящемся в диапазоне от 50:1 до 2:1.
Установлено, что, если карбонилирующимся реагентом является диметиловый эфир, то вода ингибирует карбонилирование и поэтому при использовании диметилового эфира в качестве реагента способ предпочтительно проводить в основном в безводной среде. "В основном в безводной" означает, что в способе используют как можно меньшее количество воды. Для этого реагенты диметиловый эфир и монооксид углерода (и катализатор) предпочтительно сушат до введения в способ. Однако могут содержаться небольшие количества воды и они не оказывают вредного влияния на образование продукта - метилацетата. Предпочтительно, если вода может содержаться в количестве, равном менее 2,5 мас.%, например, менее 0,5 мас.% в пересчете на количество диметилового эфира.
Чистота монооксида углерода, видимо, не является особенно критическим фактором, хотя желательно использовать смеси газов, в которых основным компонентом является монооксид углерода. Допустимо наличие небольших количеств примесей, таких как азот и инертные газы. Монооксид углерода можно использовать в смеси с водородом. Предпочтительно, если молярное отношение СО:Н2 находится в диапазоне от 1:3 до 15:1, таком как составляющий от 1:1 до 10:1. Например, в способе, предлагаемом в настоящем изобретении, также можно использовать смеси монооксида углерода и водорода, полученные риформингом или частичным окислением углеводородов (синтез-газ).
Способ, предлагаемый в настоящем изобретении, предпочтительно проводят путем пропускания паров метанола и/или паров диметилового эфира и газообразного монооксида углерода, необязательно в присутствии водорода, через неподвижный или псевдоожиженный слой катализатора при поддержании необходимых температуры и давления.
Способ предпочтительно можно проводить при температуре, находящейся в диапазоне от 100°С до 400°С, такой как равная от 150 до 350°С.
Способ можно проводить при давлении, находящемся в диапазоне от 1 до 100 бар избыточного давления, таком как равное от 10 до 100 бар избыточного давления.
Молярное отношение монооксид углерода: карбонилирующийся реагент предпочтительно находится в диапазоне от 1:1 до 99:1, таком как составляющий от 1:1 до 60:1.
В способе может использоваться водород и он может содержаться при парциальном давлении, равном не менее 0,1 бар избыточного давления, таком как равное от 1 до 30 бар избыточного давления.
Часовая объемная скорость газа (ЧОСГ) предпочтительно находится в диапазоне от 500 до 40000 ч-1, таком как составляющий от 2000 до 10000 ч-1.
Перед использованием в способе катализатор активируют, например, путем его нагревания при повышенной температуре в течение не менее 1 ч в потоке азота, монооксида углерода или водорода.
При необходимости карбонилирующийся реагент можно ввести во взаимодействие со слоем оксида алюминия или корунда, расположенным непосредственно перед слоем катализатора.
Способ, предлагаемый в настоящем изобретении, предпочтительно проводят в основном при отсутствии галогенидов, таких как йодид. "В основном" означает, что содержание галогенида, такое как содержание йодида в загружаемых газах и катализаторе, составляет менее 500 част./млн и предпочтительно менее 100 част./млн.
Способ можно проводить в виде способа в неподвижном слое, псевдоожиженном слое или подвижном слое.
Способ можно проводить в виде непрерывного или периодического способа, предпочтительно в виде непрерывного способа.
Продуктом способа является уксусная кислота и/или метилацетат. Если карбонилирующимся реагентом является метанол, то продуктом карбонилирования является уксусная кислота, но в зависимости от степени карбонилирования также может образовываться метилацетат.
Если карбонилирующимся реагентом является диметиловый эфир, то первичным продуктом способа является метилацетат, но также могут образовываться небольшие количества уксусной кислоты.
Уксусную кислоту, полученную способом, предлагаемым в настоящем изобретении, можно удалить в форме паров и затем сконденсировать в жидкость. Затем уксусную кислоту можно очистить по обычным методикам, таким как перегонка.
Если продуктом способа является метилацетат, то по меньшей мере его часть можно извлечь из продуктов реакции карбонилирования и в таким виде направить в продажу и/или рециркулировать в реактор карбонилирования, и/или по меньшей мере его часть можно извлечь и использовать в качестве сырья для других химических превращений, и/или по меньшей мере его часть можно гидролизовать с получением уксусной кислоты по известным методикам, таким как реакционная дистилляция в присутствии кислотного катализатора.
Настоящее изобретение проиллюстрировано с помощью приведенных ниже примеров.
Пример 1
Приготовление катализатора
Катализатор А: десилицированный деалюминированный Н-морденит Предшественником морденита, использованным для приготовления катализатора А, являлся деалюминированный Н-морденит.
Деалюминированный Н-морденит получали из аммониевой формы морденита путем включения одновалентного металла, прокаливания, обработки паром и обработки неорганической кислотой.
50 г Аммониевой формы морденита (CBV21A производства фирмы Zeolyst International; отношение диоксид кремния: оксид алюминия составляет 20:1) смешивали с 3,02 г NaNO3 (35,5 ммоля) в 120 мл деионизированной воды и перемешивали в течение 16 ч при комнатной температуре. Затем воду удаляли в вакууме и полученное твердое вещество сушили в сушильном шкафу при температуре, равной 110°С, в течение 20 ч и затем прокаливали при 500°С в течение 3 ч в неподвижном воздухе и получали Н-морденит, частично включающий натрий.
20 г Включающего натрий Н-морденита закрепляли в кварцевой пробирке, на 15-20 см заполненной стеклянными кольцами Рашига. В пробирку примерно при 500°С подавали азот (80 см3 мин-1) с использованием температурной программы: нагревали от температуры окружающей среды до 90°С за 10 мин, выдерживали при 90°С в течение 30 мин, нагревали примерно до 110°С за 10 мин, выдерживали при 110°С в течение 30 мин, затем нагревали примерно до 500°С за 60 мин и выдерживали при этой температуре в течение 4 ч. При 500°С генерировали пар путем подачи в пробирку деионизированной воды (1 мл мин-1) в течение 4 ч, затем поток воды отключали. Затем кварцевую пробирку охлаждали до температуры окружающей среды в потоке азота.
Затем 20 г обработанного паром морденита обрабатывали водным раствором HCl (200 мл, 1М) при 80°С в течение 1 ч. Раствор фильтровали и твердое вещество промывали избытком деионизированной воды для удаления всех следов хлорид-ионов из твердого вещества и затем сушили в сушильном шкафу при температуре, равной 110°С, в течение 20 ч. Высушенное твердое вещество, деалюминированный Н-морденит, анализировали с помощью атомной эмиссионной спектрометрии с индуктивно связанной плазмой (ИСП-АЭС) и он обладал отношением диоксид кремния: оксид алюминия, составляющим 35:1.
Затем деалюминированный Н-морденит десилицировали путем обработки раствором гидроксида натрия, проводимой следующим образом.
10 г Деалюминированного морденита обрабатывали водным раствором NaOH (300 мл, 0,2М) при 65°С в течение 0,5 ч. Раствор фильтровали и твердое вещество промывали избытком деионизированной воды и сушили в сушильном шкафу при температуре, равной 110°С.
8,2 г Высушенного твердого вещества трижды подвергали обмену с водным раствором NH4NO3 (82 мл, 1М) при 80°С в течение 1 ч. После третьего обмена твердое вещество промывали избытком деионизированной воды, сушили в сушильном шкафу при температуре, равной 110°С, в течение 20 ч и затем прокаливали при 500°С в течение 3 ч в неподвижном воздухе. Прокаленное твердое вещество, деалюминированный десилицированный Н-морденит анализировали с помощью ИСП-АЭС и он обладал отношением диоксид кремния: оксид алюминия, составляющим 29: 1.
Катализатор В: Н-морденит
10 г Аммониевой формы морденита, обладающей отношением диоксид кремния: оксид алюминия, составляющим 20 (CBV21A производства фирмы Zeolyst International), прокаливали при 500°С в течение 3 ч в неподвижном воздухе и получали Н-морденит.
Катализатор С: деалюминированный Н-морденит
Деалюминированный Н-морденит получали по методике, использованной для получения катализатора А, с тем отличием, что количества меняли следующим образом (i) 8 г морденита подвергали обработке паром и (ii) 8 г обработанного паром морденита обрабатывали с помощью 80 мл HCl. Проведенный с помощью ИСП-АЭС анализ катализатора С показал, что он обладает отношением диоксид кремния: оксид алюминия, составляющим 37:1.
Катализатор D: десилицированный Н-морденит
Морденит десилицировали путем обработки раствором гидроксида натрия, проводимой следующим образом.
40 г Аммониевой формы морденита (CBV21A производства фирмы Zeolyst International; отношение диоксид кремния: оксид алюминия составляет 20:1) обрабатывали водным раствором NaOH (1200 мл, 0,2М) при 65°С в течение 0,5 ч. Раствор фильтровали и твердое вещество промывали избытком деионизированной воды и затем сушили в сушильном шкафу при температуре, равной 110°С. Затем высушенное твердое вещество (десилицированный морденит) превращали в Н-форму следующим образом.
10 г Десилицированного морденита трижды подвергали обмену с водным раствором NH4NO3 (100 мл, 1М) при 80°С в течение 1 ч. После третьего обмена твердое вещество промывали избытком деионизированной воды, сушили в сушильном шкафу при температуре, равной 110°С, в течение 20 ч и затем прокаливали при 500°С в течение 3 ч в неподвижном воздухе. Прокаленное твердое вещество, десилицированный Н-морденит, анализировали с помощью ИСП-АЭС и он обладал отношением диоксид кремния: оксид алюминия, составляющим 19:1.
Реакции карбонилирования с использованием катализаторов А-D
В реакторную пробирку, изготовленную из сплава Хастелой, помещали 0,6 мл катализатора (размер частиц от 250 до 500 мкм) и 0,2 г предварительного слоя гамма-оксида алюминия. Катализатор нагревали с помощью электрического нагревательного кожуха. Реактор и нагревательный кожух помещали в камеру, температуру которой поддерживали равной 130°С. Реактор нагревали при атмосферном давлении до 130°С в потоке азота, затем в реактор подавали смесь газов, содержащую 80 мол.% монооксида углерода и 20 мол.% водорода при скорости потока (ЧОСГ), равной 5000 ч-1. Давление в реакторе повышали до 20 бар избыточного давления, нагревали при температуре, равной 300°С, и выдерживали при этих условиях в течение 2 ч. Затем реакцию карбонилирования инициировали путем подачи в реактор жидкого диметилкарбоната с образованием загружаемой смеси газов, содержащей 76 мол.% монооксида углерода, 19 мол.% водорода и 5 мол.% диметилового эфира. Реакции давали протекать в течение 100 ч при условиях: 300°С, 20 бар избыточного давления и часовой объемной скорости газа (ЧОСГ), равной 5000 ч-1. Отбирали постоянный поток отходящих газов реакции, давление снижали до атмосферного при температуре, равной 130°С, и реакционную смесь пропускали через газовый хроматограф для определения содержания ацетилированных продуктов (уксусная кислота и метилацетат). По данным проведенного с помощью газовой хроматографии анализа выходящего из реактора потока на содержание метилацетата и уксусной кислоты выход за один проход в единицу времени (ВПВ) ацетилированных продуктов рассчитывали в виде молярной эквивалентной массы уксусной кислоты, соответствующей сумме количеств образовавшихся метилацетата и уксусной кислоты в граммах уксусной кислоты за 1 ч на 1 л катализатора. Результаты приведены в таблице 1.
ПРЦ = продолжительность рабочего цикла
Данные, приведенные в таблице 1, ясно показывают, что в случае деалюминированных катализаторов, катализаторов А и С, десилицированный катализатор А является более эффективным катализатором карбонилирования, чем недесилицированный катализатор С. Аналогичным образом, в случае недеалюминированных катализаторов, катализаторов D и В, десилицированный катализатор D обладает большей каталитической активностью при карбонилировании, чем недесилицированный катализатор В.
Пример 2
Приготовление катализатора
Катализатор Е
50 г Н-морденита (производства фирмы BASF; отношение диоксид кремния: оксид алюминия составляет 40,5:1) обрабатывали водным раствором NaOH (1500 мл, 0,2М) при 65°С в течение 0,5 ч. Раствор фильтровали и твердое вещество промывали избытком деионизированной воды и сушили в сушильном шкафу при температуре, равной 110°С. 35 г Высушенного твердого вещества (десилицированный морденит) трижды подвергали обмену с водным раствором NH4NO3 (350 мл, 1М) при 80°С в течение 1 ч. После третьего обмена твердое вещество промывали избытком деионизированной воды и сушили в течение ночи в сушильном шкафу при температуре, равной 110°С.
30 г Десилицированного материала, приготовленного выше, и 15 г являющегося связующим оксида алюминия (производства фирмы Sasol, Pural SCF) объединяли путем осторожного размола в сосуде для сушки порошка фирмы Buchi до получения сыпучего порошка. Затем порошок перемешивали в роторном испарителе при скорости, равной 100 об/мин, в течение 1 ч при температуре окружающей среды и нормальном давлении и затем прокаливали в течение 3 ч при 500°С в атмосфере статического воздуха.
Катализатор F
30 г Н-морденита (производства фирмы BASF; отношение диоксид кремния: оксид алюминия составляет 40,5:1) и 15 г являющегося связующим оксида алюминия (производства фирмы Sasol, Pural SCF) объединяли по методике, описанной выше для катализатора Е.
Реакции карбонилирования с использованием катализаторов Е и F
Перед использованием в качестве катализаторов при карбонилировании диметилового эфира (ДМЭ) монооксидом углерода катализаторы Е и F уплотняли при давлении, равном 10 т, в пресс-форме диаметром 13 мм с использованием пневматического пресса и измельчали и просеивали до получения фракций с частицами размером от 125 до 160 мкм.
Реакции карбонилирования проводили в проточной реакторной установке высокого давления, состоящей из 16 одинаковых реакторов типа, описанного в WO 2005063372. Каждый реактор обладал внутренним диаметром, равным 9,2 мм, и в центре каждого реактора располагалась трубка диаметром 3,2 мм, в которую помещали термопару.
В каждый реактор помещали слой корунда ситовой фракции 125-160 мкм толщиной 10 см. Сверху на слой корунда помещали 1,948 г (примерно 3 мл) катализатора в пересчете на массу в сухом состоянии (определяли по потере при прокаливании катализатора, измеренной путем нагревания катализатора от комнатной температуры до 600°С с постоянной скоростью, равной 30°С/мин), разведенного с помощью 3 мл корунда, разведенный катализатор накрывали слоем корунда толщиной 11 см с частицами размером 125-160 мкм. Сверху на слой корунда помещали 1 г гамма-оксида алюминия (производства фирмы BASF SAS 250) толщиной 2 см с размером пеллет 125-160 мкм.
Давление в реакторах повышали до 70 бар путем подачи газа с молярным отношением монооксид углерода: водород, составляющим 4:1, при скорости потока, равной 12 л/ч, в каждом реакторе. Затем реакторы нагревали со скоростью, равной 1°С/мин, до температуры выдерживания, равной 220°С, которую поддерживали в течение времени пребывания, равного 3 ч. Затем температуру линейно повышали до 300°С со скоростью, равной 1°С/мин, и повторно выдерживали в течение времени пребывания, равного 3 ч. Затем подаваемый газ заменяли на смесь монооксида углерода, водорода, диметилового эфира, аргона и метилацетата в молярном отношении, составляющем 70,8:17,7:6:5:0,5 соответственно при полной скорости потока, равной 12 л/ч, в каждом реакторе, при скорости подачи парообразного диметилового эфира, равной 0,72 л/ч, в каждом реакторе и скорости подачи парообразного метилацетата, равной 0,06 л/ч, в каждом реакторе. Азот вводили с переменной скоростью, равной 0-150 мл/мин, для выравнивания перепадов давления в выходных каналах 16 реакторов. Выходной поток из каждого реактора периодически пропускали через газовый хроматограф для определения концентрации реагентов и продуктов карбонилирования. Реакции давали протекать в течение 263 ч при условиях: 300°С, 70 бар и часовой объемной скорости газа (ЧОСГ), равной 4000/ч.
По данным проведенного с помощью газовой хроматографии анализа выход за один проход в единицу времени (ВПВ) ацетилированных продуктов рассчитывали в виде молярной эквивалентной массы уксусной кислоты, соответствующей сумме количеств образовавшихся метилацетата и уксусной кислоты в граммах уксусной кислоты за 1 ч на 1 л катализатора. Ацетилированным продуктом в основном являлся метилацетат. Результаты приведены в таблице 2.
ПРЦ=продолжительность рабочего цикла
Данные, приведенные в таблице 2, ясно показывают, что катализатор, который десилицировали, катализатор Е, является значительно более эффективным, чем недесилицированный катализатор, катализатор F.
Пример 3
Приготовление катализатора
Катализатор G: деалюминированный Н-морденит
10 г Натриевой формы морденита (CBV10A производства фирмы Zeolyst International, отношение диоксид кремния: оксид алюминия составляет 13) деалюминировали путем обработки водным раствором НС1 (200 мл, 1М) при 100°С в течение 1 ч. Раствор фильтровали и твердое вещество промывали избытком деионизированной воды и сушили в течение ночи в сушильном шкафу при температуре, равной 110°С. Высушенное твердое вещество (деалюминированный морденит) анализировали с помощью ИСП-АЭС и он обладал отношением диоксид кремния: оксид алюминия, составляющим 29,5:1.
5 г Деалюминированного морденита трижды подвергали обмену с водным раствором NH4NO3 (50 мл, 1М) при 80°С в течение 1 ч. После третьего обмена твердое вещество промывали избытком деионизированной воды, сушили в течение ночи в сушильном шкафу при температуре, равной 110°С, и затем прокаливали при 500°С в течение 3 ч в неподвижном воздухе.
Катализатор Н: деалюминированный Н-морденит
Катализатор Н, обладающий отношением диоксид кремния: оксид алюминия, составляющим 34:1, получали путем повторения методики, использованной для получения катализатора G, с тем отличием, что 20 г натриевой формы морденита обрабатывали с помощью 400 мл 1,0 М водного раствора HCl при кипячении с обратным холодильником в течение 1 ч.
Катализатор I: деалюминированный десилицированный Н-морденит
10 г Деалюминированного морденита (катализатор Н) десилицировали путем обработки водным раствором NaOH (300 мл, 0,2М) при 65°С в течение 0,5 ч. Раствор фильтровали и твердое вещество промывали избытком деионизированной воды и сушили в сушильном шкафу при температуре, равной 110°С. Высушенный деалюминированный десилицированный морденит трижды подвергали обмену с водным раствором NH4NO3 (100 мл, 1М) при 80°С в течение 1 ч. После третьего обмена твердое вещество промывали избытком деионизированной воды, сушили в сушильном шкафу при температуре, равной 110°С, в течение 20 ч и затем прокаливали при 500°С в течение 3 ч в неподвижном воздухе. Прокаленное твердое вещество (деалюминированный десилицированный Н-морденит) анализировали с помощью ИСП-АЭС и он обладал отношением диоксид кремния: оксид алюминия, составляющим 29,5: 1.
Реакции карбонилирования с использованием катализаторов G-I
Реакции карбонилирования проводили в проточной реакторной установке высокого давления, состоящей из 16 одинаковых изотермических параллельных противоточных трубчатых реакторов типа, описанного, например, в WO2006107187. Реакторы объединяли в 4 блока по 4 реактора, каждый блок обладал независимым регулятором температуры. Каждый реактор содержал слой спеченного металла с порами размером 20 мкм, на который помещали 0,072 г катализатора, спрессованного и просеянного с отбором частиц размером 100-160 мкм (примерно 100 мкл), что обеспечивало часовую объемную скорость газа (ЧОСГ), равную 4000 ч-1. Сверху на слой катализатора помещали 100 мкл гамма-оксида алюминия (SAS200 производства фирмы BASF), измельченного и просеянного с отбором частиц размером 100-160 мкм. Сверху на слой гамма-оксида алюминия помещали карборунд. Каждый катализатор нагревали при атмосферном давлении до 300°С с постоянной скоростью, равной 5°С/мин, в атмосфере азота при скорости потока, равной 3,1 мл/мин, в каждом реакторе и выдерживали при 300°С в течение 1 ч. Затем азот заменяли на газообразную загрузку, содержащую 77,6 мол.% монооксида углерода, 19,3 мол.% водорода и 3,1 мол.% Не, при скорости потока, равной 6,1 мл/мин, в каждом реакторе. Затем давление повышали до 60 бар избыточного давления и в течение 2 ч давали установиться равновесию. Газообразную загрузку, содержащую 69,7 мол.% монооксида углерода, 17,5 мол.% водорода, 2,8 мол.% Не, 5 мол.% диоксид углерода и 5 мол.% диметилового эфира, вводили в каждый реактор при скорости потока, равной 6,7 мл/мин, в каждом реакторе. Реакции давали протекать в течение 160 ч. Выходной поток из каждого реактора периодически пропускали через газовый хроматограф для определения концентрации реагентов и продуктов карбонилирования.
По данным проведенного с помощью газовой хроматографии анализа выход за один проход в единицу времени (ВПВ) ацетилированных продуктов рассчитывали в виде молярной эквивалентной массы уксусной кислоты, соответствующей сумме количеств образовавшихся метилацетата и уксусной кислоты в граммах уксусной кислоты за 1 ч на 1 л катализатора. Ацетилированным продуктом в основном являлся метилацетат. Результаты приведены в таблице 3.
ПРЦ = продолжительность рабочего цикла
Хотя катализаторы I и G обладают одинаковым отношением диоксид кремния: оксид алюминия, данные, приведенные в таблице 3, ясно показывают, что катализатор I (десилицированный катализатор) обладает значительно улучшенной каталитической активностью при карбонилировании по сравнению с катализатором G (недесилицированный катализатор).
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ КАРБОНИЛИРОВАНИЯ | 2010 |
|
RU2528339C2 |
СПОСОБ КАРБОНИЛИРОВАНИЯ | 2010 |
|
RU2541477C2 |
СПОСОБ КАРБОНИЛИРОВАНИЯ С ИСПОЛЬЗОВАНИЕМ СВЯЗАННЫХ СОДЕРЖАЩИХ СЕРЕБРО И/ИЛИ МЕДЬ МОРДЕНИТНЫХ КАТАЛИЗАТОРОВ | 2009 |
|
RU2525916C2 |
СЕЛЕКТИВНОЕ ДЕАЛЮМИНИРОВАНИЕ ЦЕОЛИТОВ СТРУКТУРНОГО ТИПА МОРДЕНИТА | 2009 |
|
RU2515729C2 |
СПОСОБ КАРБОНИЛИРОВАНИЯ | 2014 |
|
RU2658820C2 |
СПОСОБ КАРБОНИЛИРОВАНИЯ С ИСПОЛЬЗОВАНИЕМ МОРДЕНИТНОГО КАТАЛИЗАТОРА, НАНЕСЕННОГО НА НЕОРГАНИЧЕСКИЕ ОКСИДЫ | 2009 |
|
RU2518086C2 |
СПОСОБ КАРБОНИЛИРОВАНИЯ ДЛЯ ПОЛУЧЕНИЯ МЕТИЛАЦЕТАТА | 2009 |
|
RU2522431C2 |
СПОСОБ КАРБОНИЛИРОВАНИЯ ДЛЯ ПОЛУЧЕНИЯ МЕТИЛАЦЕТАТА | 2017 |
|
RU2739320C2 |
КАТАЛИЗАТОР КАРБОНИЛИРОВАНИЯ И СПОСОБ | 2014 |
|
RU2696266C2 |
СПОСОБ КАРБОНИЛИРОВАНИЯ ДИМЕТИЛОВОГО ЭФИРА | 2008 |
|
RU2478609C2 |
Изобретение относится к усовершенствованному способу получения по меньшей мере одного из уксусной кислоты и метилацетата путем карбонилирования карбонилирующегося реагента, выбранного из группы, включающей метанол, метилацетат и диметиловый эфир, монооксидом углерода в присутствии катализатора, причем катализатором является десилицированный морденит. Способ характеризуется улучшением каталитической активности. 14 з.п. ф-лы, 3 табл., 3 пр.
1. Способ получения по меньшей мере одного из уксусной кислоты и метилацетата путем карбонилирования карбонилирующегося реагента, выбранного из группы, включающей метанол, метилацетат и диметиловый эфир, монооксидом углерода в присутствии катализатора, причем катализатором является десилицированный морденит.
2. Способ по п.1, в котором десилицированный морденит деалюминирован.
3. Способ по п.1 или 2, в котором десилицированный морденит находится в водородной форме.
4. Способ по п.1 или 2, в котором десилицированный морденит обладает отношением диоксид кремния : оксид алюминия, находящимся в диапазоне от 15 до 40:1.
5. Способ по п.1 или 2, в котором десилицированный морденит получают путем обработки предшественника морденита водным раствором гидроксида щелочного металла или гидроксида щелочноземельного металла.
6. Способ по п.5, в котором предшественником морденита является деалюминированный морденит, который получен путем частичного включения в морденит одновалентного металла, обработки морденита, частично включающего металл, паром и последующей обработки обработанного паром морденита неорганической кислотой.
7. Способ по п.1 или 2, в котором катализатор объединяют со связующим.
8. Способ по п.7, в котором связующим является неорганический оксид.
9. Способ по п.7, в котором катализатор деалюминирован.
10. Способ по п.1 или 2, в котором карбонилирующимся реагентом является диметиловый эфир.
11. Способ по п.10, в котором карбонилирующимся реагентом является диметиловый эфир и содержится вода в количестве, равном менее 2,5 мас.% в пересчете на количество диметилового эфира.
12. Способ по п.1 или 2, который проводят в присутствии водорода.
13. Способ по п.1 или 2, который приводит к образованию метилацетата.
14. Способ по п.13, в котором по меньшей мере часть метилацетата гидролизуют с получением уксусной кислоты.
15. Способ по п.1 или 2, который проводят как непрерывный способ.
US 7465822 B2, 16.12.2008 | |||
EP 1985362 A1, 29.10.2008 | |||
US 4039479 A1, 02.08.1977 | |||
US 3619412 A1, 09.11.1971 | |||
US 5118482 A1, 02.06.1992 | |||
Пресс для выдавливания из деревянных дисков заготовок для ниточных катушек | 1923 |
|
SU2007A1 |
СПОСОБ ПОЛУЧЕНИЯ АЛИФАТИЧЕСКИХ ИЛИ АРОМАТИЧЕСКИХ КАРБОНОВЫХ КИСЛОТ И/ИЛИ СЛОЖНЫХ ЭФИРОВ | 1968 |
|
SU453824A3 |
Авторы
Даты
2014-09-27—Публикация
2010-05-06—Подача